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Abstract: With the rapid development of artificial intelligence technology and unmanned surface
vehicle (USV) technology, object detection and tracking have wide applications in marine monitoring
and intelligent ships. However, object detection and tracking tasks on small sample datasets often
face challenges due to insufficient sample data. In this paper, we propose a ship detection and
tracking model with high accuracy based on a few training samples with supervised information
based on the few-shot learning framework. The transfer learning strategy is designed, innovatively
using an open dataset of vehicles on highways to improve object detection accuracy for inland ships.
The Shuffle Attention mechanism and smaller anchor boxes are introduced in the object detection
network to improve the detection accuracy of different targets in different scenes. Compared with
existing methods, the proposed method is characterized by fast training speed and high accuracy
with small datasets, achieving 84.9% (mAP@0.5) with only 585 training images.

Keywords: ship object detection; multi-object tracking (MOT); few-shot learning (FSL); transfer learning

1. Introduction

Intelligent shipping has become the main direction of the development of the ship-
ping industry, and the autonomous navigation technology of ships is the key to realizing
intelligent shipping. As one of the core technologies, situational awareness is the basis
for realizing the autonomous navigation of ships. Particularly, detecting and tracking the
target ships with collision risks are essential to situational awareness.

In the recent decade, the rapid development of artificial intelligence technology and
high-speed processors have promoted ship object detection tracking methods based on
computer vision. However, existing high-precision ship object detection and object tracking
models rely on vast amounts of data with high-quality labelling [1]. However, samples
for inland ships are relatively few, and labeling is time consuming. Moreover, a large
amount of data brings a long training time. In addition, the trained models suffer from
poor generalization capability. The model application scenario is affected by the annotation
of the dataset [2].

1.1. Contributions

Based on the FSL framework, this paper designed a method for inland ship object
detection and object tracking using the YOLOv5s lightweight detection network and
DeepSORT tracking network. The proposed method is characterized by fast training
speed and high accuracy with small datasets. The main contribution of this manuscript is
as follows:
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• Multi-object detection and tracking for inland ship situation awareness based on FSL
are proposed, which achieve 84.9% (mAP@0.5) with only 585 training images.

• The transfer learning strategy is designed by innovatively using an open dataset of
vehicles on highways to improve object detection accuracy for inland ships.

• Introducing the Shuffle Attention mechanism and smaller anchor boxes in the object
detection network can somewhat improve the detection accuracy of different targets
in different scenes.

1.2. Organization

The rest of this paper is organized as follows. Section II briefly introduces the basic
method and content of this paper and describes the framework of the whole system.
Section III of this paper introduces the related contents, methods, and improvements of
object detection. In section IV, this paper introduces the relevant contents, methods, and
modifications of target tracking. Section V presents the experimental setup and results.
Finally, Section VI summarizes this paper.

2. Related Works

This section aims to provide a comprehensive review of recent studies that are related
to object detection and object tracking. Additionally, this section will also cover some of the
applications of object detection and object tracking in marine environments.

2.1. Object Detection

Object detection is an essential computer vision task, which is considered the corner-
stone of many advanced artificial intelligence tasks. Many object detection algorithms
based on deep learning have been applied to the field of ships. Common deep learning
detection algorithms include Faster R-CNN [3], MASK-RCNN [4,5], SSD (Single Shot Multi-
Box Detector) [6], and YOLO (You Only Look Once) [7]. However, surveillance images
(such as photographs or videos) for ships are rare, while Synthetic Aperture Radar (SAR) is
available all day under all weather. Thus, for ship object detection, methods for detection
with SAR images are proposed, such as DDNet [8], Saliency-Based Centernet [8], and
Expansion Pyramid Network (SEPN) [9]. For general ship surveillance images, K-means
clustering prior box combined with the yolov4 network [10] and SSD_MobilenetV2 [11]
have been applied to improve ship detection performance. In these studies, the NMS (Non-
Maximum Suppression) effect and detection speed of the network for rectangular boxes
are improved, but the detection accuracy and accuracy are decreased. In one study [12],
the authors constructed ship datasets in the form of COCO datasets and adopted YOLOX,
which introduced residual structure and CIoU loss function. The performance of the algo-
rithm is significantly better than the original YOLOX algorithm. In ref. [13], an improved
CenterNet network for ship detection in scale-changing images has been proposed, making
the network more sensitive to small objects.

2.2. Object Tracking

Tracking in deep learning is the task of predicting the positions of objects throughout a
video using their spatial and temporal features. Traditional object tracking methods can be
broadly categorized into several types, including machine-learning-based methods [14–16],
Markov random field-based methods [17], and optical flow and background subtraction-
based methods [18–21]. For ship object tracking, due to the complexity of the water surface
environment, variability in ship scales, and the occlusion of ships, ship object tracking is
more challenging. In addition to the above methods, Kaid used particle filtering to track
ships based on color histograms within bounding rectangles [22]. Chen et al. proposed an
automatic ship object detection and tracking method based on a mean shift to improve the
robustness of real-time detection and tracking [23].

One of the challenges for object tracking is the Multi-Object Tracking (MOT) problem.
The trackers must track multiple objects and even different classes simultaneously while
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maintaining high speed. Currently, mainstream MOT methods mainly include detection-
based tracking methods (TBD), joint detection and tracking methods (JDT), and transformer-
based tracking methods. Deep-learning-based models, such as RAN [24], DMAN [25],
TRACK R-CNN [26], STAM [27], and MOT-RNN [28], have also been applied to multi-
object tracking. Although MOT research has been widely applied, it has mainly focused on
pedestrians and vehicles. For ship tracking, neural-network-based multi-object tracking
methods (NN-MOT) have gained much attention from researchers due to their powerful
feature extraction capabilities. For example, Tang et al. [29] first introduced deep matching,
which uses a deep learning framework to calculate optical flow features and achieved
promising tracking results. Hang et al. [30] proposed a fusion network that combines image
and point cloud features captured from different modalities to improve the reliability and
accuracy of the tracker. Xi et al. proposed an enhanced SiamMask network for coastal ship
tracking, which makes the tracking results more subjective. Wen et al. proposed RoDAN
(Robust Deep Affinity Network) [31]. Based on DAN (Deep Affinity Network), the ASPP
multi-scale fusion module extracts semantic information at different feature scales.

