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Abstract: Mechanical defects and partial discharge (PD) defects can appear in the indoor switchgear
of substations or distribution stations, making the switchgear a safety hazard. However, traditional
acoustic methods detect and identify these two types of defects separately, ignoring the general
recognition of audio signals. In addition, the process of using testing equipment is complex and costly,
which is not conducive to timely testing and widespread application. To assist technicians in making
a quick preliminary diagnosis of defect types for switchgear, improve the efficiency of the subsequent
overhaul, and reduce the cost of detection, this paper proposes a general audio recognition method
for identifying defects in switchgear using a smartphone. Using this method, we can analyze and
identify audio and video files recorded with smartphones and synchronously distinguish background
noise, mechanical vibration, and PD audio signals, which have good applicability within a certain
range. When testing the feasibility of using smartphones to identify three types of audio signal,
through characterizing 12 sets of live audio and video files provided by technicians, it was found that
there were similarities and differences in these characteristics, such as the autocorrelation, density,
and steepness of the waveforms in the time domain, and the band energy and harmonic components
of the frequency spectrum, and new combinations of features were proposed as applicable. To
compare the recognition performance for features in the time domain, frequency band energy, Mel-
frequency cepstral coefficient (MFCC), and this method, feature vectors were input into a support
vector machine (SVM) for a recognition test, and the recognition results showed that the the present
method had the highest recognition accuracy. Finally, a set of mechanical defects and PD defects were
set up for a switchgear, for practical verification, which proved that this method was general and
effective.

Keywords: switchgear; PD; mechanical vibration; anomaly detection; audio signal processing; SVM;
pattern recognition

1. Introduction

Switchgear play an important role in power systems as widely used electrical equip-
ment for circuit isolation and protection against overloads and system faults [1]. During
long-term operation, various defects in a switchgear inevitably occur. Studies have shown
that the defects of a switchgear mainly include insulation defects, mechanical defects,
and overheating defects [2]. Insulation defects are usually accompanied by PD, including
corona discharge, suspension discharge, and internal discharge [3]. Mechanical defects
include conductor contact loosening, shield loosening, and bolt loosening [4]. Either type
of defect can lead to power system failures and cause serious economic losses. Therefore,
the timely detection of possible defects and hidden dangers in the operation of a switchgear
can ensure the reliability and safety of power system operation [5].

For the detection of a single defect type, PD can be detected via acoustic [3,6] and
electrical methods [7,8], while mechanical defects are mainly detected via vibration [1,4]
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and acoustic methods [9,10]. However, when an abnormality occurs in power equipment,
selecting which defect detection method to use first is a problem. Although it is feasible
to identify defect types on a case-by-case basis, the complexity of the process and the
installation of specialized inspection equipment is not conducive to the initial identification
of defects. To enhance detection efficiency, the literature [11,12] uses composite sensors
for the simultaneous detection of PD and mechanical defects, but the preparations cost for
this type of sensor are high, and there have been few applications in practical situations.
All these methods have advantages and disadvantages for detecting switchgear defects,
considering their complexity and cost of use, and acoustic detection has the advantages
of inexpensive sensors, anti-electromagnetic interference, easy detection, and monitoring
the operation of equipment online [13]. If PD and mechanical defects can be detected
and identified using an acoustic method synchronously, this would be more economical,
convenient, and applicable compared to other methods.

Currently, the use of acoustics to detect and identify mechanical defects or PDs in
electrical equipment is being researched, and good progress has been made. In [9], fully
integrated empirical mode decomposition was applied to the audio signals of induction mo-
tors, and mechanical defects were successfully detected after analyzing the edge frequency
characteristics. In [10], acoustic pressure sensors were used to obtain audio intensity cloud
maps of mechanical defects, and five eigenvalues extracted using a gray-level covariance
matrix (GLCM) were used to realize the diagnosis of mechanical defects in a gas-insulated
metal-enclosed switchgear (GIS). In [14], the accurate recognition of acoustic emission (AE)
signals of electric tree branches was achieved using an artificial neural network (ANN)
and SVM. In [15], MFCC features were extracted for AE signals, and an SVM classifier
optimized using sequential minimum optimization (SMO) was used to accurately identify
four types of PD defect in GIS.

