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Abstract: The purpose of this work was to develop an assessment technique and subsequent metrics
that help in developing an understanding of the balance between network size and task performance
in simple model networks. Here, exhaustive tests on simple model neural networks and datasets
are used to validate both the assessment approach and the metrics derived from it. The concept of
neural layer state space is introduced as a simple mechanism for understanding layer utilization,
where a state is the on/off activation state of all neurons in a layer for an input. Neural efficiency
is computed from state space to measure neural layer utilization, and a second metric called the
artificial intelligence quotient (aIQ) was created to balance neural network performance and neural
efficiency. To study aIQ and neural efficiency, two simple neural networks were trained on MNIST: a
fully connected network (LeNet-300-100) and a convolutional neural network (LeNet-5). The LeNet-5
network with the highest aIQ was 2.32% less accurate but contained 30,912 times fewer parameters
than the network with the highest accuracy. Both batch normalization and dropout layers were
found to increase neural efficiency. Finally, networks with a high aIQ are shown to be resistant to
memorization and overtraining as well as capable of learning proper digit classification with an
accuracy of 92.51%, even when 75% of the class labels are randomized. These results demonstrate the
utility of aIQ and neural efficiency as metrics for determining the performance and size of a small
network using exemplar data.
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1. Introduction

The current trend in the artificial intelligence (AI) and machine learning (ML) field
is to build larger artificial neural networks (ANNs) to increase task performance, with
recent methods enabling training on models with trillions of parameters [1–3]. This trend
stands in contrast to the traditional theory of over-parameterization in models leading to
overfitting and worse performance. Additionally, it is now well established that within
large, over-parameterized neural networks, low-dimensional manifolds exist that provide
improved separability between classes as data pass deeper through the network [4]. It is
these concepts that led to the experiments and metrics developed in this paper.

Successfully training large ANNs presents many challenges. Some of these challenges
have found solutions in new types of layers or architectural designs. For example, some
networks are too large for the task they are being trained to perform, resulting in poor
task performance relative to a smaller network trained to perform the same task. This
phenomenon is observed by increased performance on a task as the network depth increases
to a point after which performance decreases. One solution to the costly search for the
“optimal” network depth is skip or residual connections, which may require depth rescaling
using another neuron layer [5]. Another major issue is overtraining/memorization, a
common problem in nearly all modern neural networks. Overtraining causes ANNs to
memorize inputs rather than learn a set of rules that generalize to new data, and it has
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been shown that modern networks are highly capable of memorizing randomized image
labels [6]. To combat overtraining and memorization, a variety of techniques and layers are
used, including data augmentation [7], dropout layers [8], and even the creation of new
neural networks in the case of adversarial neural network training [9]. Thus, the drive
to create larger ANNs is often compounded by further increases in ANN size by using
architecture components designed to resolve the problems of large networks, which make
the deployment of these networks at scale a challenge [10].

The current state of ANN research has an analogous mindset to the human intelligence
research prior to the formulation of the neural efficiency hypothesis in the 1990s [11]. The
general opinion in neuroscience research was that an individual with high intelligence was
more capable of performing tasks with high performance because their brain would be more
capable of recruiting large numbers of neurons. This changed with publications that showed
fewer neurons fire for a given task in higher performing individuals Haier et al. [12,13].
One publication showed that individuals with high intelligence had higher scores on Tetris
but had lower brain metabolism while playing the game [11]. This finding led to the
formulation of the neural efficiency hypothesis, which states that a key factor to intelligence
is the capacity of the brain to perform a task by using the smallest amount of neural
activity [14]. In the above context of human intelligence and neural efficiency, the current
drive to increase neural network task accuracy by increasing the size and complexity of a
network may be interpreted as the development of less intelligent neural networks. This
is supported anecdotally in the literature by the tendency of most neural networks to
memorize images with randomized labels during training [6].