2.3. Literature Summary

To conclude, existing learning-based methods have been highly successful in data-
intensive object detection and tracking, but they are often hampered when the dataset is
small. Moreover, multi-object detection and tracking for ships still face many challenges:
(1) Most object detection and tracking methods focus on data association problems, which
overly rely on the quality of detection results. Ship object detection often has small datasets
with low annotation quality, which can frequently result in issues, such as frequent ID
switches due to poor detection quality. (2) When tracking ships, the large-scale variation in
ship scales can easily affect the accuracy of affine similarity in the network output, leading
to frequent ID switches. (3) Long-term occlusion problems are that certain types of ships,
such as Very Large Ore Carriers (VLOCs), often move at extremely low speeds, which may
result in prolonged occlusion duration in ship multi-object detection.

3. Detection and Tracking for Inland Ship Based on Few-Shot Learning Framework

To tackle the problems caused by the small dataset, long training time, and poor
generalization, this paper proposes a multi-object detection and tracking approach based
on the FSL framework. The multi-object detection method combines YOLOv5 and transfer
learning strategies. The DeepSORT tracking algorithm is applied to achieve high detection
and tracking quality in small sample data. The FSL framework enables a pre-trained model
to generalize over new categories of data using only a few labeled samples per class.

The proposed framework comprises two modules (see Figure 1): detection (including
pre-training and fine-tuning) and tracking (including prediction and matching). The pre-
training process uses a large volume of high-speed vehicle images as the source domain
for training the detection framework. The fine-tuning stage involves using our collected
data of Yangtze River ship images to create a few-shot subset for fine-tuning the detection
framework. The tracking module combines the detection framework with the DeepSORT
tracking framework to achieve effective tracking of inland ships.

YOLO integrates object region prediction and object class prediction into a single neu-
ral network model. YOLOv5 has four different versions: YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x, with YOLOv5s being the lightest. The motivation for using the YOLOv5s
network in this paper is to make the entire ship detection and tracking network more
lightweight and faster. In addition, this paper improves the original YOLOv5s object
detection network by using the Shuffle Attention mechanism and smaller anchor boxes.
Humans can quickly learn about an object with very few samples and apply this to new
tasks. Transfer learning partially mimics this characteristic of the human brain: the human
genome carries vast knowledge that spans various domains and helps humans quickly
adapt to various tasks. Due to the similarity between images of high-speed vehicles and
distant ship images, this paper pre-trains the YOLOv5s network using a public high-speed
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vehicle dataset, UA-DETRAC, to obtain a pre-trained model. Then, the transfer learning
strategy is used to fine-tune the model with a small sample ship image dataset collected
and well-annotated. In the fine-tuning process, we first freeze the feature extraction part of
the network and only update the convolutional layers in the network head to retain some of
the network’s features from the high-speed image dataset. Then, we unfreeze all network
layers to update the weights of all network layers, allowing the model to fit the data better.
Next, the detected ship bounding boxes and their class information are inputted into the
DeepSORT module, which matches the bounding boxes to tracks. Finally, data association
and ID assignment are performed on the successfully matched bounding boxes using a
Kalman filter update to obtain the final ship tracking results in the video.
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In the realm of detection and tracking, various integrated frameworks, such as Hydro-
3D, have emerged. Hydro-3D [32] combines advanced object detection features from the
V2X-ViT algorithm with historical object tracking data, enabling object inference. It employs
a novel 3D neural network for global and local manipulation of tracking data. Hydro-3D
strategically utilizes 3D LiDAR for precise object detection and tracking. LiDAR’s distance
measurements are consistently reliable, regardless of the lighting conditions, making it
ideal for both daytime and nighttime operations. However, LiDAR-based detection may
be affected by weather-induced inaccuracies and water surface reflections when tracking
vessels. Additionally, point cloud data processing involves significant computational
demands and real-time constraints.

In our proposed framework, we leverage YOLOv5s as our primary detector, com-
plemented by an enhanced network architecture, aimed at elevating the precision and
robustness of ship detection. This profound fusion of technologies equips us with the
capability to better adapt to the multifaceted challenges posed by ship tracking across
diverse environmental conditions. Furthermore, we employ transfer learning, harnessing
the knowledge gleaned from extensive annotated datasets, and seamlessly integrating it
into our ship detection and tracking paradigm. This strategic approach serves to enhance
the model’s generalization prowess, resulting in superior performance across specific task
domains. The amalgamation of the DeepSORT algorithm further augments our system’s
capabilities, enabling real-time target tracking within streaming video feeds, while con-
currently affording the provision of highly accurate trajectory information. Our proposed
framework demonstrates a remarkable ability to achieve high precision and recall rates
even with a limited dataset, attributed in part to its foundation on the YOLOv5s network,
renowned for its swift inferencing capabilities and relatively compact parameter size. It is
worth noting that in comparison to LiDAR-based detection and tracking, our image-based
approach is less susceptible to errors arising from water surface reflections. However, it is
prudent to acknowledge that image-based detection may encounter reduced precision and
recall rates under deteriorating lighting conditions, stemming from inherent hardware limi-
tations within image sensors. Nevertheless, this limitation can be ameliorated through the
application of various image processing techniques and technologies in subsequent phases.

4. Multi-Object Detection for Inland Ships

This section proposes the multi-object detection framework for inland ships based on
the YOLOv5s architecture. The Shuffle Attention mechanism, transfer learning training
strategy, and small object detection anchor are introduced to improve the method.