In the above study, the acoustic detection and identification of mechanical defects
used audio signals at low frequency, while PD defects used AE signals at high frequency;
however, the two defects were detected and identified separately. In [3], a comprehensive
identification method was proposed to distinguish the AE signals of PD and background
noise, but background noise was not counted as a defect type. To enhance inspection
efficiency and reduce costs, the method of using the recording function of smartphones to
identify PD and mechanical defects of switchgear simultaneously seems feasible. However,
few papers have used smartphones to record the audio of switchgear and identify defects.
A related comparison is the use of smartphones for diagnosing mechanical defects in
induction motors [16]. Although previous articles have proposed methods to characterize
mechanical defects or PDs, it is important to investigate whether PDs and mechanical
defects in switchgear can be identified directly and simultaneously from audio signals cap-
tured by smartphones. Therefore, this paper performed a study and provides a convenient
method for defect detection and audio recognition. When a switchgear is defective and
emits abnormal audible sound waves [17], this can assist technicians, even those who do
not have a basic knowledge of acoustics, to use their smartphones to make a preliminary di-
agnosis of the type of defect in the switchgear and effectively identify mechanical vibration
or PD for a subsequent evaluation with more specialized testing equipment.

To solve the appeal problem and to verify the feasibility of using the recording function
of smart phones for the simultaneous detection and identification of mechanical defects and
PDs in switchgear, the relevant work was carried out as follows: First, in view of the popu-
larity of smartphones and the increasing power of audio functions, the data source was set
to be the audio files captured by the microphone of smartphones. The 12 sets of audio files
in this paper were provided by the technicians of substations or distribution stations, and
according to the type of audio signal, they can be classified into three categories: namely,
background noise, mechanical vibration, and PD. The three types of audio signals were
analyzed in terms of time-domain features, such as waveform autocorrelation, denseness,
and steepness, and frequency-domain features, such as band energy and harmonic compo-
nents, and a new combination of features suitable for identifying these three types of audio
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is proposed. Second, recognition tests were conducted using an SVM multiclassification
support vector machine for time-domain features, frequency band energy features, and
MFCC features from the literature [15], as well as the present method. The best features
were obtained by comparing the accuracy of different features for recognizing mechanical
vibration, PD, and background noise. Third, based on the above work, this paper proposes
an audio generalized recognition method for PD and mechanical defects of a switchgear
using smartphones.A set of mechanical defects and PD defects were set for the switchgear,
to practically verify the generalization and effectiveness of the method.

This paper is organized as follows: Section 2 sequentially describes the acoustic theory
of defects, the sources and types of audio file, the data preprocessing, and the methods of
analysis and identification. Section 3 analyzes the characteristics of the audio data from the
time and frequency domains and summarizes the features. The recognition accuracy of
time domain, frequency band energy, MFCC features, and the present method on audio
signals is compared using an SVM classifier. Section 4 gives the experimental validation of
the method. Section 5 summarizes the research content and significance of this paper and
proposes future work.

2. Materials and Methods
2.1. Acoustic Theory
2.1.1. Mechanical Vibration

In a normal state, the operating mechanism of switchgear and the mechanical condition
of each electrical component is good. The current-carrying conductor generates mechanical
vibration and emits sound waves under the interaction of electrodynamic forces, and the
sound waves are recorded as normal vibration.

Suppose two current-carrying conductors in the switchgear are fed with sinusoidal
AC currents i1, i2, assuming i1 = i2, where i1 is:

i1 = Im sin wt (1)

In Equation (1), Im is the maximum value of current, w is the angular frequency, and t
is the time.

Assuming that a single current-carrying conductor is subjected to an electromotive
force F0, the loop coefficient is Kc, and the cross-sectional coefficient is Kh, and the electro-
motive force between current-carrying conductors F0 is

F0 =
µ0

4π
KcKhi2 (2)

In Equation (2), µ0 is the vacuum magnetic permeability.
Substitute Equation (1) into Equation (2) to obtain

F0 =
µ0

8π
KcKh I2

m(1− cos 2wt) (3)

From Equation (3), when the frequency of the AC power supply is 50 Hz, the vibration
frequency of the electrodynamic force between the current-carrying conductors is 100 Hz.
The vibration frequency of both single-phase insulated and three-phase insulated GIS is
100 Hz [4]. Therefore, the fundamental frequency of the normal vibration of a switchgear is
100 Hz, without a harmonic component.

When there are mechanical defects, such as a loose component, poor contact, or
deformation, the electrodynamic force will excite this switchgear with mechanical defects.
Due to the non-linear phenomenon of the equipment response, the normal vibration
that has changed is called abnormal vibration. Therefore, the fundamental frequency of
abnormal vibration is 100 Hz and contains a harmonic component.
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2.1.2. PD

The mechanism of PD is where the electric field strength in the local area is higher
than the dielectric strength, and thus a discharge occurs, resulting in the deterioration of
the dielectric. Over time, this will gradually erode the insulation medium and eventually
lead to the failure of the insulation system [18]. The causes of discharge are related to the
reduction in dielectric strength, such as dust invasion, moisture, and aging of the insulation;
a second cause is related to the local electric field strength, such as over-voltage and a metal
tip [5].

