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Abstract: Malicious websites detection is one of the cyber-security tasks that protects sensitive
information such as credit card details and login credentials from attackers. Machine learning (ML)-
based methods have been commonly used in several applications of cyber-security research. Although
there are some methods and approaches proposed in the state-of-the-art studies, the advancement of
the most effective solution is still of research interest and needs to be improved. Recently, decision
fusion methods play an important role in improving the accuracy of ML methods. They are broadly
classified based on the type of fusion into a voting decision fusion technique and a divide and
conquer decision fusion technique. In this paper, a decision fusion ensemble learning (DFEL) model
is proposed based on voting technique for detecting malicious websites. It combines the predictions
of three effective ensemble classifiers, namely, gradient boosting (GB) classifier, extreme gradient
boosting (XGB) classifier, and random forest (RF) classifier. We use these classifiers because their
advantages to perform well for class imbalanced and data with statistical noises such as in the case
of malicious websites detection. A weighted majority-voting rule is utilized for generating the final
decisions of used classifiers. The experimental results are conducted on a publicly available large
dataset of malicious and benign websites. The comparative study exposed that the DFEL model
achieves high accuracies, which are 97.25% on average of 10-fold cross-validation test and 98.50% on
a holdout of 30% test set. This confirms the ability of proposed approach to improve the detection
rate of malicious websites.

Keywords: cyber-security; malicious websites; benign websites; URLs; ensemble learning; decision
fusion ensemble learning (DFEL) model

1. Introduction

With the growing number of mobile devices, web applications, and users, as well as
the prompt evolution of computing, cyber-security has become critical in recent years [1].
Easy access to the computer networks and Internet applications, the accessibility of high-
speed networks, and high-industrial advancements such as the development of 5G and 4G
technologies, have comprehensively expanded Internet usage worldwide [2]. In particular,
as a result of the recent improvements in information technology and digitalization, several
enterprises and companies have shifted their businesses from the physical to digital domain,
employing mobile and web applications to decrease physical contact [3,4]. However, this
growth in Internet applications and websites has caused them to become significantly open
and accessible to the rest of the world and comes with a significant security risk and a
leakage of private data.

Because of the easy access to the Internet, a person’s digital visibility has extensively
increased, creating opportunities for digital thieves and hackers to gain access to private
data and credentials. Detecting malicious integrity attacks and protecting transmitted data
from eavesdropping attacks are critical to prevent user information from being manipulated
or destroyed in the integrated data-driven framework [5]. Such cyber-security breaches lead
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to severe mental stress and financial losses over time [6]. Malicious websites are considered
the means by which the hackers can collect private information from unsuspecting Internet
consumers. Malicious websites normally appear to be benign websites and request private
information, such as passwords, usernames, and credit card information, or gain access to
personal images or crucial data. Such data are stored in a form of data storage and might be
exploited to achieve the attackers’ goals, such as criminal money transfers, online shopping,
harassing the user, or blackmailing. Using forged webpages identical to genuine webpages
is a common method to steal users’ data and private information [7].

One method of ensuring user security is to use classification techniques to determine
whether the accessed website is malicious [8,9]. A correct classification ensures that the user
is informed to not enter his/her data and important information on suspect websites [10,11].
Recently, machine learning methods have demonstrated exceptional results by using data
classification [12,13]. They are not only used for malicious websites and attack detection, but
are also applied in numerous identification, classification, and prediction tasks in a variety
of fields, such as stock prediction [14], weather prediction [15], and image processing [16].
The machine learning field has shown much progress and promise, with large amounts
of data becoming available, the development of advanced computational models, and
advancements in computing power. Traditional machine learning methods begin with
building a new model architecture, followed by the initialization of its parameters. The
model is then trained with the training set to learn the relationship between the features
of the inputs and the actual class outputs. After that, the model can be validated in
the training stage by computing its results on a validation set, which is known as the
validation stage. A trained model is then tested on unseen instances, and the classification
results are obtained to assess its performance. Support Vector Machine (SVM) [17], K-
Nearest Neighbors (KNN) [18], Decision Tree (DT) [19], Naïve Bayes (NB) [20], and Logistic
Regression (LR) [21] are some common machine learning methods.

In the literature, some evaluation metrics, such as precision, accuracy, recall, and
F1-score, are applied to evaluate the machine learning outputs [22]. These evaluation
metrics are mathematically computed based on the confusion matrices, in which true
positives, false positives, true negatives, and false negatives are counted. Then, a defined
formula using the ratio of the two true and two false amounts can be utilized to assess a
model’s performance on a particular data set. One of the main issues encountered during
machine learning data classification in general [23,24], and more specifically in malicious
websites’ classification [25], is the class-imbalanced dataset. In the class-imbalanced issue,
a number of classes or a specific class can contain a more instances than another class
or group of classes. This means that, in th training stage, the machine learning method
becomes biased toward this specific class or other classes with a large number of instances.
This can produce a high result for the dominating class or classes, with the results of
other classes being completely disregarded. A number of data-balancing strategies are
suggested in the literature. Some common strategies are under-sampling, SMOTE, and
over-sampling, which have generally been used for imbalanced data classification [26], and
specifically for malicious websites classification [25]. However, the biases in the original
dataset of malicious websites might keep the data balanced. Moreover, quality assurance
in data-balancing is expensive work, and finding an effective data-balancing method is a
challenging task, which must prevent overlap between synthesized samples of classes [27].

