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Abstract: Trade-off between transient response and grid-side current quality is a well-known issue of
single-phase mains-connected power converters. A dual-loop control structure (usually based on
PI or type-II controllers) is typically employed in such systems to regulate the DC link voltage to a
constant reference (in order to maintain power balance) while forcing the grid-side current to have
a specific shape (in order to comply with power quality requirements). Introducing notch term/s
(tuned to certain multiple/s of the mains base frequency) into one of the loops allows either for the
improvement of the dynamic performance without worsening the total harmonic distortion of grid-
side current or for the enhancement of the current quality without impairing the dynamic response.
Since the maximum tolerable value of total harmonic distortion is typically imposed by a certain
power quality standard, it is desirable to enhance the transient response of the power converter system
as much as possible while keeping the total harmonic distortion at the maximum allowed value.
However, universal off-grid operating power conversion systems must support both 50 Hz and 60 Hz
mains; consequently, tuning the notch term/s to 50 Hz multiple/s would not be sufficient for a 60 Hz
mains operation and vice-versa. Consequently, this work examines the possibility of introducing
a dual-notch term into the control loop in order to cover both above-mentioned base frequencies.
It is demonstrated that under typical base frequency uncertainty values, the performances of dual-
notch terms are nearly decoupled so that the term tuned to a 50 Hz frequency (and optionally to
its multiples) has nearly no influence at a 60 Hz mains operation and vice-versa. Consequently,
the methodology allows for the improvement of the dynamics of universal grid-connected power
converters without total harmonic distortion (THD) deterioration. A stability analysis of the proposed
control structure is carried out and quantitative design guidelines, allowing for the attainment of an
optimized dynamic response for a given maximum tolerable total harmonic distortion, minimum
allowed phase margin and a certain base frequency uncertainty, are established. It is shown that a
DC link voltage loop bandwidth of 52 Hz may be attained while keeping the grid-side current THD
below 5%. Simulations and experimental results support well the proposed design methodology.

Keywords: single-phase grid-connected converter; transient response; total harmonic distortion;
notch filter; control system

1. Introduction

Mains-interfacing power conversion systems are typically obliged by power quality
standards to interchange sinusoidal-shaped current with the utility grid [1–3]. As a result,
alternating instantaneous power is exchanged between the two entities, formed by a DC
component and a power component pulsating at twice the mains base frequency [4–6].
While the DC component is transferred to/from the load/source in order to carry the
energy, the pulsating power constituent should not be allowed to reach the load/source to
avoid lifetime reduction and excessive losses [7–9]. Consequently, DC link capacitors are
typically employed to compensate instantaneous power mismatch between grid-side and
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load/source-side both in steady state and during transients [10–12]. This is accomplished
by regulating the average DC link capacitor voltage (reflecting the stored energy) to a
constant reference value employing a PI or type-2 compensator [13–16] without counter-
acting the pulsating power component. As a result, pulsating current flows through the
DC link capacitor, giving rise to an uncontrolled DC link voltage ripple [17,18], which
is proportional to the total power processed and inversely proportional to the DC link
capacitance value and DC link voltage reference value [19,20]. Upon sensing the DC link
voltage and feeding it back to the regulation loop, the ripple distorts the grid-side current
magnitude reference signal (created by the loop compensator), leading to an increased total
harmonic distortion (THD) of utility-side current [21,22]. In order to limit the THD, the
gain of DC link voltage loop compensator should be restricted in the vicinity of double the
base utility frequency [23], implying a trade-off between AC-side current THD and DC link
voltage dynamics in case compensators with monotonically decreasing frequency response
characteristics (e.g., PI or type-2) are employed [24–26]. Typically, around 10 Hz DC link
voltage loop bandwidth is attained under 5% grid-side current THD restriction. Such a rela-
tively low bandwidth imposes a high value of the required DC link capacitance in order to
cope with sharp load-side power variations, since the DC link voltage value should always
remain above the maximum of grid-side voltage to retain converter controllability [22,24].

Many solutions aiming to improve the trade-off have been suggested. Utilizing line
voltage and/or load current feedforward to compensate against parameter variations does
not increase the DC voltage loop bandwidth, yet it requires additional sensors [27–30]. The
ripple estimation and cancellation techniques proposed in [31–36] indicated an improved
performance, yet requiring a relatively complex circuitry and a significantly increased
computational burden. The implementation of approaches based on nonlinear and/or
time-varying control proposed in [37–40] call for a high-performance microcontroller. On
the other hand, linear filtering-based methods proposed in [41–47] seem to be much simpler
in terms of analysis and implementation. In particular, compensators combining a PI or
type-II term with a notch filter may be easily realized either digitally or by a simple analog
network. As mentioned above, the value of DC link voltage loop gain should be restricted
in the vicinity of double the base utility frequency in order to limit the THD. A notch filter
was combined with the current loop controller in [48] to enhance transient responses at
both the DC bus voltage and the output current. Introducing a notch filter tuned to double
the mains base frequency allows for local DC-link voltage loop gain minimization without
restricting the corresponding PI or type-II controller gain, thus attaining an increased
crossover frequency. Disturbance observer-based approaches, employing notch terms, were
shown to yield a similar effect [49,50]. Design guidelines for obtaining PI + Notch controller
coefficients based on the maximum tolerable grid-side current THD and transient DC link
voltage deviation were established in [51].