Inspired by the discovery of the neural efficiency hypothesis from human intelligence
research, this work develops an assessment technique called neural layer state space, which
can be used to understand neural efficiency in simple neural networks. The ultimate
goal of the neural state space assessment technique is to develop a method to measure
over-parameterization within individual layers of simple neural networks. In addition to
this, a metric that balances model performance and efficiency was developed and called the
artificial intelligence quotient (aIQ), whose value is high when a small number of neurons
generalize well to make accurate predictions on test data. This is a unique metric for neural
networks because there are a large number of metrics for assessing neural network task
performance [15,16] and a variety of metrics for assessing computational efficiency (wall
time, model size, flops [17], algorithmic efficiency [18], etc.), but there are few to no metrics
that balance task performance and efficiency.

To develop a mechanistic understanding of neural efficiency in small neural networks,
two classic small neural networks are used: LeNet-300 and LeNet-5 [19]. The LeNet-300-100
is a fully connected network that, because the network only contains two hidden layers,
permits an easy visualization of trends in model accuracy, aIQ, and the efficiency of each
layer. LeNet-5 is a small convolutional neural network originally designed to work on
MNIST. MNIST is used here since it is a well known and characterized dataset.

2. Approach
2.1. State Space

Prior attempts to increase the efficiency of a neural network were based on the re-
moval of weights (pruning) based on weight magnitude or gradients of weights during
backpropagation [20,21] or an analysis of firing frequency [22]. In this manuscript, we
introduce the concept of neuron layer state space. The state space of a layer is the collection
of neuron layer states, and a single state is the collective output of a neural layer given
a single set of inputs. Since the output values of all neurons for a given set of inputs are
generally passed to the subsequent layer, it was hypothesized that analyzing how neurons
fire as a collective in a layer, rather than analyzing individual neurons, would be beneficial.

If the output of a neuron layer defines a single state, then the state space is the set of all
observed states in a layer when inputs from the train or test data pass through the network.
When one image is passed through a convolutional neural network, convolutional layers
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will generate multiple neuron layer states per image (micro states) that make up a spatial
activation map (a macro state). In contrast, dense layers will generate only one neuron
layer state per image (the micro and macro state are the same). In this manuscript, to
assess a neuron’s state, its outputs are quantized as either firing (output is greater than
zero) or non-firing (output is less than or equal to 0). However, even with quantization,
the state space could still be unmanageably large since the number of possible states in a
layer after quantization will be 2Nl , where Nl is the number of neurons in a layer. In reality,
significantly fewer states are actually generated in a layer, so bins for a layer state are only
created when observed.

2.2. Neural Efficiency

Neural efficiency is defined as the utilization of state space, and can be measured by
entropic efficiency. If all possible states are recorded for data fed into the network, then
the probability, p, of a state occurring can be used to calculate Shannon’s entropy, El , of
network layer l:

El = −
i=Nl

∑
i=0

pi ∗ log2(pi) (1)

Intuitively, El is an estimation of the minimum number of neurons required to encode
the information exported by the neural layer if the output information could be perfectly
encoded. The maximum theoretical entropy of the layer will occur when all states occur
the same number of times, and the entropy value will be equal to the number of neurons in
the layer, Nl . Neural efficiency, ηl , can then be defined as the entropy of the observed states
(El) relative to the maximum entropy (Nl):

ηl =
El
Nl

(2)

Thus, neural efficiency, ηl , is defined as state space efficiency using Shannon’s entropy
with a range of 0–1. Neural efficiency values close to zero are likely to have more neurons
than needed to process the information in the layer, while neuron layers with neural
efficiency close to one are making maximum usage of the available state space. Alternatively,
very high neural efficiency could also mean too few neurons are in the layer.

2.3. Artificial Intelligence Quotient

Neural efficiency is a characteristic of intelligence, but so is task performance. There-
fore, an intelligent algorithm should perform a task with high accuracy and efficiency.
Using ηl as layer efficiency, the neural network efficiency, ηN , can be calculated as the
geometric mean of all layer efficiencies in a network containing L number of layers:

ηN =
( L

∏
l=1

ηl

) 1
L

(3)

The geometric mean was chosen to average efficiencies since the geometric mean is
robust to outliers. The artificial intelligence quotient (aIQ) can thus be defined as

aIQ =
(

Pβ ∗ ηN

) 1
β+1 (4)

where P is the performance metric, and β is a tuning parameter to give more or less weight
to performance at the cost of ηN .