In this research work, we propose a decision-fusion-based approach that builds a
decision-fusion ensemble learning (DFEL) model by combining the decisions of three
effective ensemble classifiers, namely, a gradient boosting (GB) classifier, extreme gradient
boosting (XGB) classifier, and random forest (RF) classifier. The approach exploits the
advantages of these classifiers when used for for class-imbalanced data and data with
statistical noise, as in the case of malicious website detection. We utilize a weighted majority-
voting rule to generate the final decisions of developed model. The main contributions of
the proposed approach can be summarized as follows:
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• Improving the accuracy of malicious website detection by exploiting the diversity of
boosting (i.e., GB and XGB) and bagging (i.e., RF) techniques. In boosting, the approach
can create sequential models by combining weak learners into strong learners, where
the final model has the highest accuracy. Furthermore, in bagging, the approach can
create different training subsets from a sample training set using replacement and the
output of the final model is based on the majority voting.

• Reducing the class-imbalanced and over-fitting problems in malicious website classifi-
cation due to the regularization ability of GB, XGB, and RF classifiers.

• Proposing a weighted soft voting rule to fuse the final classification scores utilizing
the competence of well-calibrated and diverse classifiers such as the base classifiers in
the approach. Furthermore, evaluating and comparing the accuracy of the proposed
DFEL model with its base classifiers and some recent related work.

The rest of the paper is organized as follows: Section 2 presents the methods and
approaches of the related work. Section 3 offers an explanation of the materials and methods
used in the research work, including a description of the dataset, methods of the proposed
approach, and evaluation metrics. The experiments and results, along with a discussion,
are introduced in Section 4. Section 5 summarizes the conclusions and future work.

2. Related Work

Singhal et al. [28] classified malicious and benign websites using supervised machine
learning classifiers such as decision trees, random forest, deep neural network, and gradient
boosting. First, the authors gathered the URLs. Then, they extract host-based, lexical-based,
and content-based features from malicious and benign websites. These features were used
as the inputs to machine learning models. The authors generated the lexical features by
choosing the length of host, the length of URL, the length of path, the count of host token,
and some other symbols.

Similarly, the autonomous system number (ASN) and location, which are the host-
based features, were obtained from the URL. The author chose applet count, HTTPS-
enabled, Eval function, redirection, XMLHttpRequest, unescaped function, and popups as
the content-based features. The authors obtained the benign websites from PhishTank’s
public blacklist. This dataset contains a total of 80,000 unique balanced URLs. The features
were extracted after the data were collected. To compare different classifiers, the same
measures (precision, accuracy, F1-score, and recall) were used to quantify the classifier
results on this dataset. Using the gradient-boosting method, the authors achieved the best
accuracy result of 96.4%.

Amrutkar et al. [29] created an analysis technique, named kAYO, to distinguish be-
tween benign and malicious mobile websites based on the static features. For classification,
their method makes use of the static features of a website. The authors applied the proposed
method to a huge, labeled data set of 350,000 benign and malicious mobile websites, and
attained 90% accuracy. They created a browser extension for their proposed technique. The
kAYO was run in the browser extension’s backend to determine whether selected webpages
are benign or malicious.

McGahagan et al. [30] investigated the relation between the number of extracted
features from the HTTP headers and the likelihood of malicious webpage detection. They
examined 6021 malicious websites’ HTTP headers and 39,853 benign websites’ HTTP
headers. The number of features extracted from HTTP headers was 672 and the authors
selected 22 features for further analysis; 11 of these features were considered in previous
research and the remaining 11 features were used in these authors’ work. Three of the
twenty-two features contained 80% of the total importance of these features. The authors
conducted a principal component analysis (PCA) of the extracted features and used eight
classifiers to improve the detection rate. They found that the 22 features attained a better
accuracy result.

A hybrid approach was used by Patil et al. [31] to find malicious URLs. In the hybrid
approach, they combined static and dynamic features; the static features were extracted
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using a static method and the other dynamic features were extracted using a dynamic
method. A total of 117 features were extracted; 44 of them were new features. The dataset
used in their study comprised 52,082 samples. The training data contained a total of
40,082 instances: 20,041 instances in the malicious class and 20,041 in the benign class. This
demonstrates that the authors’ study’s dataset is balanced. The authors used six machine
learning methods, including the simple CART, DT, RF, ADTree, random tree (RT), and
REPTree, to assess the effectiveness of their approach.

A one-dimensional convolutional neural network (1D-CNN) architecture was pro-
posed by Al-milli et al. [32] to detect benign URLs. The experiment wasconducted by the
authors using a benchmark dataset and receiver operating characteristic (ROC) curve with
accuracy evaluation metrics. The authors collected 2456 records with 30 features in their
dataset. A total of 70% of the dataset was applied for training, and 30% was utilized for
testing. They built a CNN architecture containing 64 filters and 16 kernel sizes with 500
and 2000 epochs. The authors’ model achieved a 91.23% area under the curve (AUC) and
94.31% accuracy.

A two-step method for the detection of benign and malicious URLs was introduced by
Jayakanthan et al. [33]. An algorithm called “enhanced probing classification of malicious
URLs (EPCMU)” is used as the first step and an NB classifier is used as the second step
to find malicious URLs. The first step involves the detection task and the second is used
for classification. The input URLs are thoroughly examined by the EPCMU. The system
flags the URLs as malicious if they exhibit any characteristics of a malicious websites or
appear on the blacklisted websites. Otherwise, more checks ar eperformed. In the EMPCU,
a collection of URLs serves as input to the NB classifier during the classification stage. This
determines whether the set URLs are genuine or malicious.

An auto-encoder model was used by Assefa et al. [34] to differentiate between benign
and malicious websites. Three layers (input, hidden, and output) make up the structure of
the auto-encoder model. The data of legitimate webpages were gathered from the dataset
created by the Canadian Institute for Cyber-security, while the phishing data of webpages
were gathered from the dataset generated by the open-source Phish Tank. The final dataset
contained a total of 16 features and 10,000 instances. The authors cleaned the missing
extracted values in the preprocessing stage. The effectiveness of the auto-encoder-based
model is compared to DT and SVM. The authors’ model attained 91.24% accuracy. The DT
and SVM methods delivered an accuracy of 86.1% and 88.4%, respectively.

