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Abstract: Color distortion, low contrast, and blurry details are the main features of underwater
images, which can have adverse effects on their quality. To address these issues, a novel enhancement
method based on color correction and multiscale fusion is proposed to improve underwater image
quality, achieving color correction, contrast enhancement, and detail sharpening at different stages.
The method consists of three main steps: color correction using a simple and effective histogram
equalization-based method to correct color distortion, decomposition of the V channel of the color-
corrected image into low- and high-frequency components using a guided filter, enhancement of the
low-frequency component using a dual-interval histogram based on a benign separation threshold
strategy, and a complementary pair of gamma functions; the fusion of the two versions of the
low-frequency component to enhance image contrast; and finally, the design of an enhancement
function to highlight image details. Comparative analysis with existing methods demonstrates
that the proposed method achieves high-quality underwater images and favorable qualitative and
quantitative evaluations. Compared to the method with the highest score, the average UIQM score of
our method exceeds 6%, and the average UCIQE score exceeds 2%.

Keywords: color correction; contrast enhancement; underwater image enhancement

1. Introduction

The underwater image is a crucial means of understanding the underwater world, and
it plays an essential role in underwater exploration, subaquatic (underwater) operations,
and underwater target recognition. However, due to the selective absorption of light
by water, underwater images lose their original color and exhibit a blue (green) hue,
which reduces the clarity of the image [1]. Moreover, due to the complex scattering of the
subaquatic medium, the image has a foggy effect that significantly reduces the clarity of
the scene [2].

In order to tackle these challenges, scholars have devised a range of algorithms
aimed at restoring and enhancing underwater images with the goal of improving their
overall quality.

Image-restoration algorithms are built upon the foundations of underwater imaging
models and can effectively handle degraded images. However, the effectiveness of these
methods heavily depends on parameter estimation, and some methods require special-
ized underwater equipment, which increases costs. In recent years, some scholars have
combined deep learning with underwater images, but this relies on synthesized underwa-
ter degraded image pairs and corresponding high-quality land images, often involving
complex network architectures [3,4].

In contrast, underwater image-enhancement algorithms require less underwater-
specific prior knowledge and aim to improve pixel quality by adjusting pixel intensities.
Enhanced images exhibit higher contrast and richer detail, resulting in better visual effects.
Common enhancement algorithms are predominantly based on spatial-domain- or fusion-
based approaches.
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Spatial-domain-based underwater image-enhancement algorithms effectively enhance
image contrast. However, they may introduce red color casts and noise since color correc-
tion and noise handling are not explicitly considered. Fusion-based methods can improve
image quality by reducing noise and enhancing details. However, these methods require the
acquisition of multiple fusion images and the design of suitable fusion weights; otherwise,
they may not yield positive results [3].

To address these issues, this paper introduces an innovative and reliable underwater
image-enhancement algorithm. First, an approach for color correction utilizing histogram
equalization is used to correct color distortions. Then, guided filtering is applied to decom-
pose the V channel of the color-corrected image into low-frequency and high-frequency
components. The low-frequency component is enhanced using a dual-interval histogram
based on the benign separation threshold and a pair of complementary gamma functions.
The two enhanced outputs of the low-frequency component are fused to enhance image con-
trast, and an enhancement function is designed to highlight image details. We summarize
the innovation points of this article as follows:

• Color compensation is performed by combining the local and mean differences be-
tween the attenuation and non-attenuation channels of underwater degraded images.
Based on this, a histogram correction technique based on histogram equalization is
used to further correct the color of underwater images.

• Generate low-frequency components with different contrasts using dual-interval
histograms and fuse the two versions of low-frequency components to enhance image
contrast. Propose a function to highlight the high-frequency components of the
V channel.

2. Related Works

In this section, we present a comprehensive review of relevant research, focusing on
three main aspects: techniques for restoring underwater images, approaches for enhancing
underwater images, and methodologies based on deep learning.

