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Abstract: Pre-trained language model-based neural rankers have been widely applied in information
retrieval (IR). However, the robustness issue of current IR models has not received sufficient attention,
which could significantly impact the user experience in practical applications. In this study, we
focus on the defensive ability of IR models against query attacks while guaranteeing their retrieval
performance. We discover that improving the robustness of IR models not only requires a focus on
model architecture and training methods but is also closely related to the quality of data. Different
from previous research, we use large language models (LLMs) to generate query variations with the
same intent, which exhibit richer and more realistic expressions while maintaining consistent query
intent. Based on LLM-generated query variations, we propose a novel contrastive training framework
that substantially enhances the robustness of IR models to query perturbations. Specifically, we
combine the contrastive loss in the representation space of query variations with the ranking loss
in the retrieval training stage to improve the model’s ability to understand the underlying seman-
tic information of queries. Experimental results on two public datasets, WikiQA and ANTIQUE,
demonstrate that the proposed contrastive training approach effectively improves the robustness
of models facing query attack scenarios while outperforming baselines in retrieval performance.
Compared with the best baseline approach, the improvements in average robustness performance
of Reranker IR models are 24.9%, 26.5%, 27.0%, and 75.0% on WikiQA and 8.7%, 1.9%, 6.3%, and
13.6% on ANTIQUE, in terms of the MAP (Mean Average Precision), MRR (Mean Reciprocal Rank),
nDCG@10 (Normalized Discounted Cumulative Gain) and P@10 (Precision), respectively.

Keywords: contrastive learning; neural rankers; robustness; large language model

1. Introduction

In recent years, a plethora of work has demonstrated the astonishing performance of
pre-trained models (PLMs) [1–4] in natural language processing (NLP). The new research
paradigm, which involves fine-tuning PLMs on self-supervised tasks for specific applica-
tions, has been rapidly adopted by researchers in the community [5]. The paradigm shift in
NLP research has also brought new perspectives to information retrieval (IR) studies, which
are similarly focusing on text processing. Existing research [6] has indicated that leveraging
PLMs with remarkable performance on NLP tasks could significantly enhance the perfor-
mance of IR models. Although these models exhibit formidable capabilities, including
ranking effectiveness and efficiency, they tend to be more vulnerable to adversarial attacks
compared to traditional models [7]. For example, upon the introduction of perturbations
to the query, the performance of neural rankers may potentially deteriorate. These pertur-
bations, such as word typos and synonym word replacement, are frequently encountered
by IR models deployed in the wild. Despite the existence of various proposals aimed at
enhancing the robustness of retrieval models, the majority of these approaches [8–11] are
either task-specific or solely reliant on data augmentation. While methods for resisting
perturbations at the word or sentence level (such as those addressing typos and synonym
substitutions) have been well-developed, there was a notable scarcity of work focusing on
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query reformulations with the same intent. A key reason for this is the lack of adequate
high-quality augmented data. In light of the significant performance improvement of large
language models (LLMs) in generative tasks, we endeavored to employ LLMs to generate
query reformulations while maintaining the same intent.

Research in computer vision (CV) has demonstrated that representations obtained
under a contrastive self-supervised setting exhibited greater robustness when faced with
out-of-distribution (OOD) data and image corruption [12]. In enhancing the robustness of
information retrieval models with respect to query reformulations maintaining the same
intent, it is fundamentally essential to focus on the robustness of query representations
under perturbations from diverse distributions. Based on the definition of adversarial
text [13], we posit that the semantics of various reformulations of a single query under the
same intent should tend to be consistent, while the semantics between different queries
should tend to diverge. Guided by this intuition, we employ a contrastive training ap-
proach, utilizing LLM-enhanced data to optimize the text representations in PLMs within
information retrieval systems.

In this study, we primarily focus on the defensive ability against query attacks for IR
models based on PLMs, which constitutes an essential subtask in assessing the robustness
of IR. We concentrate on ensuring that information retrieval models produce stable and
accurate results when faced with different query expressions under the same intent. We
propose a novel contrastive learning approach to fine-tune PLM-based IR models and
investigate its benefits for enhancing model robustness. Experiments are conducted on both
different IR model architectures, employing multi-objective optimization loss functions.
In terms of ranking, we train the neural rankers by optimizing ranking loss, which compares
scores between different documents under the same query and maximizes the score for the
positive candidate. Additionally, we utilize contrastive loss to optimize the representation
of queries with the same intent in the latent space (i.e., within an input batch, different
query expressions with the same intent should be close in the latent space, while those with
different intents should be distant). The purpose of employing this contrastive loss is to
stimulate the model to learn the underlying common semantic information between varying
expressions of queries with the same intent, thereby enhancing the model’s robustness to
semantic perturbations and its ability to represent the latent intent within queries.

The main contributions of this study are summarized as follows:

• After reviewing existing text data augmentation methods [14,15], we find that current
text attack methods suffer from high rule dependency and limited variation forms.
In this study, we leverage the emergent general capabilities of LLMs to generate a set
of high-quality query variations.

• We assume that the representations of the original query and the corresponding query
variations in the latent space should be similar while being distant from other queries.
To train a robust IR model against adversarial query attacks, we propose a novel
contrastive training approach that contains tasks of ranking and intent alignment.

• This study conducts experiments on two public datasets, and the results demonstrate
the effectiveness of the proposed training approach. Our method not only improves
the query robustness of the models but also ensures that retrieval performance does
not suffer significant losses, and even outperforms the original models in some metrics.