3. Experiments
3.1. Exhaustive LeNet Training

To evaluate neural efficiency and aIQ, two types of neural networks were trained on
the MNIST digits dataset [19]. The first network (LeNet-300-100) consists of two densely
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connected layers followed by a classification layer. The second network (LeNet-5) consisted
of two convolutional layers, each followed by a max pooling layer (2 × 2 pooling, stride 2),
and a densely connected layer followed by a classification layer. All layers used exponential
linear unit (ELU) activation [23] and L2 weight regularization (0.0005). Standard stochastic
gradient descent with Nesterov updates was used with a static learning rate of 0.001 and
a momentum of 0.9. Training was stopped when the training accuracy did not increase
within five epochs of a maximum value.

For each neural network architecture, the number of neurons in every layer varied from
2 to 1024 by powers of 2. All combinations of layer sizes were trained, with 11 replicates
using different random seeds to determine variability resulting from different initializations.
A total of 11,000 models were trained for the LeNet-5 architecture, and 1100 were trained
for the LeNet-300-100 architecture. Models were constructed and trained using Tensorflow
2.7, and networks were trained in parallel on two gpu servers with 8 NVidia Quadro RTX
8000s each. Once models were trained, aIQ was calculated with β = 2 to give a nominal
preference for networks with higher accuracy.

3.2. Dropout and Batch Normalization

In the context of neural layer efficiency, batch normalization was hypothesized to
be a method to improve efficiency, while dropout is a method to decrease efficiency. The
rationale for batch normalization improving neural efficiency is that neuron activation is
driven toward the center of the distribution of neuron outputs. As the firing frequency of
each neuron approaches 50%, the entropy is more likely to obtain the maximum value. In
contrast, dropout was hypothesized to decrease the available state space during training by
dropping the outputs of neurons, effectively decreasing the maximum entropy value. To
test the effect of dropout and batch normalization, neural networks were trained with the
same number of neurons, as described in the Exhaustive LeNet Training section, except a
dropout layer (p = 50%) or batch normalization layer was added after every hidden layer.
For networks with batch normalization or dropout layers, only three replicates were trained.
A total of 3000 networks were trained each for LeNet-5 networks with either dropout or
batch normalization. A total of 300 networks were trained each for LeNet-300-100 networks
with either dropout or batch normalization.

3.3. Memorization and Generalization Tests

If aIQ provides an assessment of capacity to learn general rules rather than memorize
training inputs, it was hypothesized that network architectures with a high aIQ would
perform well when trained on datasets with noisy labels. The reason for this is that, for
networks with a low aIQ and with low ηN , training inputs are memorized because the
state space is likely much larger than the space of observed states. This means that new
data would be classified correctly or incorrectly based on how similar an image was to
one of the memorized inputs. However, for networks with a high aIQ, there is insufficient
bandwidth to create a special state for an input with a low prevalence label. To test this,
network architectures were trained from scratch where 25%, 50%, 75%, or 100% of the
training labels were randomized. Accuracy and neural efficiency was then measured for
both the test and train datasets without randomized labels. To test the capacity of high aIQ
networks to generalize to new data, trained networks were used to evaluate the EMNIST
dataset [24], which contains 280,000 additional digit images in the same formats as the
original 70,000 digit images contained in MNIST. Three thousand networks were trained
for the LeNet-5 architecture for each of the different percentages of randomization (12,000
in total) and each type of layer modifier (batch normalization, dropout, or neither). Three
hundred networks were trained for each combination of LeNet-300-100 architecture and
label randomization.
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4. Results
4.1. Accuracy, aIQ, and Neural Efficiency

Testing 81,004 model combinations was performed to understand trends in aIQ, neural
efficiency, and accuracy. For the training data (not shown), accuracy increased monotoni-
cally with the number of neurons added in each layer, but the test data showed a slight
decrease in accuracy as the number of neurons in Hidden Layer 1 (N1) contained more than
128 neurons (Figure 1a). In contrast, aIQ (β = 2) values reached a local maximum when
N1 = 8 and N2 = 4 (Figure 1b). The decrease in aIQ values are due to the trend in neural
efficiency to decrease as the number of neurons in a layer increases (Figure 1c,d). It was
generally observed that neural efficiency was inversely related to the number of neurons,
and changing the number of neurons in one layer had an impact on the neural efficiency of
other layers. For example, for networks where N1 = 8, the neural efficiency of Layer 1, η1,
generally increased as N2 increased, except there was a local minimum at N2 = 16. Local
minima can be observed in other areas where the number of neurons in either layer is held
constant, and the changes in efficiency for the same layer are observed (e.g., when N2 = 8,
a local minima occurs when N1 = 32). Similar trends were observed in the LeNet-5 models,
where changes in the number of neurons in one layer affected the efficiency of other layers.