4.1. YOLOv5s Architecture

YOLOv5 adjusts the depth and width of its backbone network using two parameters:
depth_Multiple and width_Multiple. YOLOv5s, the most miniature volume network
model, is chosen as the basic architecture. We enhance the basic model architecture by
adding the Shuffle Attention mechanism and optimizing the training process using a
transfer learning strategy to train the network with limited ship image data effectively. The
resulting detection model achieves improved accuracy and can be used for ship detection
in various scenarios. The network structure of YOLOv5s consists of an input end, backbone,
neck, and head detection module. The original network module of YOLOv5s includes CBS
(Conv + BN + SiLU), BOTTLENECKCSP, CSP1_X, CSP2_X, SPPF, and other modules. For
expression, CBS modules are merged into CSP1_X during visualization. In the YOLOv5s
model, there are three detection layers. When the input image size is 640 × 640, the Neck
network performs down sampling by 8×, 16×, and 32×, respectively. As a result, the
dimensions of the feature maps in the corresponding Detect layers are 80 × 80, 40 × 40,
and 20 × 20, respectively. These feature maps are used for detecting small, medium, and
large targets, respectively.
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4.2. Shuffle Attention Mechanism Network

In convolutional neural networks (CNNs), the attention mechanism operates on the
feature map to capture the relevant attention within the feature map. In recent years, the
attention mechanism has made significant breakthroughs in image and natural language
processing and has been proven to be beneficial in improving model performance. There
are mainly two categories of attention mechanisms in current research: namely, spatial
attention mechanisms and channel attention mechanisms. The former focuses on capturing
pixel-level relationships at spatial locations, locating the target, and performing spatial
transformations or obtaining spatial weights, while the latter captures inter-channel depen-
dencies. Shuffle Attention is a model that efficiently combines these two types of attention
mechanisms. It first groups channel features to obtain sub-features from multiple groups
and then applies the spatial and inter-channel attention mechanisms to each sub-feature
using Shuffle Attention units. Finally, the features from different groups are fused using
the Channel Shuffle operation. Adding an attention mechanism to the detection network
can improve detection accuracy. The network structure of Shuffle Attention is illustrated in
Figure 2.
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The Shuffle Attention structure is in front of the SPPF module in the last layer of the
BackBone, as well as the corresponding detection layers in the Head part of YOLOv5s. The
Shuffle Attention structure helps the model better resist confusing information and focus
on relevant target objects. Shuffle Attention structure is depicted in Figure 3.

Considering the potential risk of over-complexity in the network that may hinder the
model’s ability to fit the training data, a Yolov5s architecture with the Shuffle Attention
only to the backbone part (ShuffleBackBone) is also designed, as depicted in Figure 4.
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4.3. Transfer Learning Training Strategy

Transfer learning [33] is a machine learning technique that facilitates the transfer of
knowledge from a source domain to a target domain, thereby improving the learning per-
formance in the target domain. The quality of data annotation during training significantly
impacts the training effectiveness. Feature transfer enhances the model’s generalization
performance, even when dealing with significantly large target datasets. In various studies
related to transfer learning, DANN [34] introduces adversarial network concepts into the
field, optimizing feature mapping parameters. In conventional training, a large amount of
labeled data is typically required, and the manual data labeling process is labor intensive
and costly. Due to the scarcity of ship image datasets with well-annotated information, ship
detection training datasets often rely on ship SAR data, which are also limited in quantity.

There are two common approaches for applying transfer learning. The first approach
is fine-tuning, which involves modifying a pre-trained network obtained from another
source for the specific learning task. Usually, the weights of the network are initialized with
pre-trained weights instead of random initialization. The second approach is using a fixed
feature extractor, where the pre-trained network is used as a feature extractor for new tasks.
Typically, the earlier layers of the network are frozen, and only the last fully connected
layer is trained. Subsequently, the pre-trained network acts as a feature extractor, and the
later layers are unfrozen to better learn the feature extraction parameters for the task at
hand. The strategy employed in this paper involves both using a fixed feature extractor
and adopting the fine-tuning approach.

This study chooses the UA-DETRAC high-speed dataset due to the similarity of target
vehicle characteristics with ships. The high-speed dataset presents varying sizes of objects
based on distance, which aligns with our target network. In the initial 30 epochs, all feature
extraction layers (i.e., all network layers except the last Head layer) are frozen, and only the
parameters in the Head prediction part are updated. This allows the network to first update
the parameters of the ship detection module without affecting the previously trained
feature extraction layers. The UA-DETRAC dataset is used to train YOLOv5s and obtain a
pre-trained weight model. In the subsequent 100 epochs, all feature extraction layers are
unfrozen to enable the YOLOv5s network to update all weight parameters. The transfer
learning strategy employed in this paper allows for training a ship detection model with
satisfactory accuracy and robustness, despite the limited availability of training samples in
the target dataset.

4.4. Small Object Detection Anchor

In the ordinary YOLOv5 detection network, there are three rows of anchors parameters;
each row has six values, and the values are (10, 13, 16, 30, 33, 23), (30, 61, 62, 45, 59, 119),
(116, 90, 156, 198, 373, 326). Each row represents a different feature map of the application;
among them, the sizes of the three different feature maps are 80 × 80, 40 × 40, and 20 × 20,
respectively. In the object detection task, detecting small targets on a large feature map is
generally desirable. Because the large feature map contains more small target information,
the anchor value on the large feature map is usually set to a small value, while the value
on the small feature map is set to a large value to detect large objects. Due to the large
number of buoys in the ship dataset, the buoys are likely to occupy a very small proportion
of the image in the distant images due to the different image sizes in the ship detection.
The labeling of small target data is often inaccurate, and the overall detection effect is
significantly lower than other types of ships. In this paper, a smaller anchor is selected
in the detection network. Thus, the corresponding larger feature map can be obtained to
detect smaller targets. We add a smaller anchor (5, 6, 7, 9, 12, 10), thus adding a feature
map of 160 × 160 to improve the detection ability of buoys in object detection.

4.5. Implementation Details

Intersection over Union (IoU) is a widely used evaluation metric in object detection,
which measures the spatial overlap between the predicted bounding box and the ground
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truth bounding box of an object. The IoU is computed by dividing the intersection area
between the predicted and ground truth bounding boxes by the area of their union. A higher
IoU value indicates a better localization accuracy of the predicted bounding box. Typically,
a threshold value of 0.5 or 0.7 is used to determine whether the predicted bounding box is a
true positive or a false positive. A new loss function called Alpha-IoU is proposed to replace
the original Intersection over Union (IoU) loss. The Alpha-IoU loss consists of a Power
IoU term and an additional Power regular term, both controlled by a single parameter, α.
The experiments conducted in this paper demonstrate that using the Alpha-IoU loss can
significantly outperform the current IoU loss.