The contributions and results of important related research have confirmed the ability
and applicability of these methods and techniques for detecting benign and malicious
websites. Recently, Hassan et al. [25] proposed an approach using DT, RF, SVC, LR, and
Stochastic Gradient Decent (SGD) classifiers and achieved 94.19% accuracy for imbalanced
datasets. The results for data balancing in [25] are discarded because the authors balanced
the dataset before splitting it into training and test sets. This means that the distribution of
augmented instances in the test set has almost the same distribution of original instances in
the training set and increases the accuracy. Singhal et al. [28] applied RF, GB, DT, and deep
neural network (DNN) methods to obtain an accuracy of up to 96.4%. Amrutkar et al. [29]
achieved 90% accuracy using the kAYO technique. Adaptive Boosting (AB), Extra Trees
(ET), RF, GB, Bagging Classifier (BC), LR, and k-NN were used by McGahagan et al. [30] to
obtain an accuracy of up to 89%. Al-milli et al. [32] proposed an approach using a 1D-CNN
to attain 94.31% accuracy. Assefa et al. [34] used an auto-encoder, DT, and SVM to attain
91.24% accuracy. Sandag et al. [35] applied the k-NN method to website features and
attained 95% accuracy. Alkhudair et al. [36] and Panischev et al. [37] proposed methods
using RF to obtain 95% accuracy for both studies. Labhsetwar et al. [38] achieved 92%
accuracy by using an RF classifier. Singh et al. [39] proposed a multilayer CNN and attained
an accuracy of 91%. Aljabri et al. [40] used an NB classifier and 96% accuracy was obtained.
Utku and Can [41] proposed an approach using LightGBM, DT, SVM, k-NN, LR, multilayer
perceptron (MLP), RF, and XGB to gain 96% accuracy.
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The results of previous studies show that the existing methods have several strengths,
such as a good performance on malicious website detection tasks. They are simple and
can be regularized to decrease the chance of over-fitting. Their outputs can be interpreted
easily, and some of them do not need to scale the feature values and can be used for both
non-linear and linear features. However, they have limitations in their ability to produce
an effective trained model with reduced variance and bias, and improved classification
results. Moreover, a common limitation of the existing work is the ability to reduce the
effect of class-imbalanced and highly correlated features on the accuracy and performance
of malicious website classification. These limitations are still a research gap that needs to
be solved.

3. Materials and Methods

This section first describes the benchmark data set utilized for building and evaluat-
ing the proposed classification model. Next, the methods of the proposed approach are
explained. Finally, we describe the proposed approach, including its steps, in detail.

3.1. Benchmark Dataset of Study

The dataset adopted in this research is available on the Kaggle platform, https://www.
kaggle.com/datasets/xwolf12/malicious-and-benign-websites (accessed on 15 June 2023).
It is a public dataset. It contains 1781 rows of data instances and 21 columns of variables
(features) for benign and malicious websites. The target label is the ‘Type’ column, which
indicates if the example data are for a benign or malicious website. The features of websites,
with their data type included in the dataset, are presented in Table 1. Figure 1 demonstrates
the number of dataset instances for the benign and malicious classes and their distribution.
As shown in Figure 1, the distribution of instances in the dataset is imbalanced, as the
malicious class form 87.9% of the total, while 12.1% are benign.

Table 1. Features of the dataset and the data types.

No. Feature Data Type

0 URL object
1 URL_LENGTH int64
2 NUMBER_SPECIAL_CHARACTERS int64
3 CHARSET object
4 SERVER object
5 CONTENT_LENGTH float64
6 WHOIS_COUNTRY object
7 WHOIS_STATEPRO object
8 WHOIS_REGDATE object
9 WHOIS_UPDATED_DATE object
10 TCP_CONVERSATION_EXCHANGE int64
11 DIST_REMOTE_TCP_PORT int64
12 REMOTE_IPS int64
13 APP_BYTES int64
14 SOURCE_APP_PACKETS int64
15 REMOTE_APP_PACKETS int64
16 SOURCE_APP_BYTES int64
17 REMOTE_APP_BYTES int64
18 APP_PACKETS int64
19 DNS_QUERY_TIMES float64
20 Type int64

https://www.kaggle.com/datasets/xwolf12/malicious-and-benign-websites
https://www.kaggle.com/datasets/xwolf12/malicious-and-benign-websites
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During the collection process and analysis of the dataset, features were collected
from the network and application layers to enable the use of static and dynamic website
characteristics. A description of each feature in the dataset is provided as follows:

• The URL is a unique identification of the Uniform Resource Locators (URLs), analyzed
in the collected dataset.