Figure 1. Trends in accuracy (a), aIQ (b), and neural efficiency for Hidden Layer 1 (c) and Hidden
Layer 2 (d) in the LeNet-300-100 model. Data shown are for test data. All values range from 0 to 1,
and values are the mean ±95% confidence interval of 11 replicates.
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Additional experiments were performed to identify networks with the highest aIQ for
each architecture. Analysis of the top three neural networks for accuracy or aIQ for both
LeNet models are shown in Table 1. For the LeNet-300-100 models, the model with the
highest test accuracy (N1 = 128, N2 = 1024) achieved an accuracy of 97.58% ± 0.04% with
an aIQ of 32.7 ± 0.01 (values are mean ± 95% CI, n = 11). The highest aIQ model (N1 = 11,
N2 = 4) had an accuracy of 92.91% ± 0.19% with an aIQ of 86.41 ± 0.71. Thus, the network
with the highest aIQ was 4.76% less accurate but contained 3.60% of the parameters.

The differences between the networks with the highest accuracy and those with the
highest aIQ were even more drastic for the LeNet-5 models. The network with the highest
accuracy (N1 = N2 = N3 = 1024) had an accuracy of 99.58% ± 0.02% and an aIQ of
24.28 ± 0.004 (values are mean ±95% CI, n = 11). However, the network with the highest
aIQ (N1 = 3, N2 = 9, N3 = 4) had an accuracy of 96.84% ± 0.18% and an aIQ of 88.28 ± 0.46.
The network with the highest aIQ had a lower accuracy by 2.32% but contained 0.0032% of
the parameters.

Table 1. The top three network architectures by accuracy and aIQ.

LeNet-300-100 (Nl)

Layer 1 Layer 2 Test Accuracy (%) † aIQ (β = 2) † Parameters (fold decrease)

128 1024 97.58 ± 0.04 32.70 ± 0.01 242,826 (1×)
256 1024 97.54 ± 0.06 29.12 ± 0.01 474,378 (0.5×)
64 1024 97.53 ± 0.08 36.67 ± 0.02 127,050 (1.9×)
11 4 92.91 ± 0.19 86.41 ± 0.71 8733 (27.8×)
11 5 93.59 ± 0.29 85.93 ± 1.04 8755 (27.7×)
7 4 90.76 ± 0.25 85.90 ± 1.00 5577 (43.5×)

LeNet-5 (Nl)

Layer 1 Layer 2 Layer 3 Test Accuracy (%) † aIQ (β = 2) † Parameters (fold decrease)

1024 1024 1024 99.16 ± 0.02 24.28 ± 0.004 43,030,538 (1×)
1024 128 512 99.15 ± 0.03 33.02 ± 0.008 4,357,770 (9.9×)
1024 512 1024 99.14 ± 0.03 26.22 ± 0.005 21,534,218 (2.0×)

3 9 4 96.84 ± 0.18 88.28 ± 0.46 1392 (30,912.9×)
3 5 5 96.72 ± 0.16 88.18 ± 1.52 923 (46,620.3×)
3 4 4 95.37 ± 0.19 88.02 ± 0.64 692 (62,182.9×)

† Accuracy and aIQ values are mean ±95% CI (n = 11). aIQ values are ×100. Data shown are for metrics
calculated on the test dataset.