The Power IoU term in the Alpha-IoU loss is designed to improve the accuracy of
high IoU targets, which are typically objects with tight bounding box annotations. The
Power IoU term helps the network to localize objects better with high precision. The Power
regular term is an additional regularization term that encourages smooth regression of
bounding box coordinates. Together, these two terms in the Alpha-IoU loss help improve
the accuracy of gradient adaptive weighted box regression.

The choice of α, the power parameter in the Alpha-IoU loss, is important. This paper
suggests that selecting α > 1 can improve the loss of high IoU targets and the robustness of
the network against noise, especially in small datasets. The α parameter can be adjusted
to fine-tune the regression accuracy for different bounding box sizes, but it is not highly
sensitive to different models and datasets. This paper recommends using α = 3 as a
parameter, as it performs well in the experiments.

Overall, the proposed Alpha-IoU loss with a selected α value of 3 effectively improves
object detection accuracy, especially for small datasets and high IoU targets, providing
a more robust and accurate loss function for training object detectors. The formula of
Alpha-IoU is as follows:

Lα−IoU =
1− IoUα

α
, α > 0 (1)

According to the experiment and the characteristics of the relative loss weight and
relative gradient weight of Alpha-IoU, Alpha-IoU can train a better detector than ordinary
IoU. For the specific formula derivation, please refer to ref. [35].

Due to the insufficient sample size for some categories in our data, we have introduced
sample weights to reduce the issue of low detection accuracy for a particular category
caused by too few samples.

In other parts, Mosaic data enhancement, adaptive anchor box calculation, and adap-
tive image scaling used in YOLOv4 are also used. For other formula improvements and
features, please refer to ref. [36].

5. Multi-Object Tracking for Inland Ships

Deep Sort [37] is an improvement based on Sort object tracking. The core of the Sort
algorithm is Hungarian matching and Kalman filtering. In addition to the core part of
the Sort module, DeepSORT also introduces a deep learning model ReID module. In the
process of real-time object tracking, the appearance features of the target are extracted for
nearest proximity matching. In the current frame, the minimum cosine distance between
all Feature vectors of the ith object tracking and the detection of the jth object are calculated.
The object tracking match can achieve a real-time tracking effect and reduce ID switching,
which can be applied to industrial development. In this paper, to achieve a relatively
continuous tracking effect for the input ship video data, we introduced the DeepSORT
algorithm to combine it with the YOLOv5 model.

The general process of the DeepSORT algorithm is as follows: First, the prediction
video or continuous image is input, and the confidence after prediction and position
information obtained from our improved YOLOv5 detection network are taken as input.
The Kalman filter first determines whether the track exists. If a track exists, the prior
probability prediction is made for its position information. After that, the prior probability
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prediction obtained is cascaded matching and IoU matching. Finally, the matching list is
obtained. The specific process of the algorithm is shown in Figure 5.

Appl. Sci. 2023, 13, 10282 10 of 22 
 

information obtained from our improved YOLOv5 detection network are taken as input. 
The Kalman filter first determines whether the track exists. If a track exists, the prior prob-
ability prediction is made for its position information. After that, the prior probability pre-
diction obtained is cascaded matching and IoU matching. Finally, the matching list is ob-
tained. The specific process of the algorithm is shown in Figure 5. 

 
Figure 5. DeepSORT framework. 

  

Ship images, video Detection 
results  from yolov5s

The detection result 
of the First frame

The detection result 
of the Second frame

The detection result 
of the N frame

Create initial tracks, initialize 
Kalman filter motion variables, 

and predict the detection box

The result of Kalman 
filtering prediction

Match the current frame with 
the previous frame, and 
calculate the cost matrix

Hungarian matching 
according to the cost matrix 

(linear matching)

Cascade Matching

IOU Matching

Matched Tracks

Tracks(Tentative -> 
Confirmed)

Unmatched Tracks Unmatched 
Detections

Unconfirmed 
tracks

Confirmed 
tracks

>MAX AGE?

Delete

Multi-tracks list

Kalman filter 
predict

Confirmed tracks

Unconfirmed 
tracks

Kalman filter 
updateMatched Tracks

Assigning new tracks
（tentative）

3 consecutive 
tracks?

YES NO

YES

NO

Unmatched TracksUnmatched 
Detections

……

Figure 5. DeepSORT framework.



Appl. Sci. 2023, 13, 10282 11 of 23

The specific algorithm steps are divided into the following steps:
First, the original video frame is input into our YOLOv5 detection network, from which

we can obtain the location of the detection result and its confidential information. The
Kalman filter determines whether the track exists. It makes a prior probability prediction
for its position information if it exists and abandons it if it does not exist.

Secondly, based on the mean value and variance of the previous moment, the forecast
track predicts the mean value and variance information of the track at the next moment
and updates the position and speed. The Kalman filter update formula is as follows:

χ̂−k = Aχ̂k−1 + Bµk (2)

P−k = APk−1 AT + Q (3)

where χ̂−k represents the state at time k predicted from time k− 1.
Thirdly, after the prior prediction is obtained, the detection that predicted the location

of YOLOv5 and the predicted location of the track are matched. Use the cascade matching
policy. The matching policy divides the tracks into Confirmed, Tentative, and Deleted types.

Cascade matching only matches the confirmed track. The cost matrix of cascade
matching combines the cosine similarity distance and the Mahalanobis distance, and the
measurement formula of the Mahalanobis distance matching is as follows:

d(1)(i, j) =
(
dj − yi

)TS−1
i
(
dj − yi

)
(4)

where dj represents the position of the jth detection box, yi represents the predicted position
of the target by the ith tracker, and Si represents the covariance matrix between the detection
position and the average tracking position.

The Mahalanobis distance takes the uncertainty of state measurement into account by
calculating the standard deviation between the detection and the mean tracking positions.
Because the Mahalanobis distance association method will be invalid when the camera
moves, this will lead to the rapid switching of the ID of the tracking target. To make
the ID switching stable, cosine distance matching is also introduced, which combines the
appearance features of the object detection frame with the features extracted from the REID
network. The formula is as follows:

d(2)(i, j) = min
{

1
∣∣∣−rT

j r(1)k

∣∣∣r(i)k ∈ Ri

}
(5)

where R stands for appearance feature vector library and r stands for feature vector ex-
tracted for d detection blocks.