• The ‘URL_LENGTH’ is the number of characters in the URL.
• The ‘NUMBER_SPECIAL_CHARACTERS’ is the number of special characters in the URL.
• The ‘CHARSET’ is a character set that has a categorical value that represents the

character encoding standard.
• The ‘SERVER’ is a categorical value that represents the server operative system ex-

tracted from the packet response.
• The ‘CONTENT_LENGTH’ is the HTTP header content size.
• The ‘WHOIS_COUNTRY’ indicates the country in which the website server is situated.
• The ‘WHOIS_STATEPRO’ represents the location at which the website is registered.
• The ‘WHOIS_REGDATE’ is the registration date of the website server.
• The ‘WHOIS_UPDATED_DATE’ is the date of the last update to the website server.
• The ‘TCP_CONVERSATION_EXCHANGE’ counts the number of packets between

the honeypot and website using the TCP protocol.
• The ‘DIST_REMOTE_TCP_PORT’ is the total number of ports, rather than those

exposed in TCP.
• The ‘REMOTE_IPS’ is the total number of Internet Protocols (IPs) in the connection of

the honeypots.
• The ‘APP_BYTES’ is the number of transferred bytes.
• The ‘SOURCE_APP_PACKETS’ is the number of packets that were directed from the

honeypot to the server.
• The ‘REMOTE_APP_PACKETS’ is the number of packets that arrived from the server.
• The ‘SOURCE_APP_BYTES’ is the number of bytes that were directed from the honey-

pot to the server.
• The ‘REMOTE_APP_BYTES’ is the number of bytes that arrived from the server.
• The ‘APP_PACKETS’ is the total number of IP packets produced through the commu-

nication between honeypot and server.
• The ‘DNS_QUERY_TIMES’ is the number of DNS packets produced through the

communication between honeypot and server.
• The ‘Type’ is a categorical variable that represents the class name of the analyzed

website; specifically, 0 denotes a benign website and 1 a malicious website.
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3.2. Methodology of Proposed Approach
3.2.1. Gradient-Boosting (GB) Classifier Method

Gradient-boosting (GB) is a supervised learning method. It is used in many applica-
tions for regression and classification tasks. GB combines several weak learners to produce
a strong predicative model. This process is called an ensemble of weak learners, which are
usually decision trees [42,43].

Conceptually, ensemble learning uses various classifiers to effectively classify the
data instances and aggregate their predictions. The boosting technique [44] is a type of
ensemble learning that can resolve classification or regression tasks by fusing several
models to build an ensemble model. The error of the combined models is minimized by
giving extra weight to the training instances that are incorrectly predicted or classified by
previous learners. For the final prediction of the ensemble model, a weighted voting rule
is used. GB, as one of the boosting methods, aggregates the prediction results of multiple
decision trees to boost the performance of a single tree model [45]. Moreover, GB can
improve the performance of datasets with class-imbalance issues [46]. Therefore, it is used
in our approach to improve the accuracy of malicious websites detection, especially when
suffering from a class-imbalance problem. Algorithm 1 generates several decision trees
using training dataset examples and builds the GB classifier.

Algorithm 1. Building GB classifier

Input: A training dataset with (x1, y1), . . . (xm, ym) where xi ∈ X, yi ∈ Y; T is the number of
random trees using distribution Dt.
Output: The final decision tree (GB classifier).
Begin

1. For t = 1 to T.

1.1. Initializing D1(i) = 1
m ;

1.2. Calculating the hypothesis ht : X → {−1,+1}
1.3. Calculating et = Pri∼Dt

[h t(xi) 6= yi

]
;

1.4. Selecting a random subsample of training dataset with ∝t= ln ln ( 1−et
et

).
1.5. Updating the model using the selected subsample with

Dt+1(i) =
Dt(i)

Zt
× {e−∝t}i f ht(xi) = yie∝ti f ht(xi) 6= yi =

Dt(i) exp (∝t yi ht(xi))
Zt

,

where Zt is a normalization factor.

2. Growing a tree f (x);
3. Adding f (x) to the GB classifier;

End

For each iteration of the boosting algorithm, the instances that were incorrectly classi-
fied in the previous iterations are adjusted. This can be performed by increasing the weights
of misclassified instances and decreasing the weights of correctly classified instances. There-
fore, each successive learner focuses on misclassified instances. After finalizing the itera-
tions, the random modified decision trees will be combined by a weighted-majority voting
rule to build the final GB classifier.

3.2.2. Extreme Gradient-Boosting (XGB) Classifier Method

Extreme Gradient-Boosting (XGB) is another supervised learning method, developed
by Chen Tianqi [47]. In the loss function, the XGB uses a quadratic Taylor expansion and
a regularization term is added to reduce over-fitting and to make the classifier simpler.
The XGB automatically uses the central processing unit (CPU) and multi-threading for
parallelism. At the same, it processes sparse high-dimensional features in a distributed
way. This makes the XGB faster and more accurate for different applications than similar
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methods [48]. The XGB method is an improved version of the gradient-boosting concept
and is used for both regression and classification applications [49]. It is a scalable learning
method of the boosted-trees-based methods, which is commonly and efficiently applied for
large-scale features with a notable effect on parallel boosted-tree operations and a flexible
manner. The XGB parameters are separated into three groups, which are boosting parame-
ters, general parameters, and learning parameters. To boost the model, it is recommended
that the boosting parameters are optimized. Algorithm 2 shows the steps in building an
XGB classifier model.

Algorithm 2. Building XGB classifier model.

Input: X = {(x1, y1), (x2, y2), . . . , (xm, ym)} is a training samples; T is a maximum number of
iterations; max-depth; regularization coefficients, and other parameters.
Output: strong learner f (x);
Begin

1. For t = 1 to T:
2. Calculate the loss function (L) of the ith instances (i = 1, 2, . . . , m) in the present iteration

based on the max-depth, regularization coefficients, and the other parameters.
3. Calculate the first derivative and second derivative of all instances.
4. Split the decision-tree using the score of the processed node; the value 0 is the default score.

The score of the node that is subjected to the splitting process is the sum of the first derivative
and second derivative.

5. Split the sub-number using the eigenvalue and division feature based on the maximum value.

5.1. If the maximum value is equal to 0, then establish the present decision tree;

5.1.1. Calculate the weights of all leaf regions to generate the weak learner.
5.1.2. Update the strong learner and enter the next iteration of the weak learner.