4.2. Batch Normalization and Dropout as Neural Efficiency Modifiers
4.2.1. Batch Normalization

Batch normalization generally increased the accuracy and ηN for both LeNet-300-100
and LeNet-5 networks, resulting in a rise in aIQ for most networks (Table 2). For LeNet-
300-100 networks, 178 (59.26%) of the networks with batch normalization had a mean ηN
higher than the mean ηN of corresponding networks trained without batch normalization.
When only small networks are considered (N1 ≤ 16, N2 ≤ 16), 36 (74.13%) of the networks
with batch normalization had a mean ηN higher than the same network trained without
batch normalization. In addition to higher network efficiency, neural networks trained
with batch normalization also had higher accuracy on test data, where 233 (77.78%) of the
networks with batch normalization achieved higher accuracies than the same networks
without batch normalization. aIQ increased in 222 (74.07%) of the networks where all layers
had 16 or fewer neurons.

For LeNet-5 networks, 2226 (74.2%) of all networks with batch normalization had a
mean ηN higher than their corresponding networks without batch normalization. However,
the batch normalization generally resulted in lower accuracy, with only 978 (32.60%) of
the networks achieving a higher accuracy than their corresponding networks without
batch normalization. When considering only small networks where Nl ≤ 16 for all layers,
178 (92.6%) of the networks with batch normalization had a higher accuracy. Furthermore,
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2133 (71.10%) of all networks with batch normalization had a higher ηN relative to their
corresponding networks without batch normalization, and ηN decreased to 123 (64.35%) for
networks where all layers had less than 16 neurons. Overall, 2226 (74.20%) of all networks
had a higher aIQ when trained with batch normalization.

These results confirm the hypothesis that batch normalization generally acts to im-
prove ηN in addition to improving classification accuracy (Table 2), making neural networks
“more intelligent”, as assessed by aIQ.

Table 2. The top network architectures by aIQ when batch normalization (BatchNorm), dropout
(Dropout), or neither (None) are added to every layer.

LeNet-300-100 (Nl)

Layer 1 Layer 2 Modifier Test Accuracy (%) † aIQ (β = 2) † ηN (%)

11 4 None 92.91 ± 0.19 86.41 ± 0.71 74.77 ± 1.72
BatchNorm 93.50 ± 0.36 82.10 ± 1.44 63.33 ± 3.07

Dropout 78.41 ± 3.82 74.36 ± 4.06 66.89 ± 4.47
10 6 None 93.52 ± 0.14 83.16 ± 2.52 66.20 ± 5.75

BatchNorm 93.65 ± 0.44 87.76 ± 0.44 77.07 ± 1.16
Dropout 83.63 ± 0.63 75.62 ± 0.93 61.83 ± 1.49

7 5 None 91.53 ± 0.31 83.88 ± 1.75 70.65 ± 4.21
BatchNorm 91.91 ± 0.25 86.42 ± 1.20 76.43 ± 2.76

Dropout 80.63 ± 2.96 78.31 ± 2.44 73.88 ± 1.47

LeNet-5 (Nl)

Layer 1 Layer 2 Layer 3 Modifier Accuracy (%) † aIQ (β = 2) † ηN (%)

3 9 4 None 96.84 ± 0.18 88.28 ± 0.46 73.38 ± 1.22
BatchNorm 96.95 ± 0.58 82.44 ± 3.08 59.73 ± 6.47

Dropout 79.72 ± 4.96 77.82 ± 2.91 74.23 ± 0.99
2 8 8 None 97.83 ± 0.10 85.58 ± 2.28 65.81 ± 5.03

BatchNorm 98.05 ± 0.20 88.12 ± 1.68 71.21 ± 4.30
Dropout 88.06 ± 2.00 82.75 ± 0.38 73.16 ± 4.21

3 4 7 None 97.17 ± 0.22 83.71 ± 2.65 62.55 ± 5.74
BatchNorm 97.27 ± 0.34 84.91 ± 2.16 64.76 ± 4.45

Dropout 90.15 ± 1.66 85.45 ± 1.47 76.82 ± 3.32
† Accuracy, aIQ, and efficiency values are mean ±95% CI (n = 11 for None, n = 3 otherwise). aIQ values are ×100.
Data shown are for metrics calculated on the test dataset.