Finally, the two features are set a certain weight to obtain our final cost matrix:

ci,j = λd(1)(i, j) + (1− λ)d(2)(i, j) (6)

where λ stands for two metric weights.
The cost matrix of the determined track and corresponding detection is calculated by

the Hungarian matching algorithm. The matching is successful if the cost matrix is smaller
than the threshold. The matched track and observation value detection are obtained, and
the unmatched track and detection are obtained.

Fourthly, combining the failed track with the tentative track and using the IoU match-
ing strategy, IoU matching directly builds all track and detection from IoU as elements into
the IoU cost matrix and uses the Hungarian algorithm for matching. The matching method
is similar to that of cascade matching.

Then, after matching, the system obtains matched, unmatched_track, and
unmatched_detection. It modifies the successfully matched track successively, updates the
status of the failed track, converts the unmatched detection into a track, and updates the
feature set of the successfully matched track.
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Finally, the Kalman filter gain is used to correct and update the successfully matched
track. The Kalman filter gain update formula is shown as follows:

Kk =
P−k CT

CP−k CT + R
(7)

Pk = (I − KkC)P−k (8)

χ̂k = χ̂−k + Kk
(
yk − Cχ̂−k

)
(9)

where C is the observation matrix, R represents the observation noise covariance matrix,
and Kk is the Kalman coefficient.

The integration of the traditional Kalman filter (KF) into the DeepSORT framework
for ship detection and tracking in our maritime context is driven by its core advantages,
which include simplicity, effective state estimation, robust noise handling, and cost effec-
tiveness. KF’s simplicity and adaptability make it a practical choice for ship tracking in
real-world scenarios where achieving reliable results without excessive resource expendi-
ture is essential.

After updating the status of each track, deleting the dead track, and updating the
feature set of the confirmed track, the process of this frame is finished, and the detection
and tracking of the next frame start. In this way, the task of ship tracking with videos
is completed.

6. Experimental Results and Discussion

In this section, we analyze the influence of three factors: the Shuffle Attention mecha-
nism, the transfer learning strategy, and a smaller anchor box we added on the accuracy
of ship object detection. The experimental environment is constructed on a laptop whose
hardware configuration is as follows: AMD(R) Ryzen 7 4800h with Radeon graphics * 16
@ 2.9 GHz, NVIDIA Geforce RTX 3060 Laptop GPU/PCle/SSE2, 15.6 G running memory.
The software configuration is as follows: Ubuntu 18.04.6 LTS, CUDA 11.1 version, cudnn
8.2.4 version. The project code is based on the PyTorch deep learning framework.

6.1. Setup

Ship image data along the Yangtze River are collected to make the supporting dataset.
Each picture is labelled with corresponding ship categories. The training set is divided
into seven categories: cargo ship, roll-roll ship, container ship, passenger ship, buoy, oil
tanker, and canoeing. As the cargo ships are the majority on the Yangtze River, they occupy
a relatively large proportion of the dataset, accounting for about 40% of the dataset. The
remaining categories (buoy, container ship, passenger ship, and oil tanker) all account for
about 50% of the dataset. The amount of roll-roll ship and canoeing in the dataset is small,
accounting for only about 10 percent of the dataset. The seven categories are shown in
Figure 6 below. In the following Sensitivity analysis experiment and other comparative
experiments, we conducted five repeated experiments for each network that participated
in the experiment and selected the best result among them.
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The Intersect Over Union (IoU) threshold parameter needs to be set for the model
prediction. The Precision is the True positives (the correct ratio of all the recognized images).
The recall is the ratio of correctly recognized objects to the total number of objects in the
test set. The formulas are shown as follows:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

where TP is the number of positive classes that are correctly predicted. FP is the number
of negative classes that are predicted as positive classes, and FN is the number of positive
classes that are predicted as negative classes.

AP means to average the precision values on the PR (precision and recall) curve. For
the PR curve, we use the integral to compute it. The AP formula is shown below:

AP =
∫ 1

0
P(R)dR (12)

In the experiment, when evaluating the detection accuracy of the algorithm, we used
the mAP (Mean Average Precision) index commonly used in object detection to evaluate
the model. mAP@0.5 is a mAP score obtained for detections corresponding to IoU > 0.5.
The formula for mAP is as follows:

mAP =
1
n

n

∑
i=1

∫ 1

0
P(R)dR (13)

where n represents the number of categories detected.
Cosine annealing is used to reduce the rate of learning by using cosine functions. In

the cosine function, the cosine goes down slowly as x goes up, and then it goes down faster
and goes down slowly again. This decline mode can cooperate with the learning rate and
produce a good effect. The more the cosine annealing learning rate algorithm is trained,
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the smaller the learning rate will be. In this experiment, our initial learning rate (lr0) is set
to 0.01, and our cosine annealing learning rate (lrf) is also set to 0.01.

6.2. Sensitivity Analysis of Object Detection Method

In this section, we conduct an ablation experiment to compare the effects of Shuffle
Attention, transfer learning, and smaller anchor boxes on the network training strategy we
have constructed. In this section, we use 585 images as the training set and 1614 images as
the validation set.

6.2.1. Influence of Shuffle Attention

In object detection, we introduce the Shuffle Attention mechanism to improve the
object detection of the network precision and recall. We train 130 epochs simultaneously
in the original YOLOv5s network and networks with the ShuffleAttention mechanism
and networks with ShuffleBackBone. And, we compare the results. The experimental
results show that adding ShuffleBackBone and adding the ShuffleAttention mechanism
can improve the overall mAP@0.5 value to a certain extent. The details are shown in
Table 1. In the table footers, the use of bold text and underlining is employed to highlight
the best-performing values within the experimental data.This formatting convention is
consistently applied to subsequent tables (Tables 2–7) as well.

Table 1. Algorithm performance comparison of mechanism of attention (mAP@0.5 value).