Underwater image-restoration technology estimates underwater imaging model pa-
rameters to obtain images before degradation. Underwater optical imaging-based [5–7]
and polarization characteristics-based methods [8,9] consider the complexity of the un-
derwater environment by constructing a specialized underwater imaging system, which
yields results close to the ground truth. However, the limitations of these methods must
also be considered—underwater optical imaging systems are sophisticated and costly as
they require sophisticated hardware and capture equipment to obtain murky underwater
images. He et al. [10] proposed the dark channel prior (DCP) for outdoor image dehazing.
This is also applicable to underwater image processing since the degradation of images
in foggy and underwater environments is caused by the irregular propagation of light
in the medium, which share some similarities. Methods based on DCP have also been
widely applied in underwater image processing. Galdran et al. [11] applied the idea of
DCP to the red channel to improve the visibility of underwater images. Li et al. [12] utilized
the histogram characteristics of images to process underwater images. Drews et al. [13]
considered the degradation mode of underwater images and proposed a variant of DCP
(UDCP). However, the method is not effective in the presence of white objects or artificial
light. Peng et al. [14] used image ambiguity and underwater light attenuation to propose an
underwater image-restoration method. Zhou et al. [15] used a color-line model to restore
underwater images. However, since these recovery-based methods depend on subaquatic
prior knowledge and specific model parameters, they may not be effective in certain water
conditions. Liu [16] proposed a universal single-image-restoration algorithm by extending
the dark channel prior (GDCP) to achieve restoration for different types of images; the
method also demonstrated good performance in processing underwater images.

The enhancement algorithm enhances an image’s quality by adjusting its pixels’ in-
tensity. Iqbal et al. [17] proposed an adaptive color-correction method for underwater
images, where clustering algorithms are used to obtain the illuminant chromaticity of
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the image and then a linear color transformation is applied to correct the color distortion.
Ancuti et al. [18] fused two versions of images to enhance underwater images and videos.
Fu et al. [19] proposed a Retinex-based method for correcting color and enhancing the
contrast in underwater images using different approaches to enhance the two components
of underwater images. They also proposed a two-step enhancement method [20] for sin-
gle underwater images, using DCP to remove the color cast and then using histogram
equalization and the Retinex algorithm to enhance the image details. Zhang et al. [21]
utilized dual-interval histograms to improve the quality of underwater images based
on color correction. Zhang et al. [22] proposed the minimum color loss theory, which
combines underwater image attenuation maps to adjust the color and contrast of the im-
age. Zhang et al. [23] designed a matrix for color correction and then used histogram
technology to enhance the contrast of underwater images. These enhancement-based
methods are generally more stable and effective at improving the contrast and clarity of
underwater images.

Deep learning-based [24] underwater image-restoration and -enhancement methods
have made significant progress in recent years, providing new possibilities for solving
image quality problems in underwater environments. The method based on generative
adversarial networks (GAN) performs well. By engaging generators and discriminators to
learn from each other, these methods can generate clearer and more realistic underwater
images, Yang et al. [25] improved the generation of adversarial networks by generating
high-quality images through multiscale generators; Sun et al. [26] achieved underwater
image enhancement in multiple scenarios by generating adversarial networks (UMGAN),
which achieved unpaired image to image conversion between underwater turbid domains
and underwater clear domains. Deep learning methods can improve image quality by
learning the characteristics of underwater environments, thereby removing fog and dis-
persion from images. Li et al. [27] added underwater scenes before convolutional neural
networks and constructed a synthetic underwater image dataset; Fu et al. [28] constructed
a dual-branch network to address the issues of global distortion and contrast reduction in
underwater images. The method based on deep learning relies on the synthesis of degraded
underwater images and corresponding high-quality land images, so researchers focus on
unsupervised learning and use the information from the images themselves for training,
avoiding the need for a large number of datasets. Saleh et al. [29] achieved unsupervised un-
derwater image enhancement by introducing adaptive uncertainty distributions into deep
learning models.

3. Method of This Article

This article proposes a hybrid strategy to improve the quality of underwater im-
ages. This strategy consists of three main steps: removing color distortion; extracting
the V-channel of the color-correction image and decomposing it into high-frequency and
low-frequency components, enhancing the contrast of low-frequency components; and
sharpening the details of high-frequency components (Figure 1).