4.2.2. Dropout

Dropout had different effects on the LeNet-300-100 and LeNet-5 architectures. Dropout
generally decreased ηN in LeNet-300-100 networks and increased ηN in the LeNet-5 net-
works, but decreased aIQ in nearly all networks due to a drop in accuracy for nearly all
networks (Table 2). For LeNet-300-100 networks, none of the networks trained with dropout
had an accuracy higher than their corresponding networks trained without dropout, and
only 18 (5.59%) of the networks had a higher efficiency. Accordingly, no networks with
dropout had a higher aIQ relative to their corresponding networks without dropout.

None of the networks with dropout had an accuracy higher than their corresponding
networks without dropout, and 1818 (60.60%) of the dropout networks had a higher ηN .
When considering neural networks with 16 or fewer neurons in each layer, 191 (99.33%) of
the networks with dropout had a higher ηN than their corresponding networks without
dropout. However, only 468 (15.60%) of the dropout networks had a higher aIQ than
their corresponding networks without dropout, meaning the increase in efficiency was not
sufficient to offset the decrease in accuracy in the majority of networks.

The general conclusion from these results is that dropout generally decreases accuracy,
leading to a drop in aIQ. The reason why accuracy dropped in all networks may be due
to a variety of factors, including the dropout rate being too high (p = 50%) or dropout
being placed in every layer of the network. The explanation for why dropout appeared
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to decrease ηN in LeNet-300-100 networks but increased ηN in LeNet-5 networks may
be due to LeNet-300-100 only having dense layers and LeNet-5 containing convolutional
layers. It is known that dropout can have a nominal or detrimental impact on network
performance because dropout layers add noise to the network [25]. As a result, the increased
ηN may be due to increased noise in the convolutional layers, leading to higher entropy. A
better assessment of the effect of dropout for convolutional layers may be to use dropout
layers with different dropout rates or use dropout layer types constructed specifically for
convolutional layers, such as dropblock or spatial dropout (a survey of different dropout
types has been performed [26]).

4.3. Memorization and Generalization

To test the resistance of networks to overfitting/memorization, a percentage of image
labels were randomized before training, as previously described by Zhang et al. [6]. Over-
fitting occurs when incorrect, random labels are learned and is analogous to memorizing
the label for an image. Table 3 shows the results for the neural networks with the highest
aIQ and the highest accuracy from the batch normalization tests for both the LeNet-300-100
and LeNet-5 networks. When none of the labels are randomized (0%), the accuracy of the
largest network is higher than the network with the best aIQ for both LeNet-300-100 and
LeNet-5. When 25–75% of the labels were randomized, the network with the highest aIQ
had the best accuracy. Even when 75% of the labels were randomly assigned, the networks
with a high aIQ were able to achieve accuracies of 84.68% and 92.51% for the LeNet-300-100
and LeNet-5 networks, respectively. These numbers are considerably better than the neural
networks with the highest accuracies in the batch normalization tests, which had test
accuracies of 36.99% and 44.24% when trained on data with 75% of the labels randomized.
Both types of networks had poor performance regardless of original aIQ or accuracy values
when all labels were randomly assigned (100%). This result demonstrates that networks
with a high aIQ have the property of being resistant to overtraining and memorization
and that they can learn the correct classification weights even when a majority of the input
labels are incorrect.

To test the capacity of networks to generalize results to a larger, more diverse dataset,
the networks with the highest aIQ or the highest accuracy were trained on the MNIST
dataset, and classification accuracy was then measured on the EMNIST dataset. The
EMNIST digits dataset has a similar format to MNIST, but it contains 280,000 more sam-
ples [24]. The general trend was that the network with the highest accuracy showed a
superior performance on EMNIST in comparison to MNIST, with significant differences
between the LeNet-300-100 and LeNet-5 networks, Table 4). The LeNet-300-100 network
with the highest accuracy on MNIST (98.03%) showed a much greater performance than
that with the highest accuracy on EMNIST (76.21%), while the network with the highest
aIQ showed a much larger decrease in accuracy from MNIST to EMNIST (from 93.65% to
58.43%, respectively). In contrast, the differences between the networks with the highest
accuracy and the highest aIQ were less drastic among the LeNet-5 networks. The EMNIST
accuracy was 90.56% in the network with the highest accuracy and was 89.36% in the
network with the highest aIQ. These experiments were repeated after training the same
networks on MNIST with 75% of the labels randomized, and as expected the networks
with the highest accuracy showed a significant decrease in performance on EMNIST, while
the networks with the highest aIQ showed a considerably improved performance on both
the LeNet-300-100 and LeNet-5 networks. This data demonstrate that convolutional neural
networks with high aIQ do not considerably underperform in comparison to much larger
networks when performance is assessed on a much larger, diverse dataset, but dense
networks with a high aIQ may not generalize as well.
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Table 3. Memorization tests on the networks with the highest aIQ or accuracy.