When PD occurs, air expands rapidly under the combined effect of pulsed electric
field forces and thermal effects, which in turn causes the surrounding medium to vibrate
violently. The discharge is usually in the form of a short period of continuous pulse
generation, which causes a high number of air vibrations in a short period of time and
triggers audible sound waves or even ultrasonic waves.For different types of discharge, the
moment of discharge is different during the power frequency (50 Hz) cycle, which leads to
different frequencies of acoustic pulse groups. The frequency of the acoustic pulse groups
can be categorized into the following three cases:

• If both the positive and negative half-weeks are discharged, then the frequency of
the acoustic pulse group is 100 Hz, such as the discharge along the surface and the
internal air gap discharge;

• If only the positive or negative half-perimeter is discharged, the frequency of the
acoustic pulse group is 50 Hz, such as metal tip discharge;

• In other cases, the acoustic pulse group may not have a specific frequency, such as free
metal particle discharge.

Since the response of the gas is also nonlinear, the fundamental frequency of the audio
signal of the discharge may be 50 Hz or 100 Hz with a harmonic component, or there may
be no fundamental frequency and no significant harmonic component.

2.2. Data Selection

The data used in this paper were live audio and video files provided by technicians
inside certain substations and distribution stations. During their indoor inspections or
routine checks, they found abnormal audible sound waves emitted from the operating
switchgear or the surrounding environment, and they subsequently used the audio or
video recording function of their smartphones to obtain audio and video files. In addition,
the technicians, after further dismantling and defect detection, provided actual results and
some on-site photographs, as shown in Figure 1 below.

Figure 1. Actual defects in smartphone recording. (a) PD in a three-phase busbar contact box of
switchgear; (b) Abnormal mechanical vibration in the side plate of a switchgear.
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The audio and video files provided were all over 10 s in length, using smartphones that
are widely available, and the built-in microphone sampled at 48 kHz or 44.1 kHz. According
to the detection results, the files can be classified into three types of audio: background
noise, mechanical vibration, and PD. Twelve typical audio files were selected and numbered
one by one in capital letters, as shown in Table 1, with the different switchgear briefly
indicated by numbers.

The four background noises come from different indoor environments, and the sound
sources were human speech, metallic clang, birds chirping, and passing vehicle sounds. The
mechanical vibration and PD came from the defects of the GIS, as well as other switchgears.
The four mechanical vibrations contained normal vibration and abnormal vibration, and
the abnormal vibrations came from actual mechanical defects, while the sound sources were
current transformers (CTs), sheet metal parts, and side plates. Among the four PDs, two
were from actual PD defects—the pressure relief flap and bus contact box discharges—and
two were from simulated PD defects—single metal tip and two metal tip discharges.

Table 1. Sound source of audio files A1–C4.

Audio Type Audio File Number Sound Source

Background noise

A1 Human speech
A2 Metallic clang
A3 Birds chirping
A4 Vehicle passing sounds

Mechanical vibration

B1 Switchgear 1: Normal vibration
B2 GIS: CT abnormal vibration
B3 Switchgear 1: Abnormal vibration of sheet metal parts
B4 Switchgear 2: Abnormal vibration of side plate

PD

C1 Switchgear 3: Discharge of the pressure relief flap
C2 Switchgear 4: Discharge of two metal tips
C3 Switchgear 5: Discharge of busbar contact box
C4 Switchgear 6: Discharge of single metal tip

2.3. Data Pre-Processing

Due to the large amount of data in the audio file, to facilitate the analysis of the data
and feature extraction, it was necessary to preprocess the data, and the steps included
frame splitting, normalization, and adding window functions.

The first step was to split the frames. The audio file was intercepted with a duration
of 1s, which is called frame xi, i is the current number of frames, and the amount of data
per frame N is equal to the sampling frequency per second.

The second step was normalization. The size of the audio data varied depending on
the acquisition process and the external environment. To avoid attributes in the larger
value range dominating attributes in the smaller value range, the data were mapped to the
[−1, 1] interval. The normalized xi is

xi(n) =
xi(n)− xmean

xmax − xmin
, 1 ≤ n ≤ N (4)

xmax is the maximum value in each frame, xmin is the minimum value in each frame, and
xmean is the average value in each frame.

The third step was to add window functions. To reduce the effect of spectral leakage
of the Fourier transform, a Hamming window was added to smooth a frame of data, and
the window function was

w(n) = 0.54− 0.46× cos(
2πn

N
) (5)
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Then, the audio data yi after adding the window were

yi(n) = xi(n)× w(n) (6)

2.4. Data Analysis Methods
2.4.1. Correlation Analysis

To compare the correlation between two signals or vectors, the cosine similarity
formula was used for calculation. Suppose there are two vectors of dimension K with g
and l, respectively. Their correlation coefficients are Sgl with values in the range (−1, 1), 1
being positive correlation and −1 being negative correlation.