Types Cargo
Ship

Roll-Roll
Ship

Container
Ship

Passenger
Ship Buoy Oil

Tanker Canoeing ALL

Original 0.776 0.647 0.814 0.671 0.638 0.757 0.836 0.734
Original + ShuffleBackBone 0.804 0.678 0.796 0.697 0.664 0.728 0.851 0.745
Original + ShuffleAttention 0.81 0.667 0.821 0.74 0.685 0.808 0.877 0.773

6.2.2. Influence of Transfer Learning

In ship object detection, the transfer learning method is introduced to use the UA-
DETRAC high-speed vehicle dataset to reduce the demand for training data for object
detection for inland ships. The high-speed dataset consists of 82,085 images with relatively
good manual labeling information. The YOLOv5s network is trained using a large number
of high-speed vehicle data with specific characteristics similar to the distant images of ships
as pre-training weights. Obviously, training can be improved when using UA-DETRAC
data pre-training data as training weights. We combine the transfer learning strategy
data with ShuffleAttention and ShuffleBackBone, respectively, and compare the detection
accuracy of the backbone without the pre-training weight. After using transfer learning,
the network has a noticeable improvement in detection performance. The results are shown
in Table 2.

In this study, we utilized a variety of datasets, including ImageNet, COCO, ABOships,
Seaships, and UA-DETRAC. These datasets were partitioned into training and validation
sets with a 7:3 ratio. The hyperparameters used for training were also kept consistent
with those used in the previous experiments. To alleviate the impact of class imbalance,
we also introduced the use of image weights during the training process. We conducted
training on these datasets for 100 epochs, resulting in the generation of pre-trained weights.
Subsequently, we employed these pre-trained weights to perform transfer learning on
the ShuffleAttention network architecture proposed in this paper. The transfer learning
was conducted on our dataset (consisting of 585 images for training and 1614 images for
validation). Finally, we compared the detection performance in terms of the mAP@0.5
value obtained from this transfer learning approach against the baseline results. The results
are shown in Table 3. In the comparative analysis, we evaluated the performance of the
proposed method by conducting training experiments on our target dataset.
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In the comparative analysis, we have found that both the COCO and ImageNet
datasets exhibit favorable performance in ship detection. These datasets, enriched with nu-
merous maritime-related data, demonstrate impressive results in detecting ships. However,
despite their strong performance in specific scenarios, considering the overall mAP@0.5
value, we maintain that employing the UA-DETRAC dataset as the pretrained dataset is
better suited for our specific task. On our target dataset, utilizing UA-DETRAC as the
pretrained weight yields detection results that align more closely with our requirements.

Table 2. Algorithm performance comparison of transfer learning (mAP@0.5 value).

Types Cargo
Ship

Roll-Roll
Ship

Container
Ship

Passenger
Ship Buoy Oil

Tanker Canoeing ALL

Original 0.776 0.647 0.814 0.671 0.638 0.757 0.836 0.734
Original + transfer learning 0.871 0.737 0.856 0.835 0.792 0.801 0.73 0.803

ShuffleBackBone + transferlearning 0.873 0.721 0.854 0.82 0.783 0.865 0.863 0.826
ShuffleAttention + transferlearning 0.885 0.753 0.854 0.833 0.794 0.869 0.957 0.849

Table 3. Comparison of mAP values of different pretrained datasets and the proposed dataset
(mAP@0.5 value).

Pretrained Datasets Cargo
Ship

Roll-Roll
Ship

Container
Ship

Passenger
Ship Buoy Oil

Tanker Canoeing ALL

ImageNet 0.894 0.738 0.886 0.841 0.767 0.849 0.651 0.803
COCO 0.885 0.797 0.887 0.854 0.778 0.836 0.77 0.829

ABOships 0.85 0.717 0.831 0.773 0.761 0.793 0.745 0.781
Seaships 0.884 0.712 0.864 0.796 0.744 0.825 0.697 0.789

UA-DETRAC 0.885 0.753 0.854 0.833 0.794 0.869 0.957 0.849

6.2.3. Influence of Smaller Anchor Box

In object detection, we introduce a smaller anchor box, which uses the feature map of
160 × 160 to improve the detection of small objects. The data reflect the improvement of
the detection accuracy of the buoy. However, adding the detection box for small targets
may decrease the detection accuracy and recall rate of large ship targets. We conduct
experiments on the original yolo network, the network adding a small object detection
layer, the network adding ShuffleBackBone and the small object detection network attention
mechanism, and the network adding ShuffleAttention and small object detection attention
mechanism, respectively. The results are shown in Table 4.

The detection capability of the network for the small target buoy is improved to
a certain extent. However, the accuracy of other categories and the overall detection
network is decreased. When small object detection (+1 anchor) is added to the strategy
(ShuffleBackBone + transferlearning) that we think can obtain the best detection result, the
overall mAP@0.5 value will decrease. However, the detection rate of the buoy increased.
Thus, a network without small object detection would work better. However, for specific
small object detection tasks, such as buoy detection, we can try adding small object detection
into the network to improve detection accuracy.
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Table 4. Algorithm performance comparison of smaller anchor box (mAP@0.5 value).

Types Cargo
Ship

Roll-Roll
Ship

Container
Ship

Passenger
Ship Buoy Oil

Tanker Canoeing ALL

Original 0.776 0.647 0.814 0.671 0.638 0.757 0.836 0.734
Original + 1anchor 0.719 0.63 0.683 0.614 0.687 0.566 0.79 0.67

Shuffleonlybackbone +
1anchor 0.737 0.561 0.694 0.609 0.692 0.619 0.796 0.672

Shuffleattention + 1anchor 0.72 0.611 0.657 0.589 0.721 0.584 0.809 0.67
ShuffleBackBone +

transferlearning + 1anchor 0.811 0.718 0.795 0.776 0.813 0.768 0.808 0.784

ShuffleAttention +
transferlearning + 1anchor 0.827 0.739 0.813 0.785 0.813 0.78 0.818 0.796