5.2. If the maximum value is not equal to 0, continue from step 5 to split the decision tree.

End

The proposed approach uses the XGB classifier to classify benign and malicious
websites, proving to be an effective classifier in the decision fusion ensemble learning
(DFEL) model.

3.2.3. Random Forest (RF) Classifier Method

Random Forest is an ensemble-based method. It combines multiple decision trees to
improve the accuracy and reduce the over-fitting problem [50]. The algorithm involves
two main steps: training and prediction. In the training step, a subset of the training data
is randomly selected and, for each subset, a set of features is randomly chosen. Then, a
decision tree is built using the selected features and the subset of data. After that, the
previous steps are repeated a specified number of times (or until a stopping criterion is
met). Finally, the decision trees are stored. In the prediction step, the new data points are
run through each decision tree in the forest and, for each decision tree, the class of the data
point is predicted based on the tree’s decision rule [51]. Then, the predictions of all the
trees are aggregated. After that, majority vote can be used for classification and the average
of the predicted values can be taken for regression. The way in which the RF classifier is
mathematically built is given in Algorithm 3.

3.3. Proposed Approach

The proposed approach is based on a decision fusion of three effective ensemble-
learning classifiers, namely GB, XGB, and RF classifiers. The final decision of used classifiers
is fused using a weighted majority voting rule. The approach consists of three main steps:
data pre-processing, model building and training, data classification, and an evaluation
step. Figure 2 shows a flowchart of the proposed approach and the following subsections
explain the flowchart steps.
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Algorithm 3. Building RF classifier model.

Input: A training dataset with (x1, y1), . . . (xm, ym) where xi ∈ X, yi ∈ Y; T is the number of
decision trees using distribution Dt.
Output: The final decision tree (F).
Begin

1. For t = 1 to T:
2. Randomly select a subset of the training data Dt of size nt, where nt ≤ n.
3. Randomly select a subset of the features Ft of size mt, where mt ≤ m (where m is the total

number of features).
4. Build a decision tree using Dt and Ft.
5. Store the decision trees as a random forest, F = {T1, T2, . . . , Tt}
End
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3.3.1. Data Pre-Processing

This step consists of two main sub-steps: feature cleaning and feature normalization.
In feature cleaning, features with null values are replaced with zeros to make them suitable
for training the decision-fusion-based ensemble model. In addition, the features with
categorical values are encoded into numbers using the label encoding method to ensure
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the model is able to learn the numeric values of features. The features that contain unique
values are removed because they create noise and decrease the accuracy.

During feature normalization, numerical features with different ranges of values might
lead to some challenges during model training because the difference between them will
increase the distance of the decision boundary. Therefore, it is important to normalize these
values in each feature so that the maximum value is one and the minimum value is zero.
This providds more homogeneous values for the classifier while maintaining relativity
between the values of each attribute. Data normalization will be carried out using the
min–max technique. Finally, the correlation between features will be analyzed to check
whether the highly correlated features effect the performance of the ensemble classification
model. The data pre-processing steps are given in Algorithm 4.

Algorithm 4. Data pre-processing

Input : d f i=1...n : dataset features;
n : the number of features;
Output : pd f i∈1...n : processed dataset features;

pd f i∈1...n : processed dataset features without
high correlated features;
Begin
1. For i = 1 : n do %This loop is for initialization with zeros
2. if (d f i is null ) then
3. d f i ← 0;
4. endfor
5. For i = 1 : n do %This loop is for removing the unique features
6. if (d f i is unique ) then
7. Remove d f i;
8. endfor
9. For i = 1 : n do % Encode categorical feature values to numbers
10. if (d f i has a categorical value ) then
11. Encode d f i using the label encoding method;
12. endfor
13. f or i = 1 : n do % Remove highly correlated features
14. pd f i ←

pd fi−min (pd f i)
max(pd f i)−min (pd f i)

;

15. pd f i∈1...n ← RemoveHighCorrelatedFeatures
(

pd f i∈1...n
)

16. Return pd f i∈1...n and pd f i∈1...n
End

3.3.2. Model Building and Training

In this step, the decision-fusion-based model is built by training the three ensemble
classifiers described in the previous subsection. The developed model is a meta-model that
combines the predictions of GB, XGB, and RF classifiers using a weighted soft-voting rule.
The weighted soft-voting rule can produce the score of a class based on the probability
score of each classifier multiplied by its weight. The weighted soft-voting rule works well if
the combined classifiers solve different problems, such as over-fitting and class-imbalance
problems, or the problem that occurs when data have statistical noise [52]. We can calculate
the weighted majority voting rule related to the weight wi of classifier Ci as follows:

ŷ = arg max
j

m

∑
i=1

wi f j(x) (1)

where f j is a decision boundary function, written as f j(x) = Ci(x) = j ∈ L, and L is a set
of unique labels for classes.

In the case of binary classification for malicious and benign website detection, the
class label j ∈ {0, 1} is used, in which class 0 denotes a benign website and 1 a malicious
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website. Additionally, we assume that the probability classification scores attained by the
three ensemble classifiers (GB, XGB, RF) to classify an example x are:

GB(x) = [ f0,1, f1,1] (2)

XGB(x) = [ f0,2, f1,2] (3)

RF(x) = [ f0,3, f1,3] (4)

By using the weights wj and the default values of the classifiers’ hyper-parameters,
the average probability classification scores are computed as:

f (l = 0, x) = f0,1 ∗ w1 + f0,2 ∗ w2 + f0,3 ∗ w3 (5)

f (l = 1, x) = f1,1 ∗ w1 + f1,2 ∗ w2 + f1,3 ∗ w3 (6)

ŷ = arg max
l

[ f (l = 0, x), f (l = 1, x)] (7)

The value of ŷ is the final classification result of malicious and benign website detection
for the proposed DFEL model.