LeNet-300-100 (Nl) Accuracy (%)

Layer 1 Layer 2 0% Rand 25% Rand 50% Rand 75% Rand 100% Rand

1024 1024 98.03 85.91 63.43 36.99 9.48
10 6 93.65 91.56 89.59 84.68 10.89

LeNet-5 (Nl)

Layer 1 Layer 2 Layer 3 0% Rand 25% Rand 50% Rand 75% Rand 100% Rand

1024 1024 1024 99.11 93.99 76.07 44.24 10.34
2 8 8 98.05 96.73 95.69 92.51 7.49

The % Rand indicates the percentage of labels that were randomized prior to training.

Table 4. Generalization tests on the networks with the highest aIQ or accuracy.

LeNet-300-100 (Nl) MNIST Accuracy (%) EMNIST Accuracy (%)

Layer 1 Layer 2 0% Rand 75% Rand 0% Rand 75% Rand

1024 1024 98.03 36.99 76.21 24.93
10 6 93.65 84.68 58.43 55.46

LeNet-5 (Nl)

Layer 1 Layer 2 Layer 3 0% Rand 75% Rand 0% Rand 75% Rand

1024 1024 1024 99.11 44.24 90.56 34.16
2 8 8 98.05 92.51 89.36 74.67

5. Discussion

The major contribution of this work is the establishment of an assessment technique
called neuron layer state space and the capacity to use state space as a means of evaluating
neuron layer utilization using the metrics of neural efficiency and aIQ. Quantizing neurons
into on/off positions that encode information collectively as a neural layer state provides a
different perspective on how data are processed in the network. One prevailing thought is
that neurons are discrete units that encode individual features, but the work here suggests
that the information an individual neuron encodes may have value in the context of the
other neurons with which it fires. One advantage of conceptualizing the flow of information
between layers using state space is the number of tools that become available for network
analysis. In this work, a rudimentary metric was created to understand layer utilization,
but many other methods of analyzing state space could be used, such as the relative entropy
of a single layer or the mutual information between two layers. Further investigation of
state space may help to further compress the size of the network without a significant
decrease in accuracy, and may even permit the training of the number of neurons in a layer.
While neural architecture search has become a topic of interest in order to search for an
ideal network computational cell, few if any of these methods include parameters to learn
layer sizes.

One benefit of understanding neural networks in terms of state space is that guidelines
on how many neurons to place in a layer can be established knowing only superficial
information about the training data. The current thought is that a higher number of neurons
leads to higher accuracy, but this does not appear to provide an improved generalization
for the small convolutional models tested here (see Table 4). Using the concept of state
space, the number of states in a dense layer cannot exceed the number of input images. If
there are X training examples, then ceil(log2X) neurons are sufficient to memorize every
training image. As an example, the ImageNet dataset has 14 million images (leading
to ~224 states), which is considerably smaller than the available statespace of AlexNet
(4096 densely connected neurons), which is ~6 × 101225 times larger than the number of
available training examples in ImageNet [27]. Due to random initialization, it is doubtful
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that a dense layer would memorize every training image if it contains exactly the number
of neurons required to memorize all inputs. However, assuming the network is generating
general rules for classification, the entire bandwidth of the channel should never need
to be used. An analogous guideline could be applied to convolutional layers, where all
combinations of pixel intensities of an 8-bit grayscale image in a 3 × 3 grid could be
perfectly represented by 72 neurons with 3 × 3 convolutional kernels (2569 = 272), so the
first convolutional layer of a network should never contain more than 72 neurons when
analyzing 8-bit grayscale images. Thus, simple upper limits on the number of neurons in
different layers could be inferred from the implications of state space, where the upper
limits may be considerably smaller than the number of neurons that are currently observed
in modern networks.