2. Related Work
2.1. Robustness of IR

Our work primarily focuses on the ranking stage of IR, as shown in Figure 1, which
entails sorting the candidate document set retrieved in response to user queries in order
to meet their search requirements. From the perspective of structure design, PLM-based
ranking models can be categorized into Cross Encoder (Reranker) [16] and Dense Re-
triever [17]. In terms of training paradigms, retrieval ranking models can be divided into
pointwise (PRank [18], Ranking with Large Margin Principle [19]), pairwise (RankNet [20],
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LambdaRank [21], Ranking SVM [22]), and listwise (ListNet [23], AdaRank [24], Lamb-
daMART [25]) approaches.

Figure 1. The training paradigm for IR ranking models.

As neural networks have been employed in retrieval ranking, significantly improv-
ing the performance of IR, researchers have shifted their focus towards the robustness of
IR models rather than solely concentrating on their average performance metrics. Robust-
ness is, in fact, a multi-dimensional concept, and thus Wu et al. [7] designed five robustness
evaluation tasks to systematically assess the robustness of the most effective deep learning
retrieval models and traditional retrieval models currently available. Although the overall
experimental conclusions did not confirm that deep learning models exhibit stronger or
weaker robustness compared to traditional models, the performance of neural network re-
trieval models in terms of robustness was not as dazzling as their performance in enhancing
IR effectiveness, particularly in the presence of adversarial examples.

In addition to the robustness evaluation work [7], researchers have also dedicated work
to devising algorithms to bolster the robustness of retrieval models. Arslan et al. [26] have
proposed a word-weighted selection method based on chi-square value. This approach
automatically selected the optimal word-weighting strategy from the candidate strategies,
and their experiment showed that this method was better than any single word-weighting
method in the system. Reddy et al. [27] have pointed out that the current evaluation
of the retrieval model was limited to the average performance, without considering its
performance in cross-domain retrieval and zero-shot learning. Therefore, they proposed a
Seq2Seq model which was used to synthesize new training samples, and the experimental
results on five datasets showed that the performance was better when using the synthe-
sized data. In order to solve the problem of the annotation of large-scale training data,
Prakash et al. [28] proposed a strategy to select negative samples from unlabeled data,
which was to select difficult negative samples according to the score of BM25, so as to
expand the original small dataset to achieve more training data and improve robustness.
Zhuang et al. [10] found that the retrieval performance of existing deep retrieval models de-
teriorated significantly when there were spelling errors in the query. To solve this problem,
they proposed a training method that can simulate multiple spelling error patterns in the
query. Experiment results showed that this training method could improve the robustness
of the model when there were spelling errors in the query text.
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2.2. Contrastive Learning for IR

Contrastive learning is a popular representation learning approach that initially
demonstrated exceptional performance in computer vision [12,29]. Contrastive learning
enhances the model by introducing additional contrastive tasks leveraging the contrastive
pairs. The construction of positive and negative samples in NLP could often be conducted
without supervision, making it widely applicable. In NLP, although preparing contrastive
samples for text is not as straightforward as for images, there still exist lots of studies about
contrastive learning. For instance, IS-BERT [30] has been proposed to add a CNN layer
to BERT and it was trained by maximizing the mutual information (MI) between global
sentence embeddings and their corresponding local context embeddings. Cheng et al. [31]
constructed biased word pairs, replaced input bias words to generate augmented samples
for contrastive learning, and minimized the MI between sensitive words while maximizing
the MI between sample pairs to eliminate social biases in text representations. Qu et al. [32]
have studied contrastive learning by employing five methods for constructing augmented
samples in NLP, including back-translation, language model prediction, Mixup, cutoff
(randomly replacing features with zeros), and adversarial learning, achieving improved
results in various natural language understanding tasks.

In IR, some research also involves constructing positive and negative pairs for con-
trastive learning. For example, S-BERT [33] adopted a Siamese neural network, employing
BERT [2] to obtain individual sentence representations, and treating related sentences as
positive samples and other sentences within the same batch as negative samples. This
approach learned text-matching tasks through contrastive learning of query-document
pairs. Izacard et al. [34] have proposed a document set contrastive loss in response to issues
such as the susceptibility of current retrieval models to noise, constructing contrastive
samples through a local sampling of different documents, which enhances the model’s
cross-document set retrieval performance. Deng et al. [35] have addressed the issue of hav-
ing very few labeled positive pairs in current datasets by devising a strategy that leverages
the pre-trained BART model [36] to generate pseudo-relevant queries and pseudo-relevant
documents, increasing the number of pseudo-positive pairs, and then constructing a new
contrastive loss based on these pseudo-positive pairs.

3. Methodology
3.1. Problem Formulation

As in previous research, we formally define the ranking problem first. Given a query
q and a large set of documents D = {d1, d2, . . . , dn}, the task is to produce a ranked list of
documents, which is as close as possible to the gold ranking of documents according to
their relevance levels. For the binary label setting, the relevance level r ∈ {0, 1}, where
1 indicates the positive and 0 indicates the negative. There may also be multiple levels
of relevance label setting, in which case the gold ranking of documents should adhere to
the ranking established by the multi-level relevance labels. Once the model generates a
ranked list of documents, various evaluation metrics will be employed to assess the model’s
retrieval performance, such as MRR, MAP, NDCG, etc. In the robustness evaluation setting,
following prior research, the robust evaluation presented in this paper is also grounded
in metrics related to retrieval performance, with detailed information available in the
experimental section.