To train and evaluate the DFEL model, holdout and 10-fold cross-validation techniques
are used. In the holdout technique, the dataset is randomly divided into two sets: a training
set (70%) and test set (30%). The training set is utilized to build the model and the test set
is applied to evaluate the model. For the 10-fold cross-validation technique, the dataset
is divided into 10 sets, and the model is trained and evaluated in 10 iterations. In each
iteration, one set is applied for testing and the other nine sets are used for training. The
output of this step is a trained DFEL model.

3.3.3. Data Classification

This step is a part of deployment phase in which the trained model can be used for
testing on unseen examples. It depends on the previous supervised learning step. The
input is the trained model and the test sets of the holdout and 10-fold cross-validation
techniques. The trained model can identify the class of new instances, based on the training
data, into “malicious” or “benign” websites. Figure 3 illustrates the data classification step.
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In Figure 3, the test instances are pre-processed and classified using GB-, XGB-, and
RF-trained classifiers. After that, the classification score of each classifier is weighted using
its corresponding weight and summed together with the weighted scores of the other
classifiers to form the classification label of the trained DFEL model.

3.3.4. Model Evaluation

The goal of model evaluation is to measure how well the model performs the task.
This is an essential step in the development process of machine learning models. Model
evaluation can aid in determining the best model that can be represented and its perfor-
mance in the future. In the training process, evaluating the performance of models in
this training set is not acceptable because they can easily produce accurate and over-fitted
results. In the machine learning field, there are two techniques for evaluating models:
hold-out and the 10-fold cross-validation technique. To avoid over-fitting, both techniques
evaluate the model’s performance using an unseen test set.

In the holdout technique, the dataset is randomly divided into training and test sets.
The training set is utilized to build models and the test set is used to assess the performance
of the developed model. Comprehensively, the 10-fold cross-validation technique is the
second evaluation method used to obtain an unbiased estimate of the model performance
when there few data are available. The 10-fold cross-validation technique divides the data
into 10 sets. Every time, a model is built using nine sets and tested on one set, which is the
test set. Model evaluation is performed throughout both experimentation and production.

Some technical metrics, such as accuracy, precision, recall, and F1-socre, are used
to evaluate the proposed model across different testing runs, as well as to compare it
with different models. These technical metrics are computed based on the classification
confusion matrix. In our methodology, the confusion matrix is 2 × 2 for the two classes
(malicious, benign). It is generated by the number of correct and incorrect predicted test
class values using the classification model in relation to the values of actual test classes.
The data in the matrix are widely used to evaluate the performance of such models.

The technical metrics obtained from the confusion matrix can be calculated using the
equations given below:

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(8)

Percision =
TP

(TP + FP)
(9)

Recall =
TP

(TP + FN)
(10)

F1− Score = 2 ∗
(

Recall ∗ Precision
Recall + Precision

)
(11)

where TP, TN, FP, and FN are the true positive, true negative, false positive, and false
negative cases, respectively.

As well as the above metrics, the area under curve (AUC) of the receiver operating
characteristic (ROC) is used to evaluate the developed model. The AUC is the probability
curve in which the degree of separability between classes is given as one of the key
evaluation metrics. It measures the classification performance of machine learning models
at different threshold values. By using the False Positive Rate (FPR) against True Positive
Rate (TPR), the ROC curve can be plotted with a x-axis and y-axis, representing the FPR
and TPR, respectively.

4. Experiments and Results

This section validates the proposed approach to detect malicious websites. The ap-
proach is able to classify malicious websites and benign ones based on the developed
decision-fusion-based ensemble classification model. The experiments can be used to
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obtain the benchmark dataset and evaluation metrics explained in the previous subsections.
Two experiments are conducted to validate the research work. The first experiment is exe-
cuted using the holdout evaluation, in which two evaluation methods are used: evaluation
method one (evaluation method 1) divides the dataset into training set (70%), and test set
(30%), and evaluation method two (evaluation method 2) executes the training and valida-
tion processes for 15 runs with 15 splits. In each split, the models are trained on a different
number of training examples and validated on 10% of the dataset. The second experiment
is accomplished using a 10-fold cross-validation technique. The 10-fold cross-validation
technique divides the dataset into 10 sets. The training process is conducted for 10 runs.
In each run, one set is used to test the base and developed models. In both experiments,
the model parameters are initialized, along with their default values. The experiments are
implemented using the Python programming language on a laptop with Intel processor
Core i7-8750H CPU 2.21 GHz, RAM 32.0 GB and 64-bit Windows 11 operating system.

Before training the ensemble models, we pre-process the dataset using the pre-
processing step. We read it and replace the null values with zeroes to make the null
values numeric when training the ensemble models. Then, we determine some basic
statistics for the dataset to provide an overview of its feature values. Figure 4 shows the
uniqueness and frequency of the dataset feature values.
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Figure 4. Unique and frequency values of features in the dataset.

From Figure 4, we can see that the values of the URL feature are totally unique, with
very low frequency. This feature can create noise and decrease the accuracy because the
difference between them will increase the distance of the model’s decision boundary during
the training step. The non-numeric values of features, including the ‘Type’ class label, are
also encoded into numbers using label encoding because the classifiers can only learn the
numeric values of the features. After that, the correlation between features is analyzed to
find highly correlated features. Figure 5 provides a correlation heat map of the dataset
features. The correlation heat map is a visual graphical representation of the relationship
between features.