Nevertheless, neither of the above-mentioned notch-filter-based solutions took into
account the fact that a universal grid-connected converter must be capable of supporting
both 50 Hz and 60 Hz grid frequencies. Moreover, utilizing transient DC link voltage devi-
ation may yield non-optimal performance in terms of phase margin “overkill”. Recently,
a disturbance observer-based approach [50] was extended to employ dual-notch-based
action in [52], yet the methodology may only be applied to existing systems with slow PI
or type-II controllers and cannot be employed in from-scratch designs. In addition, the
control structures of disturbance observer-based methods are quite complex and not easy
to implement.

Consequently, the main contributions of this work are as follows:

1. It is suggested to combine a PI term with two notch filters, tuned to 50 Hz and
60 Hz, respectively, in order to support universal grid interfacing without the need
for controller redesign.

2. The minimum allowed phase margin is used as the second performance merit (along
with the maximum tolerable grid-side current THD) rather than the maximum tolera-
ble transient DC link voltage deviation. Such an approach allows the optimization of
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the latter rather than setting a desired value a priori (which may lead to a non-existing
solution, requiring further iterations).

An explicit process of deriving coefficients of the proposed PI + N2 controller employed
for regulating the DC-link voltage of single-phase converters interfacing either 50 Hz
or 60 Hz mains is proposed in this work. The proposed methodology allows for the
optimization of the DC-link voltage transient caused by step-like load changes while
attaining prescribed values of grid-side current THD and DC-link voltage loop phase
margin under the prescribed mains frequency uncertainty range.

The rest of the paper is organized as follows. The essentials of single-phase grid-
connected power conversion system operation are brought forward in Section 2. The
steady-state performance of the system in terms of total harmonic distortion and its dy-
namic response in terms of DC-link voltage deviation upon step-like load variation are
revealed analytically in Sections 3 and 4, respectively. Guidelines for the proposed controller
coefficient derivation are established in Section 5. The simulations and experiments of the
proposed methodology applied to a 500 W grid-connected converter are demonstrated in
Section 6. The paper is then concluded in Section 7.

2. Single-Phase Grid-Connected Power Conversion System

Consider a typical dual-stage off-grid operating power conversion system depicted
in Figure 1a, formed by a mains-interfacing AC/DC converter and a downstream DC-DC
converter, interconnected via a DC link capacitance CDC. The grid is assumed to act as
energy source in the subsequent discussion, yet the methodology remains valid in case
the energy flows from the DC side to the AC side. Moreover, all the variables below are
switching-cycle-average, i.e., free from switching components. Considering harmonic-free
mains and unity power factor operation for brevity (yet without loss of generality), the
grid-side voltage and current are given by [52]

vG(t) = vM(t) sin(
∫

ω(t)dt), iG(t) = iM(t) sin(
∫

ω(t)dt) (1)

with ω denoting the instantaneous base frequency of the grid and vM, iM representing the
corresponding magnitudes. In steady state, the above quantities are constant so that

vM(t) = VM, iM(t) = IM, ω(t) = ωG. (2)

In steady state, the base frequency of the mains may attain the following values,

ωG = α ·
{

100π, 50 Hz mains
120π, 60 Hz mains

(3)

with α ∈ [αmin < 1, αmax > 1] representing the corresponding deviation from nominal
values (i.e., |1 − α| indicates the corresponding uncertainty). On the other hand, DC-side
variables are also constant in steady state so that

vL(t) = VL, iL(t) = IL. (4)

Assuming lossless conversion, a functional diagram of the power conversion system
is shown in Figure 1b with

pL(t) = vL(t)iL(t), pG(t) = vG(t)iG(t), vDC(t)iDC(t) = pG(t)− pL(t), (5)

where vDC(t) and iDC(t) represent the voltage across the DC link capacitance CDC and the
corresponding current, respectively. Combining (1) with (5) yields [10]
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vDC(t)iDC(t) = vDC(t)CDC
dvDC(t)

dt︸ ︷︷ ︸
iDC(t)

= 0.5vM(t)iM(t)− 0.5vM(t)iM(t) cos
(

2
∫

ω(t)dt
)
− vL(t)iL(t), (6)
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reducing in steady state to

CDCvss
DC(t)

dvss
DC(t)
dt

= 0.5VM IM − 0.5VM IM cos(2ωGt)−VL IL, (7)

which may be split into
0.5VM IM = VL IL (8)

and

CDCvss
DC(t)

dvss
DC(t)
dt

= −0.5VM IM cos(2ωGt), (9)

respectively. Consequently, the steady-state expressions of grid-side current and DC link
voltage are given by

IM = 2PL
VM

, PL = VL IL (10)

and

vss
DC(t) = V∗DC

√
1− PL

ωG
(
V∗DC

)2CDC
sin(2ωGt), (11)

respectively, with V∗DC denoting the DC link voltage set point value. In practice,

PL

ωG
(
V∗DC

)2CDC
<< 1 (12)

typically holds; hence, (11) may be further reduced to [11]

vss
DC(t) ∼= V∗DC − ∆vDC(t), ∆vDC(t) = ∆VDC sin(2ωGt), ∆VDC = PL

2ωGV∗DCCDC
. (13)

Consequently, steady-state DC link voltage would always be formed by the dominat-
ing DC component and the significantly smaller double-base-frequency pulsating ripple
component, proportional to the load power and inversely proportional to the DC link
capacitance, DC link voltage set point, and base frequency of the mains.

