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Abstract: Recent Siamese network-based visual tracking approaches have achieved high performance
metrics on numerous recent visual tracking benchmarks, where most of these trackers employ a
backbone feature extractor network with a prediction head network for classification and regression
tasks. However, there has been a constant trend of employing a larger and complex backbone
network and prediction head networks for improved performance, where increased computational
load can slow down the overall speed of the tracking algorithm. To address the aforementioned
issues, we propose a novel target-aware feature bottleneck module for trackers, where the proposed
bottleneck can elicit a target-aware feature in order to obtain a compact feature representation from
the backbone network for improved speed and robustness. Our lightweight target-aware bottleneck
module attends to the feature representation of the target region to elicit scene-specific information
and generate feature-wise modulation weights that can adaptively change the importance of each
feature. The proposed tracker is evaluated on large-scale visual tracking datasets, GOT-10k and
LaSOT, and we achieve real-time speed in terms of computation and obtain improved accuracy over
the baseline tracker algorithm with high performance metrics.

Keywords: visual tracking; model-free tracking; object tracking; bottleneck module; real-time tracking

1. Introduction

Visual tracking is one of the fundamental and practical problems in the computer
vision field, where its applications include autonomous driving [1], unmanned surveil-
lance [2], video understanding [3], and target detection and recognition [4]. The problem
statement for visual tracking can be formulated as estimating the state of a specified object
throughout a video sequence, given its initial state as bounding box coordinates. Numerous
challenging factors such as occlusion from surrounding objects, similar distractor objects,
illumination change, drastic scale change, and deformation of the target object are the
common factors that lead to the failure of visual tracking algorithms. Therefore, tracking
algorithms aim to successfully localize the target object even under these challenging sce-
narios. A single failure can cause the tracking algorithm to miss the location of the object
entirely, making application to long-term videos difficult.

Recent advances in convolutional neural networks (CNNs) and vision transformers
(ViT) for various computer vision tasks [5–8] provide powerful feature representations for
downstream applications, including the visual tracking field. Siamese network-based archi-
tectures have gained interest due to their high generalization performance and fast speed
due to the simplicity of its fully convolutional nature. Siamese network-based tracking algo-
rithms, namely, SiamFC-based [9] algorithms, generally receive two image patches as input
where one is a target image patch and the other is a search image patch. Two input patches
are processed with a shared backbone feature extractor network where two resulting feature
maps are processed using a prediction head network for subsequent target localization.
There has been a constant trend of employing larger, complex networks for backbone fea-
ture extractors and prediction head networks for improved performance. Recent examples
include adding deeper and wider feature extractors [10,11], where recent works employ
ViT for feature extraction [12], and utilizing more complex prediction head networks
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based on region proposal networks [13,14], centerness estimation branches [15,16], and
transformer-based feature fusion and estimation [17,18]. The aforementioned architectural
improvements in both feature extractors and prediction heads have shown high accuracy
on numerous recently introduced large-scale visual tracking benchmarks [19–21].

However, along with the recent advancements in the design of feature extractor net-
works utilizing deeper and wider architectures, prediction head networks have also become
more complex, conducting various tasks, such as classification, regression, centerness es-
timation, and segmentation [22]. To perform these tasks, employing deeper and wider
architectures for prediction head networks has brought an increased number of parameters
where their effect becomes non-negligible when it comes to real-time tracking speeds, slow-
ing down the overall tracking process. To compress and accelerate deep architectures for
efficiency, previous works focus on methodologies, such as network quantization [23], prun-
ing [24,25], architecture search [26], and more. These aforementioned methods are effective
for network acceleration by reducing the number of parameters with minor trade-offs
in performance under general classification settings. However, the accelerated networks
found by these methods are fixed and permanent under all inputs, lacking the flexibility
of adapting to various tasks and scenarios. Because the visual tracking problem can be
viewed as a meta-learning problem with few-shot examples [13,27,28] to initialize and
update the tracker, the tracking framework’s adaptiveness and flexibility to encompass
various targets and scenes can be considered as a crucial aspect when it comes to handling
various tracking scenarios.

To address the aforementioned issues regarding the acceleration of deep neural net-
works for visual tracking, we propose a novel target-aware feature bottleneck module for
a Siamese network-based tracking framework. The proposed module receives the infor-
mation of the target object and its surroundings and can adaptively choose to modulate
the relevant features extracted from the backbone feature extractor. The resulting feature
representation can improve the discriminability of the target object from its background
and is also lightweight, reducing the computational burden for the subsequent tasks per-
formed by the prediction head network. Additionally, instead of attending and modulating
all feature channels, we propose a channel group-based approach where this provides a
reasonable trade-off between adaptiveness and efficiency. We attach our proposed module
and improve upon the baseline tracking algorithm of GlobalTrack [29] which is a global
search-based tracker that does not employ any motion smoothness constraints and hyper-
parameters, where we can analyze the effect of our proposed bottleneck module in a more
accurate manner. Furthermore, our proposed bottleneck module can be attached to any
Siamese network-based tracker and yield a substantial reduction in computational load.

To exhibit the benefits of the proposed tracking framework, we conduct evaluations
on recently introduced large-scale benchmarks for visual tracking, LaSOT and GOT-10k, for
quantitative and qualitative evaluations for comparison between other tracking algorithms.
For further analysis, we perform ablation experiments on the LaSOT dataset to validate
the performance gains and reduction in computation brought by our proposed bottleneck
module. The motivation for our bottleneck module for the tracking framework is shown in
Figure 1.

The contributions of the proposed method are as follows:

1. In contrast to previous lightweight tracker design approaches where only backbone
feature extractors are compressed without consideration of prediction heads, or re-
quire a specialized network structure for an architecture search, our feature bottleneck
approach is more versatile in terms of backbone network selection and can reduce the
computation of prediction heads.