Figure 5 demonstrates how each feature is correlated with another feature. It measures
the strength of the relationship between every two feature variables. Understanding the
correlation between features is useful because the value of one feature can be used to predict
the other feature value. The correlated features indicate that, as the value of one feature
changes, the other feature tends to change in a specific direction. As shown in Figure 5,
the ‘TCP_CONVERSATION_EXCHANGE’, ‘APP_PACKETS’, ‘SOURCE_APP_PACKETS’,
‘REMOTE_APP_PACKETS’, ‘APP_BYTES’, and ‘REMOTE_APP_BYTES’ are highly corre-
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lated features with one correlation score. In the next experiment, we will check whether
removing these highly correlated features is necessary for a more accurate classification.
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4.1. Results of First Experiment

In first experiment, we randomly select a subset of the dataset to test the models. Two
evaluation methods are applied to obtain the results of this experiment. The following
subsections explain the evaluation methods, along with their outcomes, in detail.

4.1.1. Evaluation Method 1

This evaluation method randomly divides 30% of the dataset to test the models, and
the remaining 70% is utilized for training. Figure 6 presents the number of instances of
both malicious and benign classes in the training and test sets.
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As shown in Table 2, the distribution of instances in the training set is imbalanced, as
87.08% of the total classes are malicious and 12.92% are benign.
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Table 2. The distribution of malicious and benign instances in the training and test sets.

Class Name Percentage of Training
Instances Percentage of Test Instances

Malicious 87.08% 89.72%
Benign 12.92% 10.28%
Total 100% 100%

After building the DFEL model on the training set without the highly correlated
features, it is tested on the test set. Figure 7 displays the confusion matrix of the classification
results. The true positive (TP) and true negative (TN) instances are colored with a light
green color.
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Figure 7. Confusion matrix of classification results using a DFEL model tested on 30% of the dataset
without the highly correlated features,.

From Figure 7, we can show that the model can correctly classify 477 malicious
instances out of 480 and 50 benign instances out of 55. Based on the corrected classified
instances, Table 3 provides the recall, precision, F1-score, and accuracy results for classifying
malicious and benign classes.

Table 3. Results of evaluation metrics for a DFEL model trained without high correlated features and
tested on a 30% of the dataset.

Class Name Precision Recall F1-Score

Malicious 0.9896 0.9938 0.9917
Benign 0.9434 0.9091 0.9259

Macro avg. 0.9665 0.9514 0.9588
Weighted avg. 0.9849 0.9850 0.9849

Accuracy 98.50%

As shown in Table 3, the proposed model achieves notable classification results, with
an accuracy of 98.50%. Since the dataset classes are imbalanced, the accuracy metric is not
enough for evaluation; hence, the F1-score is taken as another metric. In Table 3, we can
see that the weighted avg. F1-score is 98.49%. The accuracy and F1-score results prove the
model’s capability and effectiveness in alleviating the class-imbalanced problem produced
by the dominant malicious class label.

To show the effect of highly correlated features, we train the DFEL model on the
training set with all features, including the highly correlated features, and test it on the
same test set. Figure 8 visualizes the confusion matrix of the classification results. The
numbers in the light green color on the confusion matrix are TP and TN instances.
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From Figure 8, we can see that the highly correlated features decrease the number of
TP instances to 476 instead of 477 to train the model without highly correlated features.
The number of TN instances is not affected. The results of other evaluation metrics are
given in Table 4.

Table 4. Results of evaluation metrics for a DFEL model trained with highly correlated features and
tested on 30% of the dataset.

Class Name Precision Recall F1-Score

Malicious 0.9896 0.9917 0.9906
Benign 0.9259 0.9091 0.9174

Macro avg. 0.9578 0.9504 0.9540
Weighted avg. 0.9831 0.9832 0.9831

Accuracy 98.32%

In Table 4, the model is shown to achieve a classification result with 98.32% accuracy
and a 98.31% weighted avg. F1-score. These results confirm that removing the highly
correlated features is necessary for a more accurate classification. Moreover, decreasing
the number of features increases the efficiency of the model. Figure 9 shows the average
classification time of all test sets in seconds for the model trained on the training set with
and without highly correlated features.
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In Figure 9, we can see that removing highly correlated features decreases the average
classification time of all test sets from 0.031 s to 0.016 s, improving the efficiency of the
DFEL model in addition to improving the detection accuracy. Moreover, this average
classification time confirms the applicability of the proposed model for real-time detection.

Besides, to analyze the ability of the proposed DFEL model compared with its models
individually at the 0.5 classification threshold, Figure 10 illustrates the ROC curves of the
DFEL model and its other base models.
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Figure 10. ROC curves of the DFEL model and its other base models: (a) ROC curve of GB classifier,
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From Figure 10, we can see that the DFEL model outperforms its base models and
achieves a 0.95 AUC, compared with a 0.93, 0.94, and 0.93 AUC for GB, XGB, and RF,
respectively. The high AUC value for the DFEL model proves its ability to show how much
the trained model can differentiate between test set classes. This means that the built model
can classify instances of a malicious class as malicious, and instances of a benign class
as benign.

4.1.2. Evaluation Method 2

This evaluation method trains and validates the proposed decision fusion model and
its base models 15 times with 15 splits. Each time, the models are trained on a different
number of training examples and validated on 10% of the dataset without highly correlated
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features. Figure 11 demonstrates the learning curves of the DFEL model and its base
models. The training and validation scores are compared to the training data examples
(data size).
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From Figure 11, we can see that when fewer than 600 training examples are used, this
not enough to allow the trained models to classify the validation set. In addition, we can
see that the training accuracy scores for all models are still around the maximum, and the
validation scores increase with more training examples. However, the difference between
the accuracy scores for the training and validation of the base models is larger than that of
the accuracy scores of the DFEL model for all training sets with more than 600 examples.
This means that the performance of the DFEL model is better than its base classifier models.