3.1. Color Correction

Light travels differently underwater, resulting in a green (or blue) tint in underwater
images due to the attenuation of blue and red light being more severe than green light.
However, if the unique characteristics of color degradation in underwater scenes are not
considered, this may cause additional color distortion, such as the introduction of red
artifacts. To tackle this issue, our method uses an adaptive local compensation strategy
to remove color distortion in underwater images, providing significant compensation for
pixels with severe attenuation and limited compensation for others. The mathematical
definition of this method is presented below.

Irc(x, y) = Ir(x, y) +
(

Ig(x, y)− Ir(x, y)
)
×
(

Ig − Ir
)

(1)
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Ibc(x, y) = Ib(x, y) +
(

Ig(x, y)− Ib(x, y)
)
×
(

Ig − Ib
)

(2)

where Ir(x, y) represents the pixel value of the red channel at the pixel location (x, y),
Ig(x, y) represents the pixel value of the green channel at the pixel location (x, y), Ib(x, y)
represents the pixel value of the blue channel at the pixel location (x, y), Irc(x, y) represents
the pixel value of the red channel at the pixel location (x, y) after compensation, Ibc(x, y)
represents the pixel value of the blue channel at the pixel location (x, y) after compensation,
Ig represents the average value of the entire green channel, and Ir represents the average
value of all the red channel.
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(Ig − Ir) is crucial in describing the local attenuation of the red channel in comparison
to the green channel, and pixels with significant attenuation of the red channel receive
more compensation accordingly. The same principle applies to the blue channel.

After compensation processing, the grayscale value distribution of each color channel
of the degraded underwater image remains uneven, and it is necessary to adjust the pixel
value range of the image to enhance the visual effect and readability of the image. The linear
stretching method can make the pixel value range more uniform, thereby making some
detailed information that was originally compressed into a smaller pixel value range more
visible. However, in some cases, linear stretching may also make the detailed information
that was originally in the low pixel value range become blurrier or lost.

This paper proposes using the image histogram to subsequently correct the gray
value distribution of each color channel in the underwater degraded image, even after the
color compensation. The following section describes the process using the red channel
as an example, with the same operation performed for the blue and green channels. The
histogram of the red channel is defined as follows:

H(i) = ni i ∈ [0, 255] (3)
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ni is the count of pixels in the compensated red channel with a pixel value of i.

HC(i) =
{

th i f H(i) > th
H(i) else

(4)

In Equation (4), HC(i) represents the histogram after clipping, while th is the clipping
threshold set in this paper, which can be mathematically expressed as follows:

th = mean(H(i)) + std(H(i)) (5)

In Equation (5), the term mean(H(i)) is the mean value of H(i), while std(H(i)) is the
standard deviation of H(i). The next step is to assign the number of pixels in the clipped
histogram. The mathematical definition is outlined below:

HF(i) = HC(i) + (
255

∑
i=0

val(i))/255 (6)

val(i) =
{

H(i)− th i f H(i) > th
0 else

(7)

After obtaining the redistributed histogram, its probability density function is ex-
pressed in Equation (8). For an image histogram, the probability density function (PDF)
is obtained by dividing the frequency or probability of each pixel value by the length
of the pixel value range, resulting in a probability density value corresponding to each
pixel value.

PDF(i) = HF(i)/sum (8)

The sum in this case refers to the total count of pixels in the red channel. Equation (9)
is then used to calculate the cumulative distribution function (CDF) of the histogram. The
CDF function is used to calculate the histogram equalization transformation function, so as
to achieve the image gray-value equalization processing.

CDF(i) =
255

∑
i=0

PDF(i) (9)

Finally, a color-corrected image is generated using Equation (10).

f = 255× CDF(i) (10)

3.2. Contrast Enhancement

Guided filtering [30] is an image filtering technique used to smooth images while
preserving details and edge information. Compared to traditional filtering methods,
the guided filtering has better noise reduction and image smoothing capabilities while
preserving edges.

The principle of guided filtering is based on the following idea: it uses a guiding image,
called the guidance image, to guide the filtering operation. The guidance image is typically
an auxiliary image that is correlated with the input image, such as the grayscale image,
gradient image, or other feature image derived from the original image. The guidance
image provides guidance information about the image structure and features, allowing the
filter to have a better understanding of the image content and edge information.