2. Under evaluation, we obtain comparable tracking accuracy metrics on multiple bench-
marks for visual tracking, LaSOT and GOT-10k, using lighter backbone feature extrac-
tors, compared to the other heavier ResNet backbones used in [29].
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3. Owing to our proposed feature bottleneck module, we accomplish a real-time pro-
cessing speed of 74 fps which is substantially faster than the sub-real-time speeds of
previous global search-based, computationally heavier visual tracking algorithms.

(a)  Conventional Visual Tracking Pipeline

(b)  Proposed Visual Tracking Pipeline

Videos with Various Targets

Feature
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Classification Head

Regression Head

Common 
Feature Representation

Complex Prediction Head 
Networks

Target-Aware Lightweight 
Feature Representation

                Classification Head                Regression HeadPrediction Head Networks

Target-Aware 
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Videos with Various Targets
Target-Context Information

Lightweight 

Figure 1. Motivation for the target-aware feature bottleneck.

2. Related Work

There has been an ongoing trend in the visual tracking literature to formulate the
visual tracking task as a tracking-by-detection problem [30], which is to localize the target
object inside a designated search area by performing a binary classification task. Trackers
are formulated as classifier models where the model can classify the region of the target as
a positive class and the region outside the target area as a negative class. At test time, the
region score with the largest positive value is chosen as the predicted output region, where
additional bounding box regression and refinement is possible as in the two-stage object
detection literature [7].

CNN-based Trackers: Along with powerful feature representations brought by CNNs
trained from classification tasks [6,31,32], visual tracking algorithms also make use of these
representations. Notable examples include MDNet [33] and RT-MDNet [34] which uses
a VGG [31] network with a binary multi-domain classifier on top. Employing correlation
filters on pretrained representations has also gained attention where the aim of the filters
is to produce a 2D Gaussian score map with the maximum score at the center position of
the target region. Starting from the most notable KCF [35], further extensions have been
proposed, such as using a hierarchical structure [36], joint group features [37], continuous
correlation operators [38], and many more [39–41].

Siamese Network-based Trackers: Inspired by the simplicity and fast speed of these
convolutional correlation filter-based formulations, SiamFC [9] aims to use Siamese net-
works to further make use of deep representations. Different from [42,43], SiamFC [9] has
gained popularity owing to its fully convolutional architecture and simpler formulation
compared to correlation filters. Given two image patches, where the target image patch
is cropped from the initial frame using the initial target state, and the search image patch
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is cropped around the candidate region in a given video frame, target and search feature
maps are extracted using a common backbone CNN feature extracting model. Afterward, a
cross-correlation operation is performed between the feature maps to obtain a similarity
value map where the location with the highest similarity value is picked as the predicted
position. Many works improving the original SiamFC have been proposed, where deeper
and wider backbones are employed [10,11], region proposal networks [7] are used [13,14],
an additional branch for estimating the target center is added [15,16], and anchor-free
formulation is used [44,45].

Transformer-based Trackers: With the recent advances in the transformer architec-
ture [46] for the natural language processing (NLP) field, the application of attention-
based modeling to computer vision research has gained popularity [8,47]. Starting with
TransT [17] which substitutes the feature cross-correlation layer of the Siamese tracker with
their proposed multi-head attention (MHA)-based feature fusion block, most transformer-
based tracking algorithms have proposed modifications to the Siamese network architecture
to replace the cross-correlation operation between target and search feature maps. Other
approaches include STARK [18], CTT [48], and DTT [49] which employ encoder–decoder
architecture. Recently, inspired by vision transformers (ViT) [8], joint feature extraction
and correlation modeling with transformers have been proposed. Representative works
include OSTrack [50], which uses one-stream framework using only MHA blocks, and Swin-
Track [12], which uses the efficient Swin Transformer [51] architecture for feature extraction
and fusion.

Lightweight Trackers: Due to the importance of a fast, real-time speed of visual track-
ing algorithms for practical applications, approaches aimed for designing lightweight and
efficient networks for visual tracking have also gained attention. Approaches for reducing
the computational load of neural networks in general [52] include weight quantization [23],
pruning [24], architecture search [26], low-rank weight decomposition [53], and general
model compression [54], where these line of works were successful for a dramatic reduction
in the computational load of image classification networks. For visual tracking applications,
there are approaches for adding a lightweight mixer network to the MobileNetV2 [55]
backbone [56], a compact latent encoder for network adjustment [57], one-shot network
architecture search [58], and using an efficient transformer architecture [59].

3. Proposed Method

In this section, we delineate the proposed target-aware feature bottleneck tracker
(TAFT), where the overall tracking algorithm largely includes three stages: (1) the feature
extraction and target-aware bottleneck stage, (2) a region proposal from the correlated
feature maps, and (3) the region pooling and classification stage. In the following sections
of this paper, we first illustrate an overview of our visual tracking algorithm. Then, we
describe the details for each tracking stage, including tracking with our target-aware feature
bottleneck module. Subsequently, we describe the training and implementation details
with architectural details, training data, and hyperparameter values. Figure 2 illustrates
the overview of the overall visual tracking algorithm.