Sgl =
∑K

k=1 g(k)l(k)√
∑K

k=1 g(k)2 ×
√

∑K
k=1 l(k)2

, 1 ≤ k ≤ K (7)

2.4.2. Frequency Domain Analysis

The frequency domain amplitude spectrum was obtained using fast Fourier transform.
Since the sampling frequency of the microphone was 48 kHz, the upper frequency limit of
the spectrum was 24 kHz in theory, but in the actual measurements, the upper frequency
limit in the spectrum may be three- to four-times lower than the sampling frequency, and
the upper frequency limit of the signal in this paper was 16 kHz–17 kHz. The Fourier
transform equation is

Yi( f ) =
N

∑
n=1

yi(n)e−i 2π f
N n, f = 1, 2, · · · , N (8)

The frequency interval 0–16 kHz of the amplitude spectrum was divided into 16
frequency bands in the order from small to large, and the length of the band was 1 kHz
and was recorded as Ej. The energy of the band Ej is defined as the sum of the frequency
amplitude of the band and the formula is

Ej =
1000j

∑
f=1000(j−1)

Yi( f ), 1 ≤ j ≤ 16 (9)

The band vector T was constructed and normalized for 16 bands of energy, which was
used to represent the energy share of different bands, where E is the sum of energy in the
frequency band 0–16 kHz, E = ∑16

1 Ej, and the expression is

T = [
E1

E
,

E2

E
, · · · ,

E16

E
] (10)

2.5. Support Vector Machine

An SVM finds an optimal hyperplane in the hyperspace, where the set of input
parameters is located to achieve the classification of different sets of input parameters. Each
set of input parameters can be described by using a single-dimensional or multidimensional
input vector and is suitable for solving complex pattern recognition problems with small
sample data, high feature dimensionality, and nonlinearity [19,20].

Figure 2 has two types of linearly separable data, represented by circles and triangles,
described by vectors d = d1, d2. The two types of data can be accurately distinguished
by solving for the optimal hyperplane wd + b = 0, where w is the normal vector of the
hyperplane and b is the distance between the hyperplane and the origin. For a linearly
indistinguishable set of input parameters, the input vector is mapped to a high-dimensional
feature space using a kernel function, and the hyperplane is obtained in that space, thus
transforming it into a linearly divisible problem [1].
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Figure 2. SVM classification principle.

3. Audio Characterization and Recognition Tests
3.1. Data Analysis

The microphones and filters integrated into smartphones have a restricted perfor-
mance, contributing to a restricted frequency range and audio signal reproduction. In addi-
tion, there are different types of mechanical defects and PDs in the switchgear, as well as
various types of background noise. To be able to accurately identify the three types of audio
data recorded by smartphones, this section analyzes the similarities and differences in the
direction of time domain waveforms, frequency band energy, and harmonic components.

3.1.1. Continuous Time Stability

To evaluate the stability of time domain and frequency domain features of a single
audio file in continuous time, audio data with a duration of 10 s were selected for correlation
analysis. The correlation coefficients of time domain amplitude and frequency domain
amplitude of 10 frames were calculated using Equation (7).

Let us define Sij as the time domain amplitude correlation coefficient of frame yi
and frame yj, and define Fij as the frequency domain amplitude correlation coefficient of
frame yi and frame yj, where 1 ≤ i ≤ j ≤ 10. The maximum and minimum values of the
correlation coefficients were taken for analysis, and the results are shown in Table 2.

The correlation coefficients of the 10 frames’ time domain amplitude were lower than
0.313 for any two frames of the background noise and PD, and the adjacent frames showed
no correlation, while for the mechanical vibration, the correlation coefficients of the adjacent
frames reached 0.956, but the non-adjacent frames showed no correlation. This shows that
the waveforms of background noise and PD were not similar, and the amplitude changes
were irregular, while the waveforms and amplitude of mechanical vibration were more
similar in continuous time.

The correlation coefficients of the 10 frames’ frequency domain amplitude were higher
than 0.94 for normal vibration, 0.732 for abnormal vibration, 0.462–0.884 for PD, and
0.102–0.857 for background noise. This shows that the frequency domain amplitude
distribution of mechanical vibration and PD were similar in continuous time, while the
frequency domain amplitude distribution of background noise was less similar.

In terms of feature stability in continuous time, the time domain features of mechanical
vibration were more stable, the frequency domain features of mechanical vibration and PD
were more stable, whereas the background noise was less stable in both time and frequency
domain features.
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Table 2. Similarity calculation of 10 frames of data generated a symmetric matrix of 10× 10 similarities,
from which the minimum value and the maximum value other than 1 were selected.