3.2. Main Framework

We propose a novel robustness training framework, as illustrated in Figure 2, which
employs high-quality query variations generated by LLMs to construct a multi-objective
loss function based on contrastive learning. This framework encompasses three key mod-
ules: (1) LLM-based query generation; (2) ranking training and (3) query intent alignment.
In Algorithm 1, we present the pseudocode for the overall framework, detailing the specific
flow between modules.
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Algorithm 1 Pseudocode for the proposed approach

1: Input: PLM-based model, LLM (e.g., ChatGPT), Dataset D (e.g., WikiQA)
2: Output: Fine-tuned IR model for retrieval
3: for each query qi in D do
4: Generate query variations {qk

i } for qi by LLM
5: end for
6: Initialize BERT with pre-trained weights
7: for each batch in D do
8: Extract input sequences X and target labels Y
9: Compute embeddings E = BERT(X)

10: Compute loss L using E and Y
11: Back-propagate error to update BERT’s weights
12: end for
13: return Fine-tuned IR model

Figure 2. Contrastive training framework for a more robust PLM-based IR model. The original
queries are used to generate different expressions with the same intent during the query variation
phase, utilizing a LLM. The retrieval structure is illustrated on Reranker as an example, where BPR
Loss serves as the loss function for the ranking task and Normalized Temperature-Scaled Cross
Entropy Loss serves for the intent alignment task.

3.2.1. LLM-Based Query Generation

Recently, the remarkable performance in natural language generation (NLG) of Chat-
GPT [37], which was released by OpenAI, has attracted the attention of the NLP community
and others worldwide. The research by Wang et al. [38] indicated that the LLM is more
robust than language models usually used in IR. In existing research [14,15], adversar-
ial text samples were mostly generated by random rules [39] or seq2seq models such as
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T5 [4] and M2M100 [40]. In our experiments, we use WikiQA [41] and ANTIQUE [42],
which are derived from real logs of Bing and Yahoo Answers, respectively. We provide a
detailed introduction to these datasets in Section 4. As shown in Table 1, we found that
many adversarial samples are inherently present in these two real-world retrieval datasets.
Training with these samples may, to some extent, affect the model’s ability to understand
semantics and thus impact the overall retrieval performance. Surprisingly, we found that
the LLM-generated query variations not only precisely captured the query intents but
also exhibited a greater diversity in expression compared to the results generated by the
previous method. Furthermore, LLMs possessed the capability to automatically rectify
potential adversarial samples within the dataset (see Table 1). In this study, we employed
the GPT-3.5-turbo API provided by OpenAI to generate query variations. The general
process of data augmentation could be formally expressed as follows:

Given a query data augmentation operator G which consists k different query vari-
ations, namely G = {g1, g2, . . . , gk}. For query set Q = {q1, q2, . . . , qM}, we sample each
operation gk to transform a query qi to obtain different query variations for every query
intention:

qk
i = gk(qi), k ∈ [1, K], (1)

where gk represents the kth query variation generated by the operator G. Upon the query
generated by the LLM and previous methods implemented based on Gustavo et al. [39],
we conducted a comparative evaluation between them. For the task of generating query
variations, it is desirable to maintain the original query’s intent (i.e., high semantic similar-
ity) while also introducing greater diversity. Therefore, we utilized six models from the
Massive Text Embedding Benchmark (MTEB) [43] to obtain sentence embeddings for qk

i
and calculated their semantic similarity to evaluate the semantic resemblance between the
query variation and the original query. We measured the diversity of the generated query
variations using Jaccard similarity, Levenshtein distance, and length of them. Detailed
evaluation results could be found in Tables 2 and 3.

Table 1. The generated variations by ChatGPT based on the original queries in the dataset are
presented in this table, which illustrates three different levels of query perturbations. The original
queries from the datasets are bolded.

Original Query Query Variation Generated by ChatGPT Level

1. Could you tell me about the Mormon religion?

what are mormens?
2. What is the Mormon faith all about?

ANTIQUE: #2180086
3. I’m a bit confused about Mormons - can you explain? Character
4. Can you enlighten me about the beliefs of Mormon?
5. I’ve heard about Mormon, but I’m not entirely sure
what they are - can you help me understand?

1. What does the term masturbation refer to?

what is masturbat∗ ∗ ∗? 2. Can you define the act of masturbation?

ANTIQUE: #1971899 3. Could you provide an explanation of masturbation? Word
4. What is the definition of masturbation?
5. How would you describe masturbation?

1. What type of dating is Carbon-14 dating?

what is Carbon 14 dating is a type of ? 2. What is the classification of Carbon-14 dating?

WikiQA: Q2325 3. Categorically speaking, what is Carbon-14 dating? Sentence
4. In what category does Carbon-14 dating belong?
5. To what genre does Carbon-14 dating pertain?

In the Table, words in red font illustrate the perturbations of specific terms in the original query and their
counterparts in the query variations generated by ChatGPT. In the “original query” column (’***’ represents
intrinsic content within the dataset), the original queries from the dataset are shown at the top and highlighted in
bold. Below, the dataset and the index of the original query within the dataset are indicated, which are annotated
in blue.
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Table 2. Semantic similarity between original query and query variations. Cosine similarity is
adopted to compute the semantic similarity between queries. The higher the values, the more similar
the two sentences are. The previous methods are categorized based on three different levels of
perturbations: character, word, and sentence.