3.1. Overview of the Baseline Tracking Algorithm

The first stage of the tracking algorithm involves feature extraction from input video
frames. For input, a pair of RGB frame images Iz, Ix ∈ RH×W×3 is given, where Iz is
the initial (query) frame image which includes the target object along with its initial
state b0 ∈ R4 as the bounding box coordinates, and Iz is the current frame image in
which we aim to find the target object. The dimensions of the input images are identical,
with spatial sizes of height H and width W with RGB channels. Feature representations are
extracted by utilizing the backbone feature extraction net φ(·), and feature representations
for input images Iz and Ix are obtained as Fz = φ(Iz), Fx = φ(Ix) ∈ Rh×w×c, respectively.
The output feature maps hold spatial sizes of width w and height h, with c channels,
where the pooling layer and kernel stride reduce the spatial size from the original H ×W.
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The backbone feature extractor φ(·) can be any deep neural network pretrained with an
image classification task, where the linear classifier layer is removed. For efficient training
purposes, some of the last layers are chosen for finetuning, whereas other layers remain
frozen. Additional technical details on the architecture, dimensions, hyperparameters, and
training method are explained in Section 3.4.

Query Frame 
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Target Feature 
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Figure 2. Overview of the overall tracking process.

After extracting the target and search feature maps Fz, Fx ∈ Rh×w×c, the region pro-
posal stage is conducted to search candidate areas that are similar to the target appearance,
and these areas can be further classified and refined at the subsequent region classification
stage. From the target feature map Fz, the initial bounding box coordinates b0 can be
used with the ROIAlign [60] operation to obtain spatially pooled target representation
z ∈ Rs×s×c. The ROIAlign(·) operation receives two inputs, which are the feature map and
the bounding box coordinates. Then, the feature map is cropped based on the given bound-
ing box coordinates and resized using linear interpolation to obtain a spatially pooled
feature representation. We obtain the target representation as in z = ROIAlign(Fz, b0),
and s is predefined as the width and height dimension of the pooled target representation.
Subsequently, a cross-correlation operation is performed in a depth-wise manner on the
search feature map Fx using target feature representation z as a kernel by

x̂ = Fx ∗ z, (1)

in which ∗ represents the cross-correlation operation with a stride size of 1 and 0-padding
size of b s

2c in order to keep the spatial dimensions consistent. The output correlation feature
map x̂ ∈ Rh×w×c is passed onto the prediction heads for the region proposal net (RPN)
operation, to produce two output prediction maps for the region proposal. Similar to the
formulation in FCOS [61], the point-wise class label map yC ∈ Rh×w×2 with the point-wise
box estimation map yR ∈ Rh×w×4 are predicted as below,

yC = f P
C (x̂), yR = f P

R (x̂), (2)
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where f P
C , f P

R are RPN branches which consist of convolution, ReLU, and normalization [62]
layers. Both output maps represent the point-wise class labels and bounding box coordi-
nates, where the predicted point-wise class label map yC contains the binary logit values
y(i,j)C ∈ R2 for a given row and column indices (i, j), where the softmax probability of this
point being inside or outside the target box region can be calculated for each position.
For points (i, j) inside the target box region, the predicted point-wise bounding box re-
gression map yR represents the four corners of the estimated target bounding box where
y(i,j)R ∈ R4 regresses the four boundaries, which are the top, bottom, left-, and right-side
coordinates given the target box. Afterward, the non-maximum suppression (NMS) oper-
ation is performed on the bounding boxes with the highest probability scores to remove
overlapping boxes that exceed a given threshold, where the top-N candidate ROI (region-
of-interest) boxes {b̂1, . . . , b̂N} can be chosen for the subsequent region classification stage.

Given the top-N ROI boxes from the previous region proposal stage, we refine these
predictions to choose a single output bounding box with the highest classification score.
First, using the candidate boxes {b̂1, . . . , b̂N}, the ROIAlign operation is performed as in
xi = ROIAlign(Fx, b̂i), i ∈ {1, . . . , N} where xi ∈ Rs×s×c are the spatially pooled candidate
feature representations with the same spatial and channel dimensions as the target feature
representation z. Afterward, the candidate feature representations xi are cross-correlated
with the target feature representation z as in

x̂i = xi ⊗ z, (3)

where ⊗ is the element-wise product between two tensors of identical dimensions. Then,
from the cross-correlated features x̂i ∈ Rs×s×c, the ROI class logits yD,i ∈ R2 and box
refinement values yS,i ∈ R4 are obtained as in

yD,i = f Q
D (x̂i), yS,i = f Q

S (x̂i), (4)

where the branches f Q
D , f Q

S also consist of convolution, ReLU, and normalization [62] lay-
ers. The output class logits are concatenated to summarize the classification scores yD =
[yD,1, . . . , yD,N ]

T ∈ RN×2 to represent all binary logits for the ROIs, where the softmax
operation is performed to obtain positive class probabilities and the k-th ROI b̂k ∈ R4 with
the maximum probability chosen for further bounding box refinement. Given the ROI
b̂k = [xc

k, yc
k, wk, hk]

T , where xc
k, yc

k ∈ R are the horizontal and vertical center coordinates of
the box, and wk, hk ∈ R are the width and height of the box, respectively, these values are
refined using the refinement values yS,k = [dxk, dyk, dwk, dhk]

T ∈ R4 as in

xc
k
′ = xc

k + wk · dx, yc
k
′ = yc

k + hk · dy,

w′k = wk · exp (dw), h′k = hk · exp (dh),
(5)

to produce a refined ROI of b̂′k = [xc
k
′, yc

k
′, wk

′, hk
′]T which serves as the output of the tracker

for a given frame.