Audio Type Audio File
Number min(Sij) max(Sij) min(Fij) max(Fij)

Background
noise

A1 −0.063 0.108 0.102 0.692
A2 −0.065 0.036 0.347 0.784
A3 −0.396 0.313 0.521 0.838
A4 −0.097 0.094 0.635 0.857

Mechanical
vibration

B1 −0.84 0.835 0.94 0.978
B2 −0.134 0.913 0.863 0.997
B3 −0.212 0.345 0.732 0.895
B4 −0.06 0.956 0.806 0.994

PD

C1 −0.113 0.173 0.731 0.847
C2 −0.103 0.155 0.462 0.884
C3 −0.023 0.024 0.75 0.781
C4 −0.023 0.028 0.764 0.801

3.1.2. Time Domain Waveform Shape

To analyze the similarities and differences of the same type but with different sound
sources and different audio types, one frame was randomly selected from the 10 frames
of the audio file as a typical frame of the audio file. The first 100 ms of the time domain
waveforms of the typical frames of the three types of audio are shown in Figures 3–5.

Figure 3. Time domain waveform of background noise.

Figure 4. Time domain waveform of mechanical vibration.

In Figure 3, the background noise, A1–A4 have no similar waveforms, and the wave-
forms are irregular. In Figure 4, mechanical vibration, B1–B4 have 10 similar waveforms and
the time interval is about 10 ms, the waveforms are sparse and gentle, and the shapes are
like sine waveforms. In Figure 5, the waveforms of C1–C4 are dense and steep, C2 and C4
have acoustic pulse groups with pulse intervals of about 20 ms and 10 ms, respectively, C1
and C3 have no acoustic pulse groups and correlation, and the waveforms vary irregularly.
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The analysis shows that the time domain waveform of background noise is usually
irregular and does not have autocorrelation. The mechanical vibration generated by the
operating switchgear has an regular waveform pattern, stable amplitude, and autocorrela-
tion. Although acoustic pulse clusters appear in the PD about every 10 ms or 20 ms, the
occurrence and duration of the acoustic pulse clusters and the amplitude changes are not
the same, resulting in a low autocorrelation of the time-domain waveforms.

Figure 5. Time domain waveform of PD.

3.1.3. Frequency Band Energy Share and Harmonic Component

To analyze the frequency energy share of the three types of audio in different frequency
bands, the frequency band vectors T of A1–C4 were calculated and compared, as seen in
Figure 6. A1, A3, A4, and B1–B3 have similar energy shares, with the largest energy share at
0–1 kHz, rapidly decreasing to less than 10% at 0–5 kHz, and stabilizing after 5 kHz. A2, B4,
and C1–C4 have similar energy shares, with the energy share in each band not exceeding
15%. Unlike the previous decreasing trend, the energy share of these audios after 5 kHz
shows an increasing and then decreasing trend. In addition, the energy share of C2 and C4
shows another increasing trend after 10 kHz. The spectra of A2, B4 and C1–C4 were further
analyzed, and it was found that A2 has high frequencies only part of the time within a
frame-length window, while B4 and C1–C4 have continuous high frequencies throughout
the window.

Figure 6. Energy share of different frequency bands for a typical frame.

This analysis showed that most of background noise and mechanical vibration were
distributed in the low frequency band of 0–5 kHz, and the energy share of different
frequency bands decreased with the increase in frequency, while the energy share of PD
in 0–16 kHz was balanced, and the energy was more concentrated in the high frequency
band of 5 kHz–16 kHz . However, some background noise and mechanical vibrations were
also distributed in the frequency band above 5 kHz, with a similar energy share as PD,



Appl. Sci. 2023, 13, 10153 10 of 17

with the difference being that the high frequency duration of the background noise was
short. Although PD has a higher frequency distribution and can be used to distinguish
between background noise and mechanical vibrations, the limited microphone performance
of smartphones restricts the acquisition of PD signals above the 16 kHz band. Therefore,
the accuracy of identifying the three types of audio captured with smartphones from the
band energy alone may not be high.

In Figure 7, the maximum amplitude values of background noise A1–A4 appear at
203 Hz, 52 Hz, 60 Hz, and 78 Hz, respectively, with neither a fundamental frequency
nor significant harmonic component. In Figure 8, the maximum amplitude values of
mechanical vibration B1–B4 all appear at the fundamental frequency of 100 Hz, but the
harmonic components are different. B1 has no harmonic component, and the harmonic
components of B2 are mainly distributed at 300 Hz, 600 Hz, and 800 Hz, while the B3 is
distributed at 200 Hz, 600 Hz, and B4 is distributed at 200 Hz. In addition, B4 still has
100 Hz harmonic component in the frequency band of 5 kHz–8 kHz . In Figure 9, there is no
harmonic in C3, whereas harmonic components appear in C1, C2, and C4. The fundamental
frequency of C4 is 100 Hz, but C1 and C2 are 50 Hz. In addition, the frequency of the
maximum magnitude does not coincide with the fundamental frequency. The maximum
magnitude of C1, C2, and C4 are 100 Hz, 800 Hz, and 54 Hz, respectively.