Using the guidelines laid out above, it is reasonable to say that most networks that are
created contain many more neurons than needed, explaining why most neural networks are
prone to memorization and attack vectors. The authors of Morcos et al. [28] demonstrated
the existence of single directions in neural networks, and although they found that models
trained on randomized labels did not generalize, they did find that single directions
were significantly more important in models with randomized labels for training data
accuracy [28]. In the present work, we constrained the state space by reducing the number
of neurons in a layer. If memorization is the construction of unique states within state
space, then constraining the number of available states in a layer should reduce or even
prevent memorization by limiting the number of potential single directions. For attack
vectors, adversarial networks can be trained to add imperceptable amounts of noise to an
image to cause the neural network to misclassify the image [29]. It is plausible that these
attack vectors take advantage of noise in an over-parameterized network, a problem that
a smaller neural network may not face. Thus, the use of state space and neural efficiency
may help to make networks more resistant to such attacks.

Related to the size complexity of current neural networks is the concept of Occam’s
razor in machine learning. The general concept behind Occam’s razor is that the simplest
model should be preferred, including in artificial intelligence [30]. Geometric analysis of
the parameter space of neural networks reveals low-dimensional manifolds, suggesting
that, despite the vast number of parameters in most modern neural networks, they have
relatively simple parameter spaces [31]. Thus, the work presented here evaluating efficiency
could be interpreted as a metric that assesses model simplicity.

There are a few deficits in the current approach that should be resolved in future
work. The first is the memory utilization and computational complexity of capturing state
space. Only small networks were analyzed in this work due to the potential size of state
space, which may be unmanageable in a large neural network assessing a large dataset
such as ImageNet.

The second problem is the issue of class imbalances. If there are class imbalances in
either the training or test data, it would be expected that the efficiency metrics would be
skewed. Class imbalances in the training data might cause more neurons in the network to
be dedicated to classification of the most common class, while imbalances in the test data
might overrepresent states that occur. Another issue is the underlying assumption that
maximum efficiency is achieved when all states occur at the same frequency. It might be
expected that some states occur far more frequently than others so that an ideal distribution
of states might look more like an exponential distribution. This was superficially confirmed
by looking at the distribution of states in the LeNet-300-100 networks, by analyzing net-
works with N1 = 8 around the local minimum when N2 = 16 (see Figure 1). Therefore,
some other metric of calculating efficiency that accounts for an ideal distribution of states
might be a better measure of efficiency.

The third deficit is the issue of implementation. Recording and processing data
collected in state space is expensive. For some networks, the number of neurons in a
convolutional layer can be 128 or more, meaning that at least 2128 layer states are possible
and that the states for every location in an image should be tracked to calculate the entropy.
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The current implementation of calculating entropy is not practical for larger networks that
contain many more layers and layers with larger numbers of neurons (such as AlexNet
with 4096 neurons in the dense layers) [27]. One potential solution to this might be to
create a method of approximating the entropy by, rather than recording every observed
state, collecting sufficient information on a layer-by-layer basis to capture the shape of
the distribution.

Finally, one topic not investigated here is how data augmentation impacts efficiency
and aIQ. Data augmentation is generally used to help improve accuracy and generalization,
likely because it helps to mitigate memorization. Networks with high aIQ were small and
were fairly resistant to memorization (see Table 3), so it might be expected that certain types
of augmentation (i.e., random cropping) might not improve performance when training a
network with a high aIQ, but other types of augmentation might help (i.e., image flipping).

6. Conclusions

This work introduces an assessment technique called neuron layer state space, and
demonstrates how an analysis of state space, using metrics such as neural efficiency and
state space, is useful for assessing the trade-off between ANN accuracy and performance
in simple architectures. Dense convolutional models with a high aIQ were shown to
have desirable properties, such as resistance to overtraining and a general performance
on EMNIST that is comparable to much larger networks. Future work with state space
should establish metrics of layer efficiency as well as methods of computing efficiency and
evaluating larger networks that are superior to the two models presented in this paper.
State space may provide insight into sizing neural network layers to vastly decrease the
size of existing neural networks.
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