3.2. Incorporation of the Target-Aware Feature Bottleneck Module

In this section, we describe the detailed operation for our proposed target-aware
feature bottleneck module. Our goal is to reduce the channel dimension of the backbone
feature representation for efficient and fast subsequent computation, with minimal trade-
off in discriminative performance. At the high level, our target-aware feature bottleneck
module (TAFM) operates as in

Fz
′, Fx

′ = TAFM(Fz, Fx, b0), (6)

where the output feature maps are Fz
′, Fx

′ ∈ Rh×w×c′ and the hyperparameter c′ < c
is chosen for reduced computation. Using lightweight target and search feature maps
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Fz
′, Fx

′, the subsequent region proposal (Equation (2)) and classification and refinement
(Equation (4)) can be performed with less FLOPs operation, and the amount of reduced
computation can vary depending on the architecture of the prediction heads. Our target-
aware bottleneck module processes feature maps Fz, Fx through three stages, which are
the (1) pre-modulation stage, (2) convolution stage, and (3) post-modulation stage. The
convolution stage performs a simple point-wise conv operation which reduces the channel
size from c to c′, whereas the pre- and post-modulation stages perform channel-wise feature
modulation through affine transformation based on the target-aware information extracted
from the target feature representation.

First, we start from extracting the target-specific information to obtain target-adaptive
parameters for feature modulation. To extract the target-specific information, we use
the target feature map Fz obtained from the initial frame image Iz and the initial target
bounding box b0 = [xc

0, yc
0, w0, h0]

T with the box center coordinates (xc
0, yc

0), width w0, and
height h0. We obtain a spatially pooled target context representation z′ ∈ Rs′×s′×c as in

z′ = ROIAlign(Fz, b0
′), (7)

where b0
′ is the dilated initial target bounding box b0

′ = [xc
0, yc

0, γcw0, γch0]
T , and γc ≥ 1

is the hyperparameter for controlling the amount of context information to be included
around the target object.

Subsequently, from the pooled feature map z′, the feature modulation parameters
for target-adaptive affine transformation are obtained using the target-aware parameter
generator as in

α
p
z , β

p
z , α

q
z, β

q
z = hz(z′)

α
p
x , β

p
x, α

q
x, β

q
x = hx(z′),

(8)

where all the output parameters are α
p
z , β

p
z , α

q
z, β

q
z, α

p
x , β

p
x, α

q
x, β

q
x ∈ RNg , and Ng is a hyper-

parameter for the number of feature groups. The output parameters are used for affine
transformation where α·· are later used as multipliers, and β·· are used as biases. The pa-
rameters with superscript p are used in the pre-modulation stage and with superscript q
are used in the post-modulation stage, and the parameters with subscript z are used to
modulate the target feature map Fz and with subscript x are used to modulate the search
feature map Fx. For our experiments, we choose the number of feature groups Ng � c′ < c
for a reduced number of weights and increased efficiency, where group-wise modulation
provides an adequate trade-off between performance and efficiency. For hz and hx, we
use a differentiable, lightweight neural network composed of convolution, global average
pooling, and linear layers with ReLU in between, where all the layers except for the last
layer are shared between networks hz and hx. Using the output parameters from hz and hx,
the input feature maps Fz and Fx go through the three aforementioned stages as in

Fz
′ = α

q
z � σ(α

p
z � Fz ⊕ β

p
z )⊕ β

q
z

Fx
′ = α

q
x � σ(α

p
x � Fx ⊕ β

p
x)⊕ β

q
x,

(9)

where σ(·) represents a 1× 1 convolution layer with unit stride, and � and ⊕ are group-
wise multiplication and addition operators that appropriately broadcast the parameters to
the channels of each group. Because the affine transformation parameters are obtained con-
ditioned on the target context feature, the tracker can adaptively change these parameters
according to the given scene, where the tracker can keep its discriminative capacity even
under high compression. Please refer to Figure 3 for an overall view of the framework and
operation of the target-aware bottleneck and Algorithm 1 for the step-by-step operation of
our proposed tracker with the integrated target-adaptive feature bottleneck module.
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Algorithm 1 Visual tracking with target-aware feature bottleneck
Input : Sequence of length T, with RGB frame images {I0, I1, I2, . . . , IT−1}

Bounding box coordinates of the target at the initial frame b0
Output : Bounding box coordinates of the target at time t, bt for all frames

# Initialization and target-adaptive bottleneck feature extraction at time t = 0
Compute query feature map Fz = φ(I0) using feature extractor φ(·)
Obtain spatially pooled target context representation z′ using b′0 by ROIAlign,
as in Equation (7)

Compute feature modulation parameters as in Equation (8) and store in memory
Apply modulation to Fz to obtain lightweight Fz

′ as in Equation (9)
Obtain spatially pooled target feature representation z using b0 by ROIAlign and
store in memory

# For later frames in the video sequence, t > 0
for t = 1 to T − 1 do

# Region proposal stage
Compute search feature map Fx = φ(It) using feature extractor φ
Using the modulation parameters found in Equation (8), apply modulation to

Fx to obtain lightweight Fx
′ as in Equation (9)

Perform depth-wise cross correlation with z to obtain correlation map x̂ as in
Equation (1)

Obtain top-N ROI boxes {b̂1, . . . , b̂N} using region proposal network
Equation (2)

# Region pooling and classification stage
Obtain spatially pooled candidate feature representations {x1, . . . , xN} using
candidate boxes using ROIAlign

Correlate feature representations xi and z to obatin x̂i as in Equation (3)
Perform ROI-wise region classification and box refinement using region
classification network as in Equations (4) and (5)

Choose a refined ROI b̂′k with the highest classification score as final output of
the tracker for frame t

end

3.3. Training the Proposed Framework

Herein, we provide the details that are relevant to training our overall tracking frame-
work, where we describe the loss functions and optimization method that are used for
training the overall tracking model. We apply loss functions on the outputs of the RPN and
the region classifier net, where the target-adaptive feature bottleneck module is iteratively
optimized from the transferred gradients obtained by optimizing the subsequent prediction
head networks.