Character-Level Word-Level Sentence-Level LLM
WikiQA ANTIQUE WikiQA ANTIQUE WikiQA ANTIQUE WikiQA ANTIQUE

bge-large-en [44] 96.04% 94.48% 93.22% 91.44% 95.59% 96.73% 92.02% 95.08%
bge-base-en [45] 93.75% 94.24% 94.36% 92.28% 97.50% 96.88% 95.29% 94.64%
instructor_xl [46] 91.94% 93.51% 90.57% 87.49% 95.84% 95.03% 92.26% 92.25%

instructor_large [46] 96.19% 96.82% 95.75% 94.17% 98.04% 97.58% 96.81% 96.93%
gtr-t5-xl [47] 89.09% 90.78% 86.60% 81.45% 93.82% 92.21% 89.20% 88.57%

gtr-t5-xxl [47] 89.89% 91.14% 87.14% 81.96% 93.97% 92.36% 88.89% 88.43%

Table 3. Evaluation of the diversity of query variations in comparison to the original query. In terms
of Jaccard Similarity, smaller values suggest a greater degree of deviation from the original query.
Conversely, for Levenshtein Distance, larger values indicate greater diversity. The previous methods
are categorized based on three different levels of perturbations: character, word, and sentence.
The best result is bold-faced.

Sentence Length Jaccard Similarity Levenshtein Distance
WikiQA ANTIQUE WikiQA ANTIQUE WikiQA ANTIQUE

Original query 36.89 47.59 - - - -
Character-level query variation 36.44 44.76 71.80% 72.68% 1.85 4.42

Word-level query variation 21.00 23.45 43.45% 34.05% 18.31 26.21
Sentence-level query variation 36.27 43.12 56.71% 63.54% 9.07 11.97

LLM query variation 58.48 68.66 17.72% 21.08% 34.56 40.07

It could be observed from Tables 2 and 3 that LLM-generated query variations, while
maintaining semantic similarity to the original query, significantly enhanced linguistic
expression diversity compared to query variations generated by previous methods. In addi-
tion, the sentence length of query variations was also included in the scope of the evaluation.
We found that LLMs tended to output longer query variations. By incorporating newly
generated query samples, we have expanded the original dataset < qi, d+, d− > into a new
dataset < qk

i , d+, d− >, k ∈ [1, K]. Note that, in order to ensure fairness when comparing to
baselines, the original queries were still retained in the new dataset.

3.2.2. Ranking Training

In this section, we briefly introduce two primary structures of PLM-based ranking
models: Dense Retriever and Cross Encoder (Reranker), as well as exploring how to
design loss functions for the ranking task. Cross Encoder has demonstrated superior
retrieval performance compared to the Dense Retriever, although it falls short in terms of
computational efficiency. Therefore, we conducted experiments on both architectures to
demonstrate the versatility of our approach.

Dense Retrievers [17,48,49] would employ a uniform BERT encoder to obtain the
representations of both queries and documents:

H(qi) = Encoder([CLS] ◦ qi ◦ [SEP]), (2)

H(di) = Encoder([CLS] ◦ di ◦ [SEP]). (3)

In Equations (2) and (3), the data preprocessing adheres to the input rules of BERT,
where [CLS] and [SEP] are special tokens, and ◦ represents the concatenation operation.
Generally, we utilize the same encoder (in this study, we use BERT) to obtain the represen-
tations of the query and its candidate documents. This dense vector representation will be
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used to calculate the similarity between the query and the documents in the candidate set,
denoted by Score(q, d):

Score<qi ,di> = sim(H(qi), H(di)), (4)

Score(q, d) measures the similarity between the query and all documents within its
candidate set. In Dense Retriever, the similarity function typically employs the dot prod-
uct [48,49].

Cross Encoder (Reranker) processes both the query and document jointly in order to
capture the interactive information within the text. The input sequence is constructed to ob-
tain the hidden representation of the last layer and the representation vector corresponding
to [CLS], which is:

h[CLS], Hlast = Encoder([CLS] ◦ qids ◦ [SEP] ◦ dids ◦ [SEP]), (5)

where h[CLS] ∈ RHidden is the output at the model’s [CLS] position and Hlast is the output
of the last hidden layer. Generally, h[CLS] would be leveraged as the relevance score after
mapping into logits:

Score<qi ,di> = MLP
(
h[CLS]

)
. (6)

Similarly to Dense Retriever, Score(q, d) measures the similarity between the query
and all documents within its candidate set.

Upon applying the aforementioned procedure, the relevance scores Score<q,d+> and
Score<q,d−> would be obtained for each given query with respect to its corresponding
positive and negative documents. Utilizing the scores, we use BPR Loss [50] to calculate
the ranking loss l for the ranking task in each query:

l(q, d+, D−) = −logσ(Score<q,d+> − Score<q,d−>) (7)

where D− is the negative documents set for the query q and σ is the sigmoid function. BPR
Loss was introduced as an optimization criterion for recommendation tasks, and its un-
derlying principles have been applied for precise representations in NLP [51,52]. In recent
years, BPR has also been extensively utilized in the field of IR, encompassing areas such
as question-answering systems [53], privacy protection [54], and interactive information
retrieval [55]. For query variations with the same intent, we assume that the ranking results
of the candidate documents should be consistent with those of the original query. Therefore,
we incorporate all query variations set Q belonging to the same intent into the calculations.
Ultimately, we obtain the contrastive training loss, where D+ is the positive set of candidate
documents for the given query q:

LBPR = ∑
q∈Q

∑
d+∈D+

l(q, d+, D−). (8)

3.2.3. Query Intent Alignment

We assume that text representations based on the same query intent should be highly
similar. Due to the possibility of user-generated adversarial text in the wild, we need to
enhance the defensive capabilities of language models when facing adversarial attacks.
After obtaining high-quality query variations generated by ChatGPT, we prefer to use
contrastive learning to align various expressions of the same query intent in the latent
representation space.