HSV (Hue, Saturation, Value) is a commonly used color space that is more consistent
with human perception when describing colors. The HSV color space decomposes colors
into three components: hue, saturation, and value. Hue represents the basic attributes of a
color, which is the name of the color we perceive, such as red, green, blue, etc. Saturation
represents the purity or depth of a color. Colors with higher saturation have a bright
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appearance, while colors with lower saturation exhibit a darker or lighter effect. Value
represents the brightness of a color.

The HSV color space is used in image processing, where the V channel represents
the image’s brightness. This paper enhances the contrast of the image in the V channel by
decomposing it into low- and high-frequency components using guided filtering. The low
frequency preserves the main changes in illumination, while the high frequency contains
the image details.

V = Vs + Vt (11)

In Equation (11), V represents the brightness channel of the image, and Vs and Vt
represent the low frequency and high frequency of the brightness channel, respectively.

Foreground and background regions in underwater images exhibit distinct characteris-
tics and require different contrast-enhancement techniques. In our approach, we first use a
benign separation threshold strategy to segment the underwater image into foreground and
background sub-images. Subsequently, we perform contrast enhancement on these pairs of
sub-images and utilize the Laplacian Pyramid Gaussian Pyramid to fuse the two versions
of contrast-enhanced images. This effectively achieves a smooth transition between the
enhanced images and eliminates discontinuities between them.

Through these steps, the visibility of underwater images is significantly improved
while preserving the details and textures of the foreground and background areas.

3.2.1. Local Contrast Enhancement of Sub-Images

Most underwater images exhibit a bright foreground and dark background due to
the characteristics of the underwater imaging system. Specifically, areas closer to the light
source are brighter than areas farther away from the light source [31]. This paper uses
Equation (12) to separate the threshold.

h = p1(u1 − u)− p2(u2 − u) (12)

In Equation (12), p1 and p2 represent the probabilities of foreground and background
pixels of the structural layer Vs, while u1 and u2 are the foreground and background
pixels’ average values, respectively. The u represents the average value of pixels in Vs.
The objective is to obtain the best threshold where the difference between the foreground
and background is maximized. The larger the between-class variance h, the higher the
difference between the two parts of the image.

We select T as the initial threshold to divide the image into two categories and then use
Equation (12) as the fitness function to update h. When h is at its maximum, it means that T
has been updated to the optimal threshold. Consequently, the input image can be divided
into a background sub-image VD

s and a foreground sub-image VU
s , as shown below:

VD
s = {Vs(x, y)|Vs(x, y) ≤ T, ∀Vs(x, y) ∈ Vs} (13)

VU
s = {Vs(x, y)|Vs(x, y) > T, ∀Vs(x, y) ∈ Vs} (14)

where Vs(x, y) represents the pixel value of the red channel at the pixel location (x, y). The
probability of sub-images VD

s and VU
s appearing in the sub-histogram of low and high

intervals is defined as PD(VD
s ) and PD(VU

s ), respectively, and can be expressed as follows:

PD(VD
s ) = H(VD

s )/ND (15)

PD(VU
s ) = H(VU

s )/NU (16)

The frequency of grayscale occurrences in H(VD
s ) and H(VU

s ) are denoted as VD
s

and VU
s , respectively, where ND and NU are the total number of pixels in the background
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and foreground sub-images, respectively. The CDFs of the background and foreground
sub-images are defined as CD

(
VD

s
)

and CD
(
VU

s
)
, respectively, and are expressed as follows:

CD(VD
s ) =

T

∑
VD

s =0

PD(VD
s ) (17)

CD(VU
s ) =

255

∑
VU

s =T+1

PD(VU
s ) (18)

Finally, to solve the low contrast of the image, the background sub-image and fore-
ground sub-image are equalized using Equation (19), where V1 refers to the structural layer
Vs after local contrast enhancement.

V1 =

{
T × CD(VD

s ) VD
s ∈ [0, T]

(T + 1) + [255− (T + 1)]× CU(VU
s ) VU

s ∈ [T + 1, 255]
(19)

3.2.2. Global Contrast Enhancement of Sub-Images

One researcher [32] proposed a complementary relationship between the two functions
in Equation (20) for enhancing low-light image contrast. The function curves are illustrated
in Figure 2, indicating that function y2 provides a more pronounced enhancement of pixels
than function y1. {

y1 = 1− (1− x)γ γ < 1

y2 = (1− (1− x)1/γ)
γ

γ < 1
(20)
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Therefore, we have designed a new global contrast-enhancement method for under-
water images in Equation (21).