To train the region proposal network with two branches shown in Section 3.1, we
enforce loss functions on the outputs of both branches f p

C , f p
R, which are yC ∈ Rh×w×2,

yR ∈ Rh×w×4 as in

LP({yC, y∗C}, {yR, y∗R}) =
1

hw ∑
i,j

LP
C(y

(i,j)
C , y∗(i,j)C ) +

λP
NP

1
{y∗(i,j)C >0}∑

i,j
LP

R(y
(i,j)
R , y∗(i,j)R ) (10)

where the superscript (i, j) denotes a spatial position in the output maps; y∗C, y∗R denote
corresponding ground truth maps; and NP is the number of positions in the ground truth
classification map y∗C with positive labels y∗(i,j)C > 0. For the output of classification branch
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yC, focal loss [63] is used to compensate for class imbalance, where LP
C is applied on all

locations (i, j) in the output as in

LP
C(y

(i,j)
C , y∗(i,j)C ) = −(1− y∗(i,j)C )y(i,j)γC log(1− y(i,j)C )− y∗(i,j)C (1− y(i,j)C )γ log(y(i,j)C ), (11)

in which γ is a focus hyperparameter for controlling the importance between easy and hard
targets. For the output of the regression branch yR, the loss is only enforced on locations in
the positive region (y∗(i,j)C > 0) where our goal is to maximize the intersection-over-union
(IoU) overlap between the ground truth and predicted bounding boxes as in

LP
R(y

(i,j)
R , y∗(i,j)R ) = 1−

|b(i,j)R ∩ b∗(i,j)R |
|b(i,j)R ∪ b∗(i,j)R |

, (12)

where b(i,j)R , b∗(i,j)R denote the predicted bounding box and ground truth bounding box made

from the values y(i,j)R , y∗(i,j)R ∈ R4, respectively. | · | denotes the total area size of a given
region, ∩ represents the overlap operation (intersection) between two regions, and ∪ is the
union operation over two regions.

From the region proposals generated by the region proposal network, candidate
features are spatially pooled and correlated with the target feature representation and
fed to the region classification branches f Q

D , f Q
S , where the loss is enforced on the outputs

yD ∈ RN×2 and yS ∈ RN×4 as in

LQ({yD, y∗D}, {yS, y∗S}) =
1
N ∑

i
LQ

D(y
i
D, y∗iD) +

λQ

NQ
1{y∗iD>1}∑

i
LQ

S (y
i
S, y∗iS ), (13)

where i indicates the index of a candidate ROI; y∗D, y∗S denote the corresponding ground
truth labels; and NQ denotes the quantity of ROI regions that are positively labeled y∗iD > 1.
The ground truth classification label y∗iD is determined by the IoU value of the RoI where
y∗iD = 1 is assigned to RoIs exceeding a threshold value τp = 0.5, and y∗iD = 0 is assigned
to RoIs below a threshold value τn = 0.4. For the output of the classification branch yD,
focal loss is also used as in Equation (11) where the same γ is used. For the output of the
bounding box refinement branch yS, L1 loss is enforced as in

LQ
S (y

i
S, y∗iS ) = ||yi

S − y∗iS ||1, (14)

which is a standard L1 distance between two vectors, to minimize the distances for four
corners of the bounding box coordinates.

Additionally, because an unconstrained target-aware feature bottleneck module can
generate affine transformation parameters that are too large or too small, especially for the
multipliers α··, this can cause overfitting to the training examples and hamper generalization
due to a large distribution shift in the intermediate activation values. To prevent this
phenomenon, we enforce an additional regularization term along with the standard L2
weight decay term as in

LR(θ, α) = λR||θ||2 + λα||α− 1||1, (15)

where α = [α
p
z , α

q
z, α

p
x , α

q
x] ∈ R4Ng , λR is the weight decay hyperparameter, and λα is the

loss balancing hyperparameter. The first term is for the standard L2 weight decay enforced
on all weights θ of the neural network, and the second term is an L1 distance term enforced
on all multipliers α·· encouraging them not to deviate too far from 1, in order to prevent
overfitting due to excessively large or small parameters.
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Figure 3. Overview of the target-aware feature bottleneck module.

Employing the loss functions as shown above, we can formulate the total loss function
LT , which is the final target for optimization, as in

LT({yC, y∗C},{yR, y∗R}, {yD, y∗D}, {yS, y∗S})
= LP({yC, y∗C}, {yR, y∗R}) + λT LQ({yD, y∗D}, {yS, y∗S}) + LR(θ, α),

(16)

where λT is the loss balancing hyperparameter. In the early stage of the training phase, we
use λT = 0 to train the region proposal network first and switch to λT = 1 after an epoch
of training. This stabilizes the training because the quality of the candidate ROI boxes
from the region proposal network are low in the early stage, and this imbalance enforces
a negative bias on the subsequent region classification network. After this burn-in phase,
the total loss function can be optimized by employing the SGD-based optimizer where we
use the Adam optimizer [64] in our experiments.