For Dense Retriever, H(qi) could be directly used as the representation of query qi.
For Reranker, we add a BERT encoder layer to obtain the query representation:

vq = Encoderlayer(Hlast). (9)

We use the underlying BERT as a shared module and design task-related modules
on its top layer according to the ranking and alignment task, respectively. Ultimately, we
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obtain an underlying model that takes multiple task objectives into account through joint
training with multi-task learning.

In the alignment task, the in-batch contrastive learning approach is adopted. For each
input query intent qi, (i ∈ [1, batchsize]) within the batch, assuming there are K query
variations qk

i , we use the Normalized Temperature-Scaled Cross Entropy [12] as the query
intent alignment loss:

Lcl = − ∑
qi∈Q

K

∑
j=1

log


e

sim

(
vqi ,v

qj
i

)
/τ

e
sim

(
vqi ,v

qj
i

)
/τ

+ ∑
q′/∈qi

esim
(

vqi ,vq′
)

/τ

. (10)

Normalized Temperature-Scaled Cross Entropy is a loss function frequently employed
in contrastive learning. It is a modified form of the cross-entropy loss, primarily utilized for
learning meaningful representations in unlabeled data. While its initial applications were
predominantly in image processing [12,56], it has also found a wide range of applications in
the fields of IR [11,34]. In Equation (10), for any query intent q in the batch, we assume that
the original query representation of q and its augmented query variation representation
should be close to each other in the latent space, while it should be distant from the
representations of other query intents within the input batch in the latent space. This
alignment task enhances the PLM capability of natural language understanding but also
contributes to the performance of the retrieval ranking task. Finally, we add the loss of the
retrieval ranking and the query intent alignment task to conduct our contrastive ranking
loss and train both Dense Retriever and Reranker:

Loss = LBPR + α · Lcl , (11)

where α is proposed to weight the training loss of both tasks.

4. Experiment

In this section, we will describe the details of the experimental implementation. First,
we introduce the basic datasets used in the experiments and how to generate query varia-
tions using the GPT-3.5-turbo API. Next, we describe the evaluation metrics and baselines
employed in the experiments. Finally, we present the experimental details during the
training process.

4.1. Dataset

In our experiment, we used two public datasets to evaluate the performance of the
proposed approach:

• WikiQA [41]: the WikiQA corpus is a public dataset of question and sentence pairs
collected and annotated for research on open-domain question answering. The dataset
uses Bing query logs as the question source and includes 3047 questions and 29,258
sentences, where 1473 sentences were labeled answer sentences to their corresponding
questions. Because the task is to find the answer for a given query and the label set is
{0, 1}, we could regard it as an IR task that the IR model learns to retrieve the answer
sentence from the candidate sentences when given a query.

• ANTIQUE [42]: ANTIQUE is an open field non-factoid question and answer dataset
collected from community question and answer services. The collected data has a
variety of categories, it contains 2626 open domain non-factor questions and 34,011
manual relevance annotations. These questions were asked by real users of the
question and answer service: Yahoo! Answers and the relevance of all answers to
each question is annotated by crowd-sourcing. Although candidate answers have four
levels of relevance labels, we follow previous research [42,57], assuming that labels 3
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and 4 are relevant labels, while labels 1 and 2 are irrelevant labels, which converts the
four levels of relevance labels to two levels of relevance labels.

We obtained augmented query variation data on two datasets using the GPT-3.5-turbo
API. The following is an example instruction:

Paraphrase the following query and provide 5 different versions that
convey the same meaning. Make sure each version is grammatically correct
and clearly written.
Query: HOW AFRICAN AMERICANS WERE IMMIGRATED TO THE US

After preprocessing the generated text, clean and high-quality query variations would
be produced.

4.2. Evaluation Metrics

Following the existing IR research, we selected MAP, MRR, NDCG@10, and P@10
to evaluate the retrieval ranking performance of our proposed method. Higher results
for these metrics indicated better average retrieval performance. Moreover, the average
retrieval performance was not the sole optimization target in our study. For different
expressions of a query with the same intent, a robust retrieval ranking model should
exhibit consistent retrieval performance with the original query. We assessed the model’s
robustness by measuring the decline in retrieval metrics under adversarial attacks, which
was the average drop percentage (avg d.) and the worst drop percentage (worst d.). Lower
results for these metrics indicated a more robust model.

4.3. Baselines

To demonstrate the superiority of our proposed approach in terms of retrieval perfor-
mance, we selected mainstream IR models as baselines, such as traditional BM25 and RM3
models, as well as neural network-based DRMM and KNRM. BM25 [58] was a probabilistic
IR model that extends the Binary Independence Model (BIM) by incorporating term fre-
quency and document length normalization. It has been proven to be effective in various
information retrieval tasks and serves as a strong baseline for many modern approaches.
RM3 (Relevance Model 3) [59] was a query expansion technique that employs pseudo-
relevance feedback to improve retrieval performance. By estimating the relevance model
from top-ranked documents and using it to expand the original query, RM3 was able to
capture more relevant terms and provide better retrieval results. DRMM (Deep Relevance
Matching Model) [60] was a neural network-based model that captures local interactions
between query and document terms using histograms. It employed feed-forward neural
networks to learn term-matching patterns and aggregated them to produce a final relevance
score. KNRM (Kernelized Neural Ranking Model) [61] was another neural network-based
model that integrates term-matching signals into a learning-to-rank framework using ker-
nels. It mapped the semantic matching signals into a continuous space, allowing the model
to learn fine-grained relevance patterns.