6.3. Setup

To validate the superior performance of the object detection network, we conduct a
series of experiments on our dataset. We introduce other state-of-the-art (SOTA) object
detection models and train and validate them on our dataset. These competing methods
use the same training and validation sets and are trained for 130 epochs with original
pretrain weights. We compare the method (ShuffleAttention + transferlearning) with other
competing methods on our test datasets (145 images). The specific comparative data are
shown in Table 5. The proposed framework shows the best detection performance for all
types of objects except the oil tanker. Still, for oil takers, the mAP@0.5 value of the proposed
framework is the second. It is worth noting that we have also included two additional
metrics, FPS and params, to evaluate our model’s performance. FPS refers to the number
of frames per second that the model can process during image or video inference (object
detection and localization); it can be influenced by various factors, such as the resolution of
input images, model complexity, and the availability of computational resources. In this
section, FPS calculations for the experiments were consistently conducted on the NVIDIA
GeForce RTX 3090, with validation performed on our test datasets consisting of 145 images.
The size of params indicates the model’s parameter count, which is influenced by both the
network architecture and the number of classes in the training dataset (nc). The size of
‘params’ reflects the complexity of the model. The results are shown in Table 6. The results
indicate that our proposed framework achieves the highest level of accuracy on the test
dataset while maintaining faster detection speeds.

Table 5. Algorithm performance comparison with SOTA methods (mAP@0.5 value).

Pretrained Datasets Cargo
Ship

Roll-Roll
Ship

Container
Ship

Passenger
Ship Buoy Oil

Tanker Canoeing ALL

Faster-RCNN [3] 0.73 0.749 0.813 0.702 0.28 0.861 0.683 0.688
Yolov3 [38] 0.636 0.4 0.673 0.513 0.496 0.638 0.226 0.51

Yolov4-tiny [39] 0.76 0.705 0.836 0.835 0.431 0.796 0.538 0.70
Yolov4 [40] 0.787 0.833 0.845 0.838 0.639 0.952 0.565 0.778
Yolov5s [41] 0.809 0.737 0.821 0.718 0.675 0.753 0.726 0.749
Yolov7 [42] 0.914 0.575 0.923 0.803 0.818 0.894 0.613 0.791
Yolov8s [41] 0.869 0.688 0.849 0.782 0.724 0.827 0.658 0.771

Proposed framework 0.866 0.995 0.851 0.925 0.819 0.878 0.995 0.904
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Table 6. Algorithm performance comparison with FPS and Params.

Pretrained Datasets FPS Params

Faster-RCNN [1] 3.75 136,811,934
Yolov3 [38] 82.6 61,529,740

Yolov4-tiny [39] 409.22 5,887,976
Yolov4 [40] 66.42 6,042,3500
Yolov5s [41] 144.9 7,029,004
Yolov7 [42] 120.5 37,227,020
Yolov8s [41] 417.7 11,138,309

Proposed framework 128.2 7,029,532

6.4. Comparison with Other Papers

This section compares the proposed multi-object detection and tracking framework
with popular multi-type object ship detection papers. The key index is the amount and
type of data they use with the value of mAP@0.5.

Paper [1], using YOLOv4-tiny and YOLOv4-tiny-3l for ship object detection, xxx
in yolov4-tiny-xxx or yolov4-tiny-3l-xxx in the table below, represents the input image
size. The author uses the SeaShips dataset [43] and the ABOships dataset [44]. The two
datasets are divided into 70 percent training and 30 percent validation sets. The SeaShips
dataset contains 31,455 images taken from video segments acquired from coastline video
surveillance systems. The ABOships dataset contains 9,880 images. ABOships dataset
images, on the other hand, were obtained through a camera mounted on a ferry, providing
footage from the point of view of the vehicle and providing annotations for nine types
of vessels, seamarks, and miscellaneous floaters. ABOships datasets contain many small
objects, similar to the small buoys in our dataset. Too many small objects will cause the
mAP@0.5 value of the overall dataset to decrease significantly. In ref. [45], an enhanced
CNN-enabled learning method was proposed. Combined with yolov3, the accuracy of
ship multi-type object detection is improved. The dataset used in this article is 7000
from SeaShips.

The original YOLOv5s network and our proposed framework (transfer learning +
improved YOLOv5s network) were employed to train and evaluate their performance
on the SeaShips (7000) and ABOships (9880) datasets, essential datasets in the maritime
domain. To ensure a comprehensive evaluation, we adopted two distinct data partitioning
strategies for training. The first approach adhered to the standard convention used in
related works, where the ABOships and SeaShips datasets were partitioned into a 70%
training set and a 30% validation set. Subsequently, we employed the second approach
to investigate the efficacy of transfer learning with a limited training set. Specifically, we
utilized a mere 10% of the data from each dataset for training, reserving the remaining
90% for validation purposes. This approach facilitated a robust comparison between the
results of our proposed framework and other existing approaches cited in the literature.
Through meticulous analysis and comparison of the final mAP@0.5 values, our proposed
method, which integrates transfer learning with our improved YOLOv5s-based network,
demonstrated exceptional proficiency in effectively training on both the ABOships and
SeaShips datasets. Notably, our proposed framework achieved high levels of accuracy
and recall on the validation sets. These results not only showcase the superiority of our
proposed framework but also highlight its capability to address the challenges presented
by these specific datasets.

By incorporating the two metrics, FPS and params, introduced in Table 6 of Section 6.3,
these metrics have also been included in the table below for our data comparison. From the
comparative data, it can be observed that our model achieves a high detection mAP@0.5
while simultaneously demonstrating faster detection speeds and smaller model parameters.

The results are shown in Table 7.



Appl. Sci. 2023, 13, 10282 18 of 23

Table 7. Performance comparison with other papers.