This analysis shows that there was no fundamental frequency and harmonic com-
ponent in the frequency domain spectrum of the background noise, and if there was a
fundamental frequency, it was not 50 Hz or 100 Hz. The four sets of mechanical vibra-
tions in the paper came from different vibration types from the switchgear. Although
the fundamental frequency was 100 Hz and the fundamental values were all equal to the
maximum magnitude, the harmonic components were different. The harmonic component
of abnormal vibration was large, but there was almost no harmonic component to the
normal vibration. Therefore, the difference in harmonic components can be used as a
feature for smartphones to recognize different mechanical vibrations in the switchgear.
The frequency domain spectrum of PD has three cases, including a 100 Hz fundamental
frequency, 50 Hz fundamental frequency, and no fundamental frequency, which correspond
to a time domain waveform with a 10 ms or 20 ms period of acoustic pulse group, or no
periodic acoustic pulse.This comparison reveals that PDs with 100 Hz fundamental fre-
quency and mechanical vibration are not distinguishable in terms of harmonic components.
Neither the PD without fundamental frequency nor the background noise had harmonic
components and they were indistinguishable, and only the PD with 50 Hz fundamental
frequency was distinguishable.

Figure 7. Background noise frequency domain spectrum.
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Figure 8. Mechanical vibration frequency domain spectrum. The red colour represents the maximum
amplitude and the green colour represents the main harmonic components.

Figure 9. PD frequency domain spectrum.

3.2. Acoustic Feature Differences and Feature Selection

After analyzing the time domain waveforms and frequency domain spectra, the three
types of audio captured by smartphones had the following similarities and differences.
Table 3 shows the differences in the three types of audio for the time domain character-
istics, and Table 4 shows the differences in the three types of audio for the frequency
domain characteristics.

Table 3. Differences in Time Domain Characteristics.

Audio Type Correlation Waveform Density Waveform Steepness

Background noise No Low/High Smoother
Normal vibration Yes Low Flat and gentle

Abnormal vibration Yes Low/High Smoother
PD No High Steep

Table 4. Differences in frequency domain characteristics.

Audio Type Frequency Band Energy
Distribution

Fundamental
Frequency

Frequency
Harmonics

Maximum Amplitude at
Fundamental Frequency

Background noise 0–5 kHz/5 kHz–16 kHz No/non-50 Hz and 100 Hz No No
Normal vibration 0–5 kHz 100 Hz No Yes

Abnormal vibration 0–5 kHz/5 kHz–16 kHz 100 Hz Yes Yes
PD 5 kHz–16 kHz No/50 Hz/100 Hz No/Yes No/Yes
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As shown in Table 3, five features d1–d5 in the time domain were selected, as also
shown in Table 5. d1 calculates the number of times the signal passes the zero value in each
frame, d2 and d3 describe the direction of waveform skew and the sharpness of waveform
kurtosis, d4 describes the extremity of the waveform, and d5 measures the correlation of
the waveform within each frame. In Table 5, y(n) is the time domain data of each frame,
µ represents the mean value of y(n), and the formula µ = E[y(n)], σ is the mean squared
deviation, σ =

√
E(y(n)2)− µ2. d5 first divides y(n) into 10 equal segments and uses

Equation (7) to calculate the correlation coefficient among the 10 segments.

Table 5. Selected time domain features and formulas.

Feature
Number Feature Name Formula

1 Short-time
over-zero rate d1 =

N

∑
n=2
|sgn[y(n)]− sgn[y(n− 1)]|, sgn[y] =

{
1,y ≥ 0

0,y < 0

2 Skewness d2 =
E[(y−µ)3]

σ4

3 Kurtosis d3 =
E[(y−µ)4]

σ4

4 Peak factor d4 =
max(|y(n)|)√

1
N ∑N

n=1 y(n)2

5 Correlation
coefficient d5 =

yi(n)×yj(n)
|yi(n)|×|yj(n)| , 1 ≤ i ≤ j ≤ 10

According to Table 4, five frequency domain features v1–v5 were selected, as shown in
Table 6. Among them, v1 determines whether the average frequency energy is concentrated
in 5 kHz–16 kHz, v2 and v3 determine whether the frequency energy is concentrated in
the 50 Hz or 100 Hz component in 0–1 kHz, and v4 and v5 evaluate the 100 Hz harmonic
component in 0–1 kHz. Y( f ) in Table 6 is the amplitude of the audio signal at frequency
f . The prerequisite for calculating v4 is to determine whether the maximum amplitude
in 0–1 kHz is at 100 Hz, and if it is, then it is calculated, otherwise it is recorded as 0.
max(Y(100 f )) represents the maximum amplitude of the 100 Hz harmonic in 0–1 kHz.