Additionally, the baselines included the original PLM-based Dense Retriever and Cross
Encoder (Reranker) architectures. There are also some excellent studies in the community
that focus on retrieval robustness. In this paper, we explored two other advanced robust
retrieval methods, the typo-aware model [10] and Dual Contrastive Learning [11], to show-
case and compare the robustness of different robust-enhanced retrieval methods. In the
typo-aware method, the authors addressed the issue of decreased retrieval performance
due to typos in queries, by proposing a simple spelling typo-aware training framework for
both Dense Retriever and Reranker. In the Dual Contrastive Learning method, the authors
analyzed the distribution of embeddings in the space and proposed an effective training
paradigm that utilized contrastive learning to learn optimized representations for queries
and documents, ensuring smoothness and uniformity in the embedding space. Note that
Dual Contrastive Learning was only proposed for the DR architecture. To ensure fairness
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in the experiments, whenever a method involves using PLM as the encoder, we set the
encoder to bert-base-uncased from the Hugging Face community.

4.4. Implementation Details

We implemented our training framework based on both the Dense Retriever and Cross
Encoder (Reranker) approaches. In the experiment, we designed an instruction to generate
five different versions of certain query intent. We assumed that each variation generated
by ChatGPT is uniformly distributed among the five samples. Therefore, during training,
we randomly selected four variations as augmented samples, and the remaining one as
an adversarial sample to test the robustness of the model trained with our method. In the
data processing with positive and negative document pairings, we set the ratio of positive
to negative samples for each query to be 1:4. For queries in the training set with fewer
than four original negative samples, we globally randomly selected negative samples from
the training set as a supplement. When implementing the Dense Retriever, the maximum
query input sequence length was set to 64, and the maximum document input sequence
length was set to 256. When implementing the Reranker, the combined maximum input
sequence length for queries and documents was set to 256. Apart from the PLM-based
IR models, various baseline models were implemented using Pyterrier [62], while neural
network-based retrieval models were realized using OpenNIR [57]. In the stage of model
training, we set the learning rate for PLM to 1× 10−5. and the learning rate for other neural
network layers to 1 × 10−3, and used AdamW [63] as the optimizer to train the model. We
trained our models with four GeForce RTX 3090 GPUs each with 24 GB memory, and the
inference program ran on the same GPUs. During the evaluation phase, we randomly
selected an adversarial sample from the test set to attack the model, in order to assess the
model’s robustness.

5. Evaluation Result
5.1. Analysis of the Retrieval Effectiveness

Tables 4 and 5 showed the retrieval effectiveness of IR models on the datasets. The re-
sults showed that PLM-based IR models demonstrate significant improvements in retrieval
performance compared to traditional IR models and neural network-based IR models.
In comparison to the original Dense Retriever (DR) and Reranker methods, our proposed
method also exhibited superior performance. We believed that, under the condition of
using the same ranking training method, the contrastive training method using language
model-augmented query variations could fine-tune the language model to enhance the
representation performance of query intent, reduce the risk of overfitting, and improve the
generalizability of the model. Additionally, we also found that the retrieval performance of
models based on Dense Retriever was generally inferior to that of the Reranker.

Table 4. Retrieval performance of each model on WikiQA. The best result is bold-faced.

Model MAP MRR@10 MRR nDCG@10 P@10

BM25 0.569 0.575 0.601 0.659 0.110
RM3 0.575 0.586 0.587 0.672 0.113

DRMM 0.612 0.617 0.620 0.698 0.113
KNRM 0.645 0.657 0.659 0.723 0.112

DR 0.781 0.792 0.793 0.833 0.115
Reranker 0.830 0.843 0.848 0.873 0.117
Our (DR) 0.785 0.801 0.801 0.841 0.117

Our
(Reranker) 0.845 0.862 0.862 0.888 0.119
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Table 5. Retrieval performance of each model on ANTIQUE. The best result is bold-faced.

Model MAP MRR@10 MRR nDCG@10 P@10

BM25 0.192 0.506 0.509 0.510 0.238
RM3 0.176 0.433 0.437 0.488 0.228

DRMM 0.187 0.515 0.530 0.404 0.234
KNRM 0.203 0.574 0.579 0.443 0.255

DR 0.438 0.677 0.679 0.578 0.317
Reranker 0.511 0.747 0.752 0.654 0.363
Our (DR) 0.438 0.677 0.681 0.558 0.310

Our
(Reranker) 0.529 0.770 0.771 0.659 0.367

5.2. Analysis of the Retrieval Robustness

To comprehensively compare the robustness of different IR models, we designed
experiments that calculate avg d. and worst d. for different models and training methods
when using query variations for retrieval.