V2(x, y) =

{
1− (1−Vs(x, y))γ Vs(x, y) > T

(1− (1−Vs(x, y))1/γ)
γ

else
(21)

In Equation (21), Vs(x, y) is the pixel value of Vs at (x, y), and V2(x, y) is the pixel value
at (x, y) in the image after contrast enhancement. This section uses the threshold obtained
in local contrast enhancement to divide the input image for processing.

However, in this section, each pixel of the sub-image shares the same contrast-
enhancement function, resulting in the global brightness improvement of the image.
Figure 3 shows the image-enhancement effect of this section and section A. To visually
display the impact, Figure 3a,b show the image converted from the space of the HSV to the
RGB space.
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3.3. Fusion

Multiscale fusion algorithms are commonly used in the fields of image processing
and computer vision. They can fuse meaningful information from different scales together,
enhance the features of input images, and thus improve the accuracy and efficiency of
image processing and computer vision tasks. Multiscale fusion has shown excellent per-
formance in applications such as remote-sensing image processing [33], defogging and
rain removal [34], and high-resolution imaging. In this article, we generate a stable fusion
framework that can increase image visibility and emphasize image details. Our framework
is built on images with different contrasts generated from a single original image.

After the above processing, we obtained two enhanced image versions: V1 and V2.
Because light exposure significantly affects image quality, we fused image regions with
good brightness through exposure weight maps.

wi(x, y) = exp

{
− (Vi(x, y)− 0.5)2

2× 0.252

}
(22)

The formula for calculating the normalized weight map for fusion is as follows:

wi(x, y) =
wi(x, y)

∑i wi(x, y)
(23)

where Vi(x, y) represents the ith input image at (x, y). We use the pyramid fusion method.
The resulting enhanced image is obtained as:

Ves(x, y) = ∑
l

(
2

∑
i=1

Gl(wi(x, y))Ll(Vi(x, y))

)
(24)

where l represents the number of layers of the pyramid, G(·) represents Gaussian operators,
and L(·) represents Laplacian operators, respectively.

3.4. Detail Enhancement

The proposed method in this paper presents a simple approach for enhancing the
details in underwater images. The texture details are adaptively amplified, and the blurred
details are significantly improved using an enhancement coefficient K. Through extensive
experiments and considering the influence of parameters on visibility and the human visual
system, λ and σ in Equation (25) are set to be 8 and 1.

K = 1 + λ exp
(
−|Vt(x, y)|

δ

)
(25)

Vt(x, y) represents the pixel value of Vt at the pixel location (x, y), while Vet(x, y)
represents the pixel value of the texture layer at the pixel location (x, y) after enhancement.
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ε is the parameter used to avoid the dense noise of enlarging the underwater image. In our
experiment, ε is 0.005. Equation (26) is used to enhance the details.

Vet(x, y) =

{
0 i f |Vt(x, y)| < ε

K×Vt(x, y) else
(26)

Finally, the enhanced input of the V channel is as follows:

Vf inal = Ves + Vet (27)

The final step involves converting the enhanced V channel image and the H, S chan-
nel image from the HSV color space to the RGB color space to obtain the improved
underwater image.

4. Results

In this section, we perform qualitative and quantitative evaluations to assess the
effectiveness of the proposed algorithm. We compare our algorithm with several exist-
ing advanced underwater image-enhancement methods, namely ARC [11], Fusion [18],
GDCP [16], IBLA [14], TS [20], UDCP [13], MLLE [22], and ACCDO [23]. We used a
UIEB [35,36] dataset with 950 real-world underwater images for evaluation, of which
890 images had corresponding reference images, referred to as UIEBR, and the remaining
60 underwater images were referred to as UIEBC. Table 1 shows the methods we compared.

Table 1. These methods are replaced with abbreviations later in this article.