Table 6. Selected frequency domain features and formula.

Feature
Number Feature Name Formula

1 Average High-frequency
share v1 = ∑10

f=1(∑
16,000
f=5000 Y( f )/ ∑16,000

0 Y( f ))× 1
10 × 100%

2 100 Hz component share v2 = ∑10
f=1 Y(100 f )/ ∑1000

0 Y( f )× 100%

3 50 Hz even/odd
harmonic sum v3 =

∑20
f=2 Y(50 f )

∑19
f=1 Y(50 f )

, f =

{
2, 4, · · · , 20

1, 3, · · · , 19

4
Harmonic maximum
value/fundamental

frequency value
v4 =

max(Y(100 f ))
Y(100)

× 100%, f = 2, 3, · · · , 10

5 Fundamental frequency
value/harmonic sum v5 = Y(100)/ ∑10

f=2 Y(100 f ), f = 2, 3, · · · , 10

For the recognition of different audio types, the correct selection of features and
computation is a very important issue. Too few and too many features do not signify a high
recognition rate, but in fact only features that characterize significant differences should be
selected. Harmonic components are effective for identifying different types of mechanical
vibration, but PDs also have similar harmonic components. At the same time, there is a
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similar percentage of energy in the frequency band for the three types of audio. Therefore,
it was necessary to combine the above features, and the combination of features proposed
in this paper is notated as TF = (d5, v1, v2, v3, v4, v5).

3.3. SVM Classifier Training and Recognition
3.3.1. Identification of a Single Audio Type

To verify the performance of the present feature vector TF in identifying a single audio
type, the first step was to extract the TF features of 207 frames of data from A1–C4. The
normal vibration needed to be identified separately in some cases, so three and four types
of labels were added to create four sets of feature libraries, corresponding to SVM classifiers
TF1 and TF2. In addition, the time domain features, d = (d1, d2, d3, d4, d5), corresponding
to the classifiers CD1 and CD2, and the frequency band vector, T, corresponding to the clas-
sifiers CT1 and CT2, and the MFCC features proposed in the literature [15] , corresponding
to the classifiers CM1 and CM2, were jointly compared. Next, the classifier was configured
with the penalty parameter set to 1, the kernel function was a Gaussian kernel, and the
decision function type was one-to-one. Then, the data of the feature library were divided
into two parts in a ratio of 7:3, and the training set was used as the input vector of the
classifier for training, and finally the training and test sets were cross-validated, and the
average score was calculated [19].

The recognition rates of the classifiers are shown in Table 7. TF1 and TF2 had the
highest total recognition accuracies of 99.6% and 98.6%, respectively, while the recognition
accuracy for CD2 was only 88%, due to its inability to recognize normal vibrations. CM1 and
CM2 had better recognition rates for mechanical vibration and PD, but lower recognition
accuracy for background noise, at 89.4% and 92.4%, respectively. CT1 and CT2 had the
lowest total recognition accuracy, with some of the PDs being misclassified as vibrations,
and failing to recognize normal vibrations. Therefore, compared to time domain features,
MFCC features, and frequency band energy features, the proposed TF features had the
best recognition performance and could recognize background noise, normal vibration,
abnormal vibration, and PD in SVM.

Table 7. SVM classifier recognition accuracy.

Features Classifier

Recognition Accuracy (%)

Background Noise /
66 Frames

Normal Vibration/
19 Frames

Abnormal Vibration
/58 Frames

PD/
64 Frames

Total/
207 Frames

Time domain CD1 100 96.1 96.8 97.8
CD2 100 0 94.8 96.8 88

TF TF1 100 98.7 100 99.6
TF2 100 100 93.1 100 98.6

MFCC CM1 89.4 97.7 100 95.7
CM2 92.4 100 98.2 100 96.2

frequency
band energy

CT1 83.3 96.1 96.8 92.2
CT2 86.3 0 94.8 96.8 83.7

3.3.2. Defective Audio Identification with Different Noise Components

To study the recognition of mechanical vibration and PD with different background
noise components, first, 10 frames from A1–C4 were selected and normalized; then, the
background noise with different components was superimposed with mechanical vibra-
tion and PD, to generate 160 frames of mechanical vibration and 160 frames of PD with
background noise. Finally, CD1 and TF1 were used to identify the defective audio. The
recognition results are shown in Figure 10.
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Figure 10. Accuracy of defective audio recognition under different noise components. (a) Mechanical
vibration; (b) PD.

In Figure 10a, when the background noise component of mechanical vibration was
at or below 50%, the recognition rates of CD1 and TF1 remained above 90%, and with the
increase in the background noise component, the recognition rates of CD1 and TF1 finally
decreased to 80% and 84%. In Figure 10b, TF1 maintained an 80% recognition rate when
the background noise component of PD reached 80%, while the recognition rate of CD1
decreased rapidly to 54% as the background noise component increased.