3.4. Implementation Details

In this section, we describe additional training details on the training and implementa-
tion of our proposed algorithm, where we clarify the training datasets, hyperparameter
selections, and further architectural specifications. For the training datasets, we employ
training splits of the LaSOT [19], GOT-10k [20], ImageNetVID [65], and YoutubeBB [66]
video datasets, where we use a subset of held-out sequences from the LaSOT benchmark
as the validation split. To sample a training image pair of query and search frames, we
randomly choose a video sequence from a large-scale video dataset where an individual
sequence is sampled from a uniform distribution. For a sampled image pair (Iz, Ix) where
all values are normalized to the range [0, 1], random data augmentation of additive Gaus-
sian noise (σ = 0.05), color jittering (σ = 0.025), Gaussian blur (random kernel size of
{3, 5, 7, 9}), and horizontal flip are performed with an individual probability of p = 0.2 for
improved generalization capabilities. After the data augmentation, channel-wise normal-
ization is performed on the input frames using the identical scheme used in ResNet [6],
where the mean µ = [0.485, 0.456, 0.406] and standard deviation σ = [0.229, 0.224, 0.225] are
used as in (I − µ)/σ. To extract feature representation from the input frames, we employ
ResNet-18 [6] for the feature extractor backbone φ(·) because it requires relatively less
computation compared to other trackers with heavier backbones [10,11,18] while achieving
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moderate performance on various downstream tasks. The input frames are resized to
W = 666, H = 400 and are fed to φ(·) while retaining the original aspect ratio where
the longest edge of the input image is matched with the output height/width, and zero
padding is applied to the right or bottom side of the shorter edge. The output feature maps
from φ(·) have dimensions of h = 25, w = 42, c = 512, where their channel dimensions are
reduced to c′ to produce lightweight feature maps.

From the feature maps, a pooled target feature z′ with a spatial dimension of s = 5
is obtained, and the correlated feature map x̂ is processed through the region proposal
network branches f P

C , f P
R , where they both consist of two 3× 3 convolution layers and a

final 1× 1 convolution layer with ReLU nonlinearity and group normalization [62] layers
with the group number G = 16 in between. The channel dimension of the intermediate
representations are kept to c′. With our proposed feature bottleneck module, the number of
channels reduces from c = 512 to c′, where c′ can vary between different settings, and we
test our method using the values c′ ∈ {256, 128, 64}, each corresponding to a computational
reduction rate of 1

2 , 1
4 , 1

8 . We obtain the total of the top-N = 64 candidate ROI boxes by
applying NMS with a threshold of 0.9 and spatially pool the ROI features with a spatial
dimension of s = 5. Afterward, the region classification network branches f Q

D , f Q
S process

the correlated candidate feature representations, where both branches also consist of two
3× 3 convolution layers and a final 1× 1 convolution layer with ReLU nonlinearity and
group normalization layers with a group number G = 16 in between.

Regarding our target-aware feature bottleneck module, it operates on the target con-
text representation z′ which is pooled using a dilated initial target bounding box with
a context hyperparameter of γc = 2 and feature representation with a spatial size of
s′ = 9. The input is processed using network branches hz, hx where they share two con-
volution layers with ReLU and group normalization layers, with a channel compression
rate of 4 when processing the intermediate representations. Afterward, global average
pooling is performed on the shared intermediate representation, and modulation param-
eters α

p
z , β

p
z , α

q
z, β

q
z, α

p
x , β

p
x, α

q
x, β

q
x ∈ RNg are obtained using a single linear projection layer.

We test with different feature group number hyperparameters Ng ∈ {32, 16, 4} to find a
balance between efficiency and performance. At the training stage, because starting from
affine transformation multipliers α·· that are initialized to near 0 can cause instability and
inefficient training, we formulate the prediction of α·· as in

α·· = 1 + α̃··, (17)

where the network branches hz, hx predict α̃·· instead of directly predicting α··. This stabilizes
the training process, achieves faster convergence, and can encourage the target-aware
feature bottleneck module to reuse useful feature representations from the original input
feature map.

To train the overall framework and perform optimization of the total loss function in
Equation (16), we use the Adam [64] optimizer where the size of a single batch is 16 image
pairs for each update. We use a learning rate of 10−4 and it is kept the same throughout the
entire training process, and the L2 weight decay hyperparameter is set to λR = 10−5. Other
loss balancing terms λP, λQ, λT , λα are all set to 1, and we use the focal loss hyperparameter
γ = 2. We set c′ = 128 and Ng = 16 as the default settings for our tracker. We initialize the
feature extractor φ(·) with the weights of ResNet-18 and freeze the residual blocks with the
exception of the last residual module, in which the stride size is changed from 2 to 1 and
the output feature map has a larger spatial resolution. To implement our algorithm, we use
Python 3.6 with PyTorch [67] v1.10.2 installed on an Ubuntu 20.04 environment. We train
and evaluate the run-time measurements of our model on a single NVIDIA RTX 4090 GPU
with 48 GB of video memory with an i9-12900K CPU with 128 GB of memory.

4. Experiments

We present the experimental results in this section, where we test our algorithm
on the large-scale benchmarks of LaSOT [19] and GOT-10k [20], representative of the
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performance evaluations on long-term and short-term videos, respectively. Quantitative
evaluations are conducted where the proposed tracker is compared with other recently
proposed trackers, and we conduct ablation experiments with different settings for feature
bottleneck hyperparameters, with an attribute-wise ablation analysis of the LaSOT test
set. Additionally, we provide qualitative results and a comparison to further visualize the
effectiveness of our proposed method.

4.1. Experimental Settings

For the experiments, we run our tracking algorithm given the testing split of two
benchmark datasets and obtain performance metrics to conduct comparisons with other
trackers. When evaluating a performance metric, we use a fixed hyperparameter setting
throughout all the sequences in the test split. The large-scale LaSOT [19] benchmark
represents a long-term tracking benchmark where it contains mostly long sequences with
an average length of 2512 frames, which is equivalent to 83.7 s under a 30 fps setting. It
contains 1400 sequences with 70 target object categories, where 280 sequences are used for
testing and the remaining sequences are used for training. Along with the bounding box
coordinates, annotations of various challenge attributes such as occlusion, out-of-frame
disappearances, motion blur, background clutter, etc., are provided. To evaluate a tracker,
three performance metrics are used which are the area under the curve (AUC) of the output
success plot, center pixel precision plot, and target-scale normalized pixel precision plot.
Success plots and precision plots are generated by varying the threshold values of the IoU
and center pixel error.