Method Abbreviation

Automatic red-channel underwater image restoration [11] ARC

Underwater depth estimation and image restoration based on single images [13] UDCP

Underwater image restoration based on image blurriness
and light absorption [14] IBLA

Generalization of the dark channel prior for single image restoration [16] GDCP

Color balance and fusion for underwater image enhancement [18] Fusion

Two-step approach for single underwater image enhancement [20] TS

Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement [22] MLLE

Underwater Image Enhancement by Attenuated Color Channel Correction and Detail Preserved Contrast
Enhancement [23] ACCDO

4.1. Qualitative Evaluation

For the qualitative evaluation, we initially chose two types of underwater images from
UIEBR: blue and green. Due to space limitations, we presented only a selection of images.
The enhanced images produced by various algorithms are shown in Figures 4 and 5.

For the blue image presented in Figure 4, the GDCP, IBLA, and UDCP algorithms
significantly improved the saturation, visual effect, and visibility, but their color-correction
performance was unsatisfactory. The local features of the image processed by TS are
prominent. However, it does not effectively address the color deviation, such as in the
processing images of B2. The processing results of this fusion method are closest to the
reference image. ARC employed effective color-correction methods, but the enhancement
of darker areas of the underwater image was not prominent.
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For the green image shown in Figure 5, the effect of UDCP cannot meet the require-
ments well. IBLA has achieved excellent visibility and color correction. However, the
treatment of G1 and G2 is unsatisfactory. Among the compared algorithms, ARC, Fusion,
and TS exhibit better performance concerning improving visibility and correcting color
for the green images. However, their contrast-enhancement effect is somewhat limited,
especially in the case of G2 images. The GDCP significantly enhances underwater image
contrast, although the color correction is nonideal. The enhanced images obtained by our
method have good results in terms of color, contrast, and details.

4.2. Quantitative Evaluation

In the quantitative evaluation, we selected three full-reference indicators to assess the
quality of the underwater image shown in the figure: edge intensity (AG) [3], information
entropy (IE) [3], and patch-based contrast quality index (PCQI) [35]. Furthermore, we em-
ployed two non-reference indicators, namely the underwater image quality measurement
(UIQM) [37] and the underwater color image quality-evaluation index (UCIQE) [38], to
evaluate the quality of the underwater images.

AG is mainly used to represent the clarity of images, while IE is used to describe
the average information content of underwater images. PCQI is used to evaluate the
local contrast of underwater images. The UIQM is a comprehensive evaluation indicator
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that includes color, clarity, and contrast. The UCIQE is a linear combination of color
concentration, saturation, and contrast. We strive to comprehensively evaluate the existing
methods and the methods presented in this article through these indicators.

To further demonstrate the effectiveness of our algorithm, we evaluated the entire UIEB
dataset, including UIEBR and UIEBC. Tables 2 and 3 present the performance indicators of
this method and other methods. Our algorithm achieves the highest scores in IE, the UIQM,
and the UCIQE on UIEBR and UIEBC, while its AG and PCQI scores are lower than those
of the MLLE algorithm. Nonetheless, our algorithm still demonstrates competitiveness,
and compared to mainstream methods, the MLLE algorithm performs better in handling
the details and local contrast of degraded images, which is an area for improvement in our
future work.

Table 2. Comparison of indicators for different methods in UIEBR. The red value represents the best,
while the blue value represents the second best.

UIEBR ARC Fusion GDCP IBLA TS UDCP MLLE ACCDO OUR

AG 4.835 6.319 7.221 5.989 7.194 5.207 12.913 9.522 12.663
IE 7.187 7.413 7.316 7.267 7.253 6.557 7.580 7.662 7.727

PCQI 1.013 1.066 1.045 1.074 1.148 0.814 1.221 1.191 1.044
UIQM 3.214 3.516 2.568 2.560 3.245 2.405 2.607 3.520 3.745
UCIQE 0.563 0.588 0.610 0.604 0.601 0.584 0.605 0.555 0.620

Table 3. Comparison of indicators for different methods in UIEBC. The red value represents the best,
while the blue value represents the second best.