This analysis shows that, when the switchgear had mechanical defects or PD defects
and the indoor background noise component was large, the proposed TF features com-
bined with the SVM classifier could still identify the mechanical vibration and PD better;
compared with the selected time domain features, the proposed TF features also showed a
better classification performance.

4. Experimentation and Verification

To verify the effectiveness of the present method for recognizing PD in an indoor
environment, experiments were conducted in the insulation withstand voltage experimental
platform shown in Figure 11a. This experimental platform consisted of an AC voltage
withstand test system, a test transformer, and a capacitive voltage divider, which could
generate a voltage of 0–100 kV for simulating the occurrence of PD. A PD defect was set
inside the switchgear, and then the switchgear was connected to the experimental circuit.
At the same time, a smartphone was placed on the side 40 cm away from the switchgear for
recording audio files, and the sampling rate of the smartphone was 48 kHz. The background
noise was recorded for 15 s before powering up the experimental platform, and then the
voltage level of the experimental platform was gradually increased. When the voltage level
reached 7.2 kV, the PD produced audible sound waves for 30 s, then we reduced the voltage
and ended the recording. The total duration of the recording was 60 s and was recorded as
Audio 1.

In addition, to verify that the present method could also recognize the audio signals
of mechanical vibrations, a mechanical defect was set up in the switchgear cabinet shown
in Figure 11b. When the switchgear was operated under power, the mechanical defect
could be clearly noticed as generating vibrations accompanied by audible sound waves.
The handheld smartphone first recorded 15 s of indoor background noise and then 45 s of
mechanical vibration signals 40 cm closer to the switchgear, and the total duration of the
recording was also 60 s, recorded as Audio 2.
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Figure 11. Experimental platform for identifying switchgear defects using smartphones. (a) PD
defect and experimental circuits; (b) Experimental circuits for mechanical defects, which were loose
screws.

The recognition was performed on two sets of audio files on a PC, and the recognition
process started with data preprocessing; then, the frequency domain feature v1–v5 were
extracted for each frame and finally input into the SVM classifier TF1 for recognition, and
the results are shown in Figure 12. For audio 1, the recognition value from the 21st to the
51st second was 2, which corresponds to PD, and the rest of the recognition values were 0,
which corresponds to background noise. This recognition result was consistent with the
experimentally set discharge duration of 30 s. For audio 2, the recognition value from the
15th to the 60th second was 1, which corresponds to mechanical vibration, and the rest of
the recognition values were 0, which corresponds to background noise. This identification
result was in line with the 45 s vibration duration of the experimental setup. The above
experiments demonstrated that the present method could accurately identify background
noise, mechanical vibration, and PD from audio signals.

Figure 12. Recognition results for audio 1 and 2. The recognition result for background noise was 0,
the recognition value for mechanical vibration was 1, and the recognition result for PD was 2.

5. Conclusions

This paper proposed a method for identifying defects in a switchgear using audio
from smartphones. First, audio files including background noise, mechanical vibration, and
PD were selected and preprocessed. Then, the similarities and differences of each type of
audio signal, in terms of time domain waveforms, frequency band energies, and harmonic
components, were studied. Then, the time domain, frequency band energy features, MFCC
features, and the present method were extracted and input into a SVM for recognition
and to compare the accuracy. Finally, the method was experimentally validated, and the
following conclusions were obtained:
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• Currently, widely available smartphones record audio in a frequency range of about
0–16 kHz, which makes the distinction between the three types of audio signals in
terms of frequency band energy potentially small. Mechanical vibrations and PDs
of switchgear may both have harmonic components, but there are differences in the
fundamental frequency and harmonic distributions. In addition, mechanical vibration
has a high autocorrelation in the time domain waveform, while background noise
and PD have a low autocorrelation. Accurate identification of the three types of audio
requires a combination of these features;

• In the recognition test for the time domain, frequency band energy, MFCC features,
and the present features combined with SVM and comparison of the recognition
rate, it was found that the present features had the highest accuracy in recognizing
background noise, mechanical vibration, and PD, which provides a new idea for the
screening of audio features for mechanical defects and PD;

• The popularity of smartphones makes audio files easily accessible. In the experiment,
by applying this method to recognize the audio recorded with a smartphone, the result
proved that this method could well recognize three types of audio signal. This method
can help technicians to rapidly diagnose the defects of a switchgear, and it has good
versatility and applicability.

The number of selected audio files in this paper was limited, and the audio signals
of special working conditions, such as switchgear breaking and closing operations, were
not considered. Therefore, more types of background noise, mechanical vibration, and PD
need to be collected, and the feature and recognition algorithm should be optimized to
improve the recognition accuracy for various audio signals of a switchgear.
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