The large-scale GOT-10k [20] benchmark represents a short-term tracking benchmark
where it contains mostly short-term sequences with an average length of 150 frames, which
is equivalent to 15 s under a 10 fps setting as stated in the specifications [20]. It contains
10,000 sequences with 563 target object categories, where 180 representative test sequences
were chosen for online evaluation. Different from previous benchmarks, GOT-10k aims
to evaluate the tracker’s generalization performance under a one-shot protocol where the
training and test splits have no overlap in the target object categories. For the evaluation
metrics, the average overlap (AO) measure for the predicted output and the labeled GT
are measured over the test sequences, and the success ratio (SR) using both IoU threshold
values 0.50 and 0.75 is measured. We evaluate the trackers using the one-pass evaluation
(OPE) setting.

4.2. Quantitative Evaluation

We conduct evaluations for the proposed tracker given the testing splits of the LaSOT
and GOT-10k benchmarks, and Tables 1 and 2 show the comparisons for the respec-
tive benchmarks. We name our algorithm, the target-adaptive feature bottleneck tracker,
as TAFT in the subsequent tables and figures. From the performance metrics in Table 1,
we observe that the proposed algorithm outperforms other ResNet-based trackers, such
as GlobalTrack [29], ATOM [68], SPLT [69], and SiamRPN++ [10], and shows competitive
performance compared to DiMP-50 [70] and Ocean [44]. Because the majority of these
ResNet-based trackers are based on the ResNet-50 backbone, which is a much heavier
network compared to the ResNet-18 backbone used in our tracker, our tracker runs at a
much faster speed of 74 fps, thanks to the lighter backbone network and our proposed
feature bottleneck module. Additional figures with comparisons for the success, precision,
and normalized precision plots with varying overlap and location error threshold values
are also shown in Figure 4.
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Table 1. Quantitative evaluation on the test set of LaSOT.

TAFT GlobalTrack
[29]

DiMP-50
[70]

ATOM
[68]

DASiam
[14]

SiamRPN++
[10]

MDNet
[33]

SPLT
[69]

Ocean
[44]

CFNet
[40]

SiamFC
[9]

AutoMatch
[71]

MCAGSA
[72]

TFN
[73]

AUC 0.555 0.521 0.569 0.518 0.448 0.496 0.397 0.426 0.560 0.275 0.336 0.583 0.572 0.528
Precision 0.576 0.529 - 0.506 0.427 0.491 0.373 0.396 0.566 0.259 0.339 0.599 - 0.527
Norm. Prec. 0.614 0.599 0.650 0.576 - 0.569 0.460 0.494 - 0.312 0.420 - - 0.606

FPS 74 6 43 30 110 35 0.9 25.7 25 43 58 50 40 45

Table 2. Quantitative evaluation on the test set of GOT-10k.

(%) TAFT DiMP-50
[70]

ATOM
[68]

SiamMask
[22]

Ocean
[44]

CFNet
[40]

GOTURN
[42]

SiamFC
[9]

CCOT
[38]

ECO
[74]

CF2
[36]

MDNet
[33]

TFN
[73]

SR0.50 65.2 71.7 63.4 58.7 72.1 40.4 37.5 35.3 32.8 30.9 29.7 30.3 0.683
SR0.75 50.6 49.2 40.2 36.6 - 14.4 12.4 9.8 10.7 11.1 8.8 9.9 0.457
AO 57.5 61.1 55.6 51.4 61.1 37.4 34.7 34.8 32.5 31.6 31.5 29.9 0.582

Figure 4. Success, precision, and normalized precision plots on LaSOT test split.

The results for the test split of GOT-10k are shown in Table 2 where all the quantitative
metrics are obtained by uploading the outputs for the test sequences to the authors’ online
evaluation server (http://got-10k.aitestunion.com (accessed on 8 September 2023)). Our
proposed TAFT also shows competitive performance compared to other trackers on the
task of relatively short-term sequences, even though our baseline tracker GlobalTrack [29]
is a long-term oriented global search-based tracker. Although every other tracker requires
meticulous tuning for the hyperparameters regarding temporal smoothness, motion priors,
and cosine window weighting, our proposed TAFT does not employ any of these motion
priors and thus performs generally well on a wide variety of tracking scenarios. Addition-
ally, because removing the motion prior also removes the dependency between consecutive
frames, our tracker can be executed in a batch-wise fashion where multiple frames can be
processed at once, enabling further acceleration of the tracking speed.

Ablation Study

To provide a further comprehensive analysis of our TAFT algorithm and our target-
aware feature bottleneck module, we perform an ablation analysis of the various challenge
attributes for visual tracking and test our module with multiple combinations of the feature
channels numbers c′ and the number of feature groups Ng. For the ablation study, we use
the success plots acquired from the LaSOT test split and use the AUC measures for the
evaluation and comparison.

Ablations on Challenge Attributes: To measure the robustness of TAFT on diverse
challenge attributes in the tracking task, we visualize and compare the success plots of
sequences with eight chosen attributes for the test split of LaSOT in Figure 5. Each test
sequence is annotated with one or more challenge attributes, and the number of test
sequences annotated with a given challenge attribute is denoted at the top of each plot.
Our proposed TAFT achieves notable performance on the eight attributes, and the largest
performance gains are obtained for the attributes of rotation, deformation, motion blur,
and aspect ratio change. Owing to the target-specific information obtained from the initial

http://got-10k.aitestunion.com
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frame, our proposed bottleneck module can fully utilize the target-context information
and can learn to modulate the relevant channels that can be useful for localizing the target
object under these attributes. Additionally, because the baseline tracker GlobalTrack is
a motion prior-free global search-based tracking algorithm, it shows weaknesses under
the attribute of background clutter when compared to SiamRPN++ and ATOM, where
GlobalTrack is more likely to mislabel a similar distractor object in the background as a
false positive. Although our tracker TAFT has the same global search-based framework, it
achieves higher performance while running at a faster, real-time tracking speed.