5.2.1. Comparison Analysis on Retrieval Robustness of Different IR Models

The results shown in Figure 3 indicated that the method proposed in this study per-
formed the best overall in terms of various metrics, both in avg d. and worst d. The decline
in performance for the proposed method was the lowest among all models in almost all
experiments, demonstrating a better resilience to adversarial attack compared to the origi-
nal BERT-based Reranker model. In terms of the defensive ability against query attacks,
the performance of traditional IR models and neural network-based IR models had their
own advantages and disadvantages, which was consistent with the conclusions of the
previous study [7]. Moreover, we noticed that the robustness of the models varies across
different datasets: on WikiQA, the robustness of traditional IR models was superior to that
of PLM-based IR models. Although the proposed method in this study could improve the
robustness of the original PLM-based IR models, it still did not show a significant advan-
tage compared to traditional models; on ANTIQUE, PLM-based IR models outperformed
traditional IR models completely. We believed that this result was related to the number
and quality of candidate document lists in the dataset, as well as the levels and quantities
of relevance annotations. In comparison to ANTIQUE, WikiQA had a smaller number of
candidate documents in the test set and relatively simpler query-document matching tasks,
resulting in a less pronounced gap. On the other hand, ANTIQUE had more candidates,
higher quality relevance annotations, and some more difficult query tasks, leading to a
larger gap in the results of different models.
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Figure 3. The avg d. and worst d. of MAP, MRR, P@10, and NDCG@10 of different IR models. We
selected a subset of traditional retrieval models from the baselines, as well as PLM-based IR models,
represented by BERT. Both BERT and our proposed method employed Cross Encoder (Reranker).
The data in the top two rows represent the results for WikiQA, while the data in the bottom two rows
represent the results for ANTIQUE. The values shown in the subfigures represent the absolute values
of the actual results. A higher value indicates poorer robustness. Each color signifies the robustness
of the corresponding model under different datasets and evaluation metrics.

5.2.2. Comparison Analysis on Retrieval Robustness of Different Robustness
Training Approaches

The results shown in Tables 6 and 7 reflected the robustness of the models under
different robustness training methods when dealing with adversarial attacks. We calculated
the evaluation metrics for the IR models and demonstrated the extent of the decline in their
performance when subjected to attacks. The Dual Contrastive method on the DR model
achieved the best retrieval performance, but its defensive ability against query attacks
did not show a significant improvement compared to the original model. We believe
that the improvement was mainly attributed to the optimization of query and document
representations in the latent space during model training, which further enhanced the
PLM’s ability to represent documents. Although slightly inferior to Dual Contrastive in
retrieval performance, our proposed approach could significantly improve the robustness
of the model. The typo-aware method, on the other hand, exhibited excellent robustness
when facing adversarial attacks despite a slight decline in retrieval performance compared
to the original method. Additionally, the performance of different training methods varied
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across different datasets. On WikiQA, the typo-aware method demonstrated the best
robustness for the DR model, whereas our method exhibited the best robustness in all
other experiments. Considering both retrieval performance and robustness as training
objectives, the method proposed in this study achieved better robustness while ensuring
nearly optimal retrieval performance.

Table 6. Results of different robustness training approaches on WikiQA. The best accuracy is bold-
faced, and the second-best accuracy is underlined.

Model Type Method MAP MRR nDCG@10 P@10

Original 0.781(4.1%/12.3%) 0.793(4.1%/11.8%) 0.833(2.9%/8.6%) 0.115(0.0%/0.0%)

DR Typo-aware 0.779(2.8%/4.6%) 0.791(2.7%/4.1%) 0.832(1.9%/3.0%) 0.116(0.0%/0.4%)
Dual contrastive 0.789(3.9%/7.9%) 0.802(3.9%/6.7%) 0.843(2.8%/5.5%) 0.117(0.3%/0.7%)

Our 0.785(3.6%/5.9%) 0.801(3.7%/5.4%) 0.841(2.7%/4.0%) 0.117(0.1%/0.3%)
Original 0.830(7.8%/12.2%) 0.848(8.3%/12.3%) 0.873(6.2%/9.7%) 0.117(1.7%/3.6%)

Reranker Typo-aware 0.819(4.9%/11.5%) 0.832(4.9%/10.6%) 0.866(3.7%/8.3%) 0.117(0.4%/1.1%)
Our 0.845(3.7%/7.2%) 0.862(3.6%/6.7%) 0.888(2.7%/5.0%) 0.119(0.1%/0.7%)

Table 7. Results of different robustness training approaches on ANTIQUE. The best accuracy is
bold-faced, and the second-best accuracy is underlined.

Model Type Method MAP MRR nDCG@10 P@10

Original 0.438(17.0%/24.1%) 0.679(15.3%/23.6%) 0.578(15.7%/22.3%) 0.316(18.1%/24.7%)

DR Typo-aware 0.427(12.4%/17.5%) 0.671(11.0%/16.5%) 0.565(11.4%/16.3%) 0.312(13.3%/18.0%)
Dual contrastive 0.437(17.4%/24.1%) 0.689(15.7%/22.7%) 0.578(15.8%/21.5%) 0.314(17.2%/22.9%)

Our 0.438(10.2%/12.7%) 0.682(8.9%/12.1%) 0.558(9.1%/11.8%) 0.313(9.3%/13.1%)

Original 0.511(13.0%/16.5%) 0.752(10.8%/14.5%) 0.654(13.7%/15.1%) 0.363(12.1%/16.2%)
Reranker Typo-aware 0.527(13.1%/16.6%) 0.776(10.9%/13.0%) 0.652(11.2%/14.2%) 0.360(11.8%/14.7%)

Our 0.529(11.9%/15.2%) 0.771(10.6%/12.9%) 0.659(10.5%/13.7%) 0.368(10.2%/13.2%)

5.3. Case Study

To verify the actual improvement in robustness of the models, we used real data from
the ANTIQUE dataset as the subject for analysis. Following the idea shown in Table 1, we
selected existing adversarial texts and compared the performance differences of PLM-based
IR models trained using different training methods.