Model

Datasets
mAP@0.5 (Best)

(%) FPS ParamsSeaShips
(31,455
Images)

ABO Ships
(9880

Images)

Sea Ships
(7000

Images)

Ours (585
Training
Images)

Yolov4-tiny-352 2� 2�
84.37 (SeaShips)

35.24 (ABOships)
20.6 (Darknet)

30.5 (TensorRT)

5,882,562
(SeaShips)
5,894,112

(ABOships)

Yolov4-tiny-416 2� 2�
82.63 (SeaShips)

38.33 (ABOships)
16.1 (Darknet)

24.8 (TensorRT)

Yolov4-tiny-480 2� 2�
85.63 (SeaShips)

40.02 (ABOships)
13.8 (Darknet)

21.6 (TensorRT)

Yolov4-tiny-544 2� 2�
85.31 (SeaShips)

42.07 (ABOships)
9.3 (Darknet)

15.7 (TensorRT)

Yolov4-tiny-608 2� 2�
84.63 (SeaShips)

42.89 (ABOships)
8.3 (Darknet)

14.3 (TensorRT)

Yolov4-tiny-3l-352 2� 2�
84.06 (SeaShips)

37.39 (ABOships)
18.7 (Darknet)

27.9 (TensorRT)

6,124,579
(SeaShips)
6,138,064

(ABOships)

Yolov4-tiny-3l-416 2� 2�
85.21 (SeaShips)

40.67 (ABOships)
14.4 (Darknet)

22.9 (TensorRT)

Yolov4-tiny-3l-480 2� 2�
83.98 (SeaShips)

41.54 (ABOships)
12.3 (Darknet)

19.3 (TensorRT)

Yolov4-tiny-3l-544 2� 2�
84.58 (SeaShips)

41.30 (ABOships)
8.4 (Darknet)

14.5 (TensorRT)

Yolov4-tiny-3l-608 2� 2�
83.45 (SeaShips)

42.88 (ABOships)
7.5 (Darknet)

12.9 (TensorRT)

eYOLOv3-416 2� 85.62
35 (Nvidia

GeForceGTX
1080TI GPU)

61,524,355
(SeaShips)
61,551,280

(ABOships)

eYOLOv3-512 2� 87.28
22 (Nvidia

GeForceGTX
1080TI GPU)

eYOLOv3-608 2� 87.74
30 (Nvidia

GeForceGTX
1080TI GPU)

YOLOv5s

2�

84.2
(SeaShips-%10

training)

142.8 (NVIDIA
GeForce RTX

3090)

7,026,307
(SeaShips)
7,039,792

(ABOships)
7,029,004

(Ours)

98.40
(SeaShips-%70

training)

149.2 (NVIDIA
GeForce RTX

3090)

2�

40.1
(ABOships-%10

training)

142.9 (NVIDIA
GeForce RTX

3090)

62.2
(ABOships-%70

training)

147.1 (NVIDIA
GeForce RTX

3090)

2� 74.9
144.9 (NVIDIA
GeForce RTX

3090)
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Table 7. Cont.

Model

Datasets
mAP@0.5 (Best)

(%) FPS ParamsSeaShips
(31,455
Images)

ABO Ships
(9880

Images)

Sea Ships
(7000

Images)

Ours (585
Training
Images)

Proposed
framework

2�

92.90
(SeaShips-%10

training)

153.8 (NVIDIA
GeForce RTX

3090)

7,026,835
(SeaShips)
7,040,320

(ABOships)
7,029,532

(Ours)

98.90
(SeaShips-%70

training)

163.9 (NVIDIA
GeForce RTX

3090)

2�

45.10
(ABOships-%10

training)

149.3 (NVIDIA
GeForce RTX

3090)

63.40
(ABOships-%70

training)

144.9 (NVIDIA
GeForce RTX

3090)

2� 86.4
138.9 (NVIDIA
GeForce RTX

3090)

6.5. Experiments on Multi-Object Detection and Tracking for Inland Ships

In the following experiment, we combined the object tracking algorithm DeepSORT to
carry out the test and analyzed the effectiveness of the proposed framework under good
visibility and restricted visibility. As cargo ships have the largest proportion among the
ships sailing on the Yangtze River, we consider cargo detection accuracy and recall rate to
be the most important indicators. Therefore, while ensuring a certain level of detection
accuracy for other categories, we ultimately chose the ShuffleAttention + transfer learning
strategy model with the highest detection accuracy for cargo ships for our multi-object
detection and tracking experiments.

6.5.1. Object Tracking in Good Visibility

We set up our detection and tracking model to track in the daytime with good visibility.
As shown in Figure 7, the proposed model can accurately track the target cargo ship and
buoy. Figure 8 shows that the model automatically deletes the tracking track when the ship
is out of the detection range. In general, after testing with 144 images in good visibility, the
mAP@0.5 of the proposed method is 0.904.
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6.5.2. Object Tracking in Restricted Visibility

The video of the ship collected on rainy and foggy days with poor visibility is used
to test the performance of the proposed framework in restricted visibility. As shown in
Figure 9, the cargo ship was tracked steadily.

However, the ship image is blurred due to the rain and fog. Thus, some problems
exist, such as undetected targets and wrong target identification. As shown in Figure 10,
the ship can complete the tracking and detection in rainy and foggy days, but the oil tanker
in the figure below is detected as a container ship. In Figure 11, the object tracking in the
near distance is achieved, but the ship in the far distance is missing (the buoy tracking loss).
Still, after testing with 150 images in poor visibility, the mAP@0.5 is 0.746.
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7. Conclusions

In this paper, we proposed a transfer-learning-based object detection and tracking
method for small sample datasets. The YOLOv5 network is improved by introducing
the Shuffle Attention mechanism and smaller anchors. Using a transfer learning strategy,
the UA-DETRAC high-speed dataset is then introduced to train a pre-trained model. A
small amount of self-collected Yangtze River vessel dataset is used to fine-tune the model,
combined with the tracking algorithm DeepSORT for vessel detection and tracking in the
case of limited data. Finally, the feasibility of our method is demonstrated through extensive
experiments. The main contributions of this article are as follows: (1) improvements and
innovations have been made to the YOLOv5 network, specifically for ship detection;
(2) implementing a tracking monitoring method that only requires a small amount of ship
image data; and (3) proposing an improved YOLOv5 + DeepSORT object detection and
tracking network and introducing a transfer learning strategy to enhance detection and
tracking accuracy. The proposed method is characterized by fast training speed and high
accuracy with small datasets. Compared with existing methods, the proposed method
achieved 84.9% (mAP@0.5) with only 585 training images.

Future research directions are considered to improve the method. In terms of ship
detection, the accuracy of the ship detection model may be significantly reduced due to
extreme weather conditions. In the future, fusion with LiDAR can be added, as LiDAR can
provide more geometric and visual information to improve detection accuracy. Regarding
ship tracking, rapid ID switching may occur after ship crossing.
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