Figure 5. Success plots evaluated under 8 attributes of LaSOT test split. Best viewed zoomed in.

Ablations on the Target-Aware Feature Bottleneck Module: To accurately quantify
the effectiveness of the proposed module, we conduct a further ablation analysis for the
proposed module and report the AUC metrics of the success plots obtained from the test
split of the LaSOT dataset. First, we test our module with six different hyperparameter
combinations of the output feature channel numbers c′ and feature group numbers Ng
where we show the results in Table 3. We denote the reduction in the computational load
of the prediction head as c′/c, because the computational load is linearly proportional
to the number of channels. Setting (1) in the first row is identical to the tracker used to
report the performances in Tables 1 and 2. If we reduce the number of feature groups
Ng to eight in setting (2), we observe a performance decrease of −0.006. For settings (3)
and (4), we use c′ = 128 with a varying number of Ng and observe a similar trend where
the performance decreases by −0.008 when Ng is reduced. The same tendency can be
observed in settings (5) and (6) where the channel number is further reduced to c′ = 64,
and reducing Ng causes a significant decrease in performance by −0.024. From the results
in settings (1)–(6), we can speculate that our target-aware feature modulation scheme plays
a significant role in improving the target discriminability when tracking, and decreasing the
feature group Ng hampers the ability of fine-grained feature modulation of the bottleneck
module. Additionally, to quantify the contribution of our proposed bottleneck module,
we remove our module entirely in setting (7), where removing the module results in a
performance decrease of −0.023, validating the effectiveness of our proposed framework
for visual tracking.
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Table 3. Ablation analysis of the target-aware feature bottleneck module.

Setting c′ Ng c′/c AUC

(1) 256 16 1/2 0.555
(2) 256 8 1/2 0.549
(3) 128 16 1/4 0.546
(4) 128 4 1/4 0.538
(5) 64 32 1/8 0.543
(6) 64 4 1/8 0.519
(7) 256 - 1/2 0.532

4.3. Qualitative Evaluations and Analysis

In this section, we provide further visualizations of the qualitative results produced
by TAFT, on the test split of LaSOT. We show the bounding box output comparisons with
other tracking algorithms in Figure 6, where we show the output of our tracker with ATOM,
GlobalTrack, SPLT, SiamRPN++, and VITAL. The results from five example videos, zebra-17,
squirrel-13, horse-15, bottle-14, and crab-3, are shown in each row, where the output bounding
boxes for each tracker can be distinguished by its respective color shown in the bottom
of the figure. While other tracking algorithms suffer from the drift issue arising from the
challenges of distractor objects of a similar appearance and category as in zebra-17 and
bottle-14, occlusion from other objects as in squirrel-13 and crab-3, and the deformation of
the target as in horse-15, our proposed TAFT can successfully track the target object under
these challenging circumstances.

Furthermore, we present additional visualizations for the target-adaptive feature
modulation parameters in Figure 7, where group-wise multiplier values α

q
z and α

q
x, which

are applied to the feature groups as in Equation (9), are shown on ten example frame image
pairs (Iz, Ix) under the network hyperparameter setting (1) in Table 3. We observe that
multiplier values can change adaptively given the target and its surroundings, and our
target-aware feature bottleneck module is trained to utilize different feature groups in the
lightweight search feature map Fx

′ and the query feature map Fz
′. Output multiplier values

vary greatly between channel groups, based on the factor of the query or search patch,
target object class, target object appearance, and distractor objects in the background.

Based on the aforementioned quantitative and qualitative experimental results, we
discuss the weaknesses of our proposed method and possible future directions for im-
provements. Although we observed that our proposed bottleneck module shows strengths
in the attributes of various challenging conditions in the large-scale long-term tracking
benchmark LaSOT, our tracking framework is less competitive on the short-term bench-
mark of GOT-10k. This is due to the global search characteristic of our tracking framework,
where the tracker looks for the target outside the vicinity of the previous bounding box.
Although a global search strategy removes the possibility of long drifts caused by the
restricted search area, it can cause more brief localization errors. Possible future directions
can include hybrid search strategies where both global and local searches are employed for
inferring smoother trajectories and an adaptive search area size based on the confidence of
the baseline tracker.
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Figure 6. Qualitative evaluation of the test split of LaSOT. Tracker outputs for videos zebra-17,
squirrel-13, horse-15, bottle-14, and crab-3. Best viewed zoomed in.
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Figure 7. Visualization of target-adaptive feature modulation on LaSOT test set. For the group-wise
multiplier value plots of α

q
z and α

q
x, x-axis indicates the channel dimension and y-axis indicates the

multiplier values.

5. Conclusions

In this paper, we proposed a novel visual tracking framework which involves the target-
aware feature bottleneck module, where our proposed module can elicit target-specific infor-
mation to perform group-wise feature modulation in an efficient manner. The lightweight
feature maps produced by our proposed module can be fed to the lightweight prediction
heads for faster real-time visual tracking, where the evaluation of the performance of the
proposed tracker is performed on recent visual tracking datasets LaSOT and GOT-10k, which
are large-scale benchmarks. The proposed tracking algorithm shows high performance mea-
sures on these two benchmark datasets where it can operate at a real-time speed. The ablation
experiments also show that our method can improve the performance under various chal-
lenging circumstances of visual tracking, and our proposed target-aware, group-wise feature
modulation scheme is a crucial factor for the performance improvements.
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