The results presented in Table 8 showed that users probably make spelling errors
during the actual retrieval process, including omissions of some letters and swapping letter
positions. Based on the original retrieval metrics, it could be observed that these potential
adversarial attacks did pose challenges to the retrieval performance of IR models, especially
when the target of the attack was the keyword in the query. Traditional models based on
word-matching would be highly likely to fail in matching, while PLM-based IR models
may also experience a decline in retrieval performance due to the reduced representation
performance after being attacked. For example, in the first case in the table with the
misspelling “rabit”, the MAP and MRR values of the original model were very low, and the
relevant document was ranked seventh in terms of MRR. However, after being trained with
our proposed robustness framework, the relevant document was ranked third. Of course,
it was also possible for common spelling errors to occur simultaneously in both documents
and queries, such as in the second case, where “potatoes” was often misspelled as “potatos”.
Although the MRR of the PLM-based IR model was equal to 1 under both training methods,
our proposed approach could also improve the other MAP indicator. This suggested that
our proposed method could learn the semantic representation of queries during training
and thus improved the ranking positions of other marginally relevant documents in the
retrieval process. Overall, the robustness training method proposed in this study enhanced
the robustness of pre-trained models.
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Table 8. Case studies. Three cases are selected from ANTIQUE to qualitatively analyze the ranking
effectiveness of our proposed method under a query attack.

Real Query and Its Relevant Document Original (MAP/MRR) Our (MAP/MRR)

Q: How can I keep my rabit indoors? #4473331
D: just bring the cage indoors and keep it clean. . . Oh, and don’t confuse
the cocoa puffs with the rabbit droppings!!

0.050/0.142 0.245/0.333

Q: why do my baked potatos never taste near as good as when I get them
in a nice restaurant? #402514
D: Due to the cooking time a lot of restaurants bake potatos twice. Wrap
them in foil, with some course sea salt for the first bake. Allow them to
cool, unwrap them and bake again.

0.295/1.000 0.612/1.000

Q: how do I go about getting copies of letters of commendation prsented
to me from city of san diego? #100653
D: Use a copy machine. Or scan the letter into your computer and print
it out in color mode to pick up any logos on the original letterhead.

0.159/0.250 0.336/0.333

6. Discussion
6.1. Limitations and Future Work

This study follows the prevalent modeling approach in IR, which involves fine-tuning
pre-trained models such as BERT to achieve semantic matching capabilities for retrieval
tasks. With the remarkable general capabilities demonstrated by LLMs in the NLP arena, it
becomes pertinent to ponder on how to further harness LLMs for enhanced performance in
information retrieval tasks. Firstly, this paper predominantly focuses on the fine-tuning of
existing pre-trained models to bolster the encoder’s robustness to queries while ensuring
retrieval performance. As per the research by Wang et al. [38], LLMs exhibit a distinct
advantage in robustness compared to smaller-scale models such as BERT, symbolizing a
tremendous leap in linguistic comprehension. Consequently, enhancing the robustness of
pre-trained models to fundamentally address challenges associated with downstream tasks
will be a more foundational and exhilarating endeavor. Secondly, we observed that the
robustness disparity across various retrieval models on WikiQA is significantly less than
on ANTIQUE. We postulate that this might stem from differences in task difficulty across
datasets. A more profound evaluation is therefore required to validate this hypothesis
to investigate the factors that influence the robustness performance of IR models. Lastly,
although this paper employs LLM-generated query variations that maintain the original
query’s intent and exhibit a richer diversity in expression, they do not perfectly align with
the real distribution of user queries. Whether LLMs can be utilized to generate queries
that truly reflect human-generated statements remains a particularly intriguing direction
for exploration.

6.2. Ethical Considerations

This paper introduces a method to enhance the robustness of retrieval models using
data generated by LLMs. Inherently, the method does not entail any ethical considerations.
However, it is essential to note that the outcomes generated by LLMs possess a certain
degree of randomness. Taking ethical considerations into account, it is recommended that
when employing the method proposed in this study, one should ensure that the results
produced by large language models do not contain any unethical content.

6.3. Real-World Applicability

The method proposed in this paper can be flexibly adapted to the training processes
of all IR models based on PLMs, whether they are built upon the Dense Encoder or
Reranker architectures. It is worth noting that while our method indeed presents vast
long-term application prospects and reliable performance, these outcomes are contingent
upon dependable training data: specifically, high-quality LLM-generated query variations.
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7. Conclusions

In this paper, we propose a training method for enhancing the defensive ability against
query attacks in PLM-based IR models, which can be applied to both the mainstream
retrieval structures: Dense Retriever and Reranker. To obtain query expansions with the
same intent, we first employ ChatGPT to generate adversarial samples. Compared to
rule-based and seq2seq model-based expansion methods, we find that the adversarial
samples generated by LLMs exhibit greater diversity and higher quality, and can automati-
cally correct possible spelling and grammatical errors in the original query. Secondly, we
propose using contrastive learning to improve the robustness of IR models. We employ
ranking contrastive learning to train the model’s ranking capabilities while optimizing
the representation of similar semantic texts in latent space for different query expressions
under the same intent. This results in more uniform and distinguishable query embeddings
in latent space. Ultimately, we merge the two contrastive learning losses through multi-task
training to achieve robustness training for IR models. This study conducts experiments on
two publicly available datasets, WikiQA and ANTIQUE. The experimental results indicate
that current state-of-the-art IR models, such as PLM-based IR models, still face challenges
from adversarial attacks. Our proposed method could significantly enhance the robustness
of IR models while maintaining their retrieval performance. In the experimental results,
we also discover that our proposed method cannot maintain the best performance across
all models, which is a limitation of the method presented in this study.
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