UIEBC ARC Fusion GDCP IBLA TS UDCP MLLE ACCDO OUR

AG 3.139 4.512 4.848 4.302 5.070 3.055 7.734 6.512 6.347
IE 7.057 7.253 7.122 6.998 7.215 5.638 7.312 7.519 7.624

PCQI 0.992 0.998 0.954 1.011 1.052 0.801 1.086 1.071 0.914
UIQM 2.149 2.175 1.882 1.841 2.386 1.621 1.648 1.952 2.214
UCIQE 0.536 0.572 0.565 0.591 0.574 0.520 0.579 0.549 0.596

4.3. Running Time

The runtime is an important criterion for determining whether an algorithm can
process in real time. We have chosen underwater images with different resolutions to
detect the runtime of different algorithms. All the algorithms mentioned in the article are
executed on the same PC and MATLAB (2018b). The computer is configured with Intel i7
118000H, 2.3 GHz, and 16 GB of running memory. The running time of different algorithms
is shown in Table 4. With the improvement of image resolution, UDCP and IBLA require a
longer processing time. The TS, GDCP, and MLLE algorithms have excellent performance
in terms of runtime, and the algorithm proposed in this article has good competitiveness.

Table 4. Comparison of runtime for different methods. The red value represents the best, while the
blue value represents the second best.

Resolution ARC Fusion GDCP IBLA TS UDCP MLLE ACCDO OUR

500 × 375 1.027 1.499 0.276 11.169 0.128 6.664 0.159 0.488 0.121
640 × 480 1.678 2.476 0.285 21.696 0.178 12.630 0.226 0.811 0.175
850 × 564 2.645 3.833 0.373 35.711 0.254 18.946 0.362 1.251 0.297

1280 × 720 5.060 7.576 0.551 62.228 0.474 40.256 0.823 2.195 0.558
Ave 2.603 3.846 0.396 32.701 0.259 19.624 0.393 1.186 0.288

4.4. Detail Analysis

The information hidden in the details of an image is often critical, and bright image
details are vital for practical applications such as underwater target detection [39] and
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tracking. Therefore, an excellent underwater image-enhancement algorithm should correct
the color, improve contrast, and enhance image details. Figure 6 shows the enhanced images
and the details produced by different algorithms. The MLLE and ACCDO algorithms have
achieved satisfactory results. ARC, Fusion, and TS algorithms enhance image details to a
certain extent. The pattern of the small fish in Figure 6 is clearer than in the original image,
but the contrast is somewhat lacking; GDCP and IBLA have improved contrast, but there
is no enhancement of details. The algorithm in this article takes into account both details
and contrast.
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4.5. Application Test

We conducted experiments on two visual tasks—low-light image enhancement and
local feature-point matching—to demonstrate the positive role of our method in vision.

The visibility and contrast of the image are often reduced in low-light environments,
making it difficult to extract valuable information or make further use of the image [40].
Here, we apply our method to images captured in low-light environments, as shown in
Figure 7. Our approach significantly improves visibility and contrast in low-light images.
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Figure 7. The upper column is the original image, and the lower column is the image processed by
our method.

To demonstrate that the images processed in this article can be applied to visual
matching tasks, we used the local feature-point matching algorithm (SIFT) to establish
the corresponding relationship between two similar scenes. We apply this algorithm to a
pair of real underwater images and their improved matching results. Figure 8 shows the
local feature-point matching results. In Figure 8a,b, the correctly matched feature points
in the original image pair are 4 and 87, respectively. Figure 8c,d show the number of
feature points matched in the image pairs processed by our proposed algorithm, which
are 26 and 140, respectively. This indicates that our method has played a positive role in
image preprocessing.
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Figure 8. Local feature points match by using the SIFT [41]. (a,b) are the feature-point matching
results of the original image, (c,d) are the feature-point matching results of the enhanced image using
this method.

5. Conclusions

We propose a method for enhancing underwater images using color correction and
multiscale fusion. The test results on mainstream underwater image datasets show that the
enhanced images obtained by this method have high quality.

Although our method has some superior performance, it also has some limitations.
On the one hand, our method has a less significant enhancement effect on delicate image
textures, which may be due to the neglect of detail processing in the fusion framework. On
the other hand, simple threshold filtering has been chosen for underwater noise, which
may fail when facing complex underwater scenes and also eliminates small image details.
Therefore, we will consider researching and addressing these issues in our future work,
attempting to find a more excellent fusion strategy that takes into account the improvement
of contrast and detail. The denoising of underwater images is also a direction worth
focusing on.
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