4.2. Results of Second Experiment

In this experiment, another evaluation experiment is conducted using a 10-fold cross-
validation routine to compare the DFEL model with its base models (GB, XGB, and RF).
Table 5 demonstrates the average accuracy and F1 score of the ten-fold validation results
for malicious and benign classification using GB, XGB, RF, and DFEL models trained on
training folds without highly correlated features.

As seen in Table 5, the highlighted numbers with bold font are the best evaluation
results achieved using a 10-fold cross-validation technique. We can see that the proposed
DFEL model outperforms its base models. It can classify the malicious and benign cases
with a 97.20% weighted average F1 score and 97.25% average accuracy. In addition, the
macro-average F1 scores for each model are less than the micro-average F1 scores because
of the class-imbalanced problem. The macro-average F1 score can provide a true evaluation
of the classifier model in a class-imbalanced evaluation task.
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Table 5. The 10-fold cross-validation averaged accuracy and F1 score results of the GB, XGB, RF, and
DFEL models trained on the training folds without highly correlated features.

Model
Averaged F1 Score Averaged

AccuracyMicro Avg. Macro Avg. Weighted Avg.

GB 0.955 0.888 0.954 95.45%
XGB 0.958 0.895 0.957 95.85%
RF 0.962 0.904 0.960 96.18%

RF + GB 0.958 0.894 0.957 95.79%
GB + XGB 0.963 0.905 0.962 96.29%
RF + XGB 0.967 0.914 0.966 96.74%

Proposed DFEL 0.973 0.931 0.972 97.25%

To confirm whether highly correlated features affect the DFEL’s performance re-
sults, we performed 10-fold cross-validation on the training set with highly correlated
features. Figure 12 visualizes the 10-fold cross-validation averaged accuracy and F1 score
results of the proposed DFEL model trained on the training folds with and without highly
correlated features.
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Figure 12. Averaged accuracy and F1 score results of the proposed DFEL model trained on a 10-fold
cross-validation with and without highly correlated features.

From Figure 12, we can see that the DFEL model with highly correlated features attains
an average of 96.91% and 96% instead of 97.25% and 97.2% in its 10-fold accuracy and
10-fold weighted average F1 scores, respectively. Moreover, there is a significant difference
in the average of the 10-fold macro-averaged F1 scores, in which the model improves the
result from 90.4% to 93.1%. These outcomes also confirm that removing highly correlated
features is necessary for a more accurate classification.

4.3. Comparison of Results with Related Work

In this subsection, we compared the accuracy of the results of this study with the
results of methods and techniques in some recent related studies. Table 6 lists the obtained
accuracy result of the proposed DFEL model compared with the accuracies of important
studies in the literature review.
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Table 6. Comparison of the results of the accuracy of the proposed DFEL model and the important
studies in the literature review.

Authors [Reference] Year Methods/Techniques Accuracy

Amrutkar et al. [29] 2017 kAYO 90%

Sandag et al. [35] 2018 k-NN 95%

McGahagan et al. [30] 2019 AB, ET, RF, GB, BG, LR, and
k-NN 89%

Alkhudair et al. [36] 2020 RF 95%

Panischev et al. [37] 2020 RF 95%

Al-milli et al. [32] 2020 1D-CNN 94.31%

Singhal et al. [28] 2020 RF, GB, DT, and DNN 96.4%

Labhsetwar et al. [38] 2021 RF 92%

Singh et al. [39] 2021 Multilayer CNN 91%

Aljabri et al. [40] 2022 NB 96%

Utku and Can [41] 2022 LightGBM, DT, SVM, k-NN,
LR, MLP, RF, and XGB 96%

Assefa et al. [34] 2022 Auto-encoder, DT, and SVM 91.24%

Hassan et al. [25] 2022 DT, RF, SVC, LR, and SGD 94.19%

This work 2023 DFEL 98.50%

As shown in Table 6, our DFEL model results demonstrates a substantial improvement
(98.50% vs. 96.4% in terms of accuracy) compared to the results of our recent work. Such
a notable performance in terms of website classification provides a possible application
of the proposed DFEL model to help cyber-security technicians and researchers in the
detection of malicious websites. The other advantage of the decision fusion-based approach
is the diversity of GB, XGB, and RF models in reducing the effect of over-fitting and
class-imbalanced problems during training development.

5. Conclusions and Future Work

In the cyber-security field, machine-learning-based applications play an essential role
in the detection of malicious data, and can also be used to analyze interactive websites
and provide efficient solutions. Fusing different data sources and decisions is one of the
outstanding strategies to increase the accuracy of machine learning techniques in several
applications. This paper proposes an effective and efficient decision-fusion-based approach
that fuses the decisions of GB, XGB, and RF classifiers and builds a decision-fusion ensemble
learning (DFEL) model. The DFEL is able to classify webpage features and detect the URLs
of malicious websites. The final decision is calculated by fusing the classification scores of
the three classifiers using a weighted soft-voting method. The outcome could be classified
as malicious or benign based on the significant features of the website URLs. An extensive
set of experiments is performed on a large public benchmark dataset of malicious and
benign website URLs using a 10-fold cross-validation test and different test set ratio. The
experimental results show that the proposed fusion method achieved a higher accuracy
than the individual models and the current related work. The experimental results also
investigate the effect of highly correlated features on the accuracy of the developed model
and decrease the detection time by reducing the highly correlated features in the model
input. One limitation of this approach is the unavailability of a large class-balanced dataset
that can be used to train deep learning models and for malicious websites classification.
Consequently, in future work, we will use data-augmentation techniques to extend the size
of the minority class in the training set and investigate the advantages of deep learning
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models on the problem field. Furthermore, we plan to build a model integrated with Fuzzy
logic to improve the reliability of the detection approach.
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