It must be emphasized that two typical realizations of the grid-interfacing AC/DC
converter exist in practice. In case of unidirectional AC-to-DC power conversion, a grid-
interfacing converter is often realized by a diode bridge rectifier followed by a boost DC-DC
converter, as shown in Figure 1c. In case of DC-to-AC energy flow, the grid-interfacing
converter operates as an inverter and should be realized in a bridgeless manner, e.g., as
shown in Figure 1d. It should be mentioned, however, that unidirectional rectifiers may
also be realized by bridgeless topology circuits. The corresponding control structures
are depicted in Figure 2. In case a bridge-rectifier-based topology is utilized, all the
measurements are taken at the DC side of the converter. The outer (voltage) loop regulates
the DC link voltage by feeding the difference between the corresponding set point V∗DC and
the measured value vDC into the voltage controller CV, which calculates the mains current
magnitude value I∗M required to maintain the power balance (cf. (10)). On the other hand,
the rectified mains voltage |vG| is sensed and the corresponding unity magnitude template∣∣sin

∫
ω(t)dt

∣∣ is extracted and multiplied by I∗M in order to generate the reference signal for
the rectified grid-side current |iG|∗. The inner (current) loop regulates the rectified grid-
side current by feeding the difference between the corresponding reference |iG|∗ and the
measured value |iG| into the current controller CI, which calculates the required modulating
signal. The output of the PWM modulator is then fed to the switch of the boost DC-DC
converter (cf. Figure 1c).
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(b) a bridgeless rectifier/inverter.

In case a bridgeless topology is utilized, grid-side measurements are required. While
the outer (voltage) loop is similar to that of the bridge-rectifier-based topology, here the
mains voltage vG is sensed and the corresponding unity magnitude template sin

∫
ω(t)dt

is extracted and multiplied by I∗M in order to generate the reference signal for the grid-
side current i∗G. The inner (current) loop regulates the grid-side current by feeding the
difference between the corresponding reference i∗G and the measured value iG into the
current controller CI, which calculates the required modulating signal. The outputs of the
PWM modulator are then fed to the switches of the AC/DC converter (cf. Figure 1d).

It was shown in [53] that the attainable bandwidth ωCI of a typical current loop is
given by

ωCI ∼=
0.5π− PM∗I

Td
, (14)

where PM∗I is the desired phase margin of the current loop and Td is the total switching and
sampling delay, the worst case of which equals 1.5 times the sampling period. Considering
the typical values of PM∗I = π

4 and switching frequency of 50 kHz, the attainable current
loop bandwidth would be 2π·4167 rad/s, which is about two decades higher than the
attainable voltage loop bandwidth. Consequently, it may be assumed that

iG(t) = i∗G(t), |iG(t)| = |iG(t)|∗ (15)

with a high degree of accuracy. Noticing that

vG(t)iG(t) = |vG(t)||iG(t)| = pG(t). (16)

holds for (1) and combining (15) with (6) while taking Figures 1b and 2 into account, the
corresponding simplified closed-loop system representations are depicted in Figure 3 [51].
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In this paper, the controller CV is realized by a cascaded proportional-integral–dual-
notch (PI + N2) structure

CV(s) = K
τs + 1

s︸ ︷︷ ︸
PI(s)

· s2 + (200π)2

s2 + 2ξ f (200π)s + (200π)2︸ ︷︷ ︸
NF1(s)

· s2 + (240π)2

s2 + 2ξ f (240π)s + (240π)2︸ ︷︷ ︸
NF2(s)︸ ︷︷ ︸

N2(s)

(17)

with 0 ≤ ξf ≤ 1, proposed by the authors in [54]. There are three parameters to be deter-
mined (namely K, τ and ξf) according to the desired phase margin of the voltage loop PM∗V ,
the maximum tolerable total harmonic distortion value THD* and the expected deviation
of base frequencies from their nominal values α.

3. Total Harmonic Distortion

According to (10), (13) and Figure 3, there is

I∗M =
2PL
VM
− ∆VDC|CV(2ωG)| sin(2ωGt + argCV(2ωG)) (18)

in steady state. Consequently (cf. (15)), there is

|iG(t)| = I∗M|sin ωGt| = 2PL
VM

(
1− VM∆VDC

2PL
|CV(2ωG)| sin(2ωGt + argCV(2ωG))

)
|sin ωGt| (19)

in case of a diode bridge-based rectifier. If

VM∆VDC
2PL

|CV(2ωG)| << 1 (20)
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then (19) implies grid current [51]

iG(t) =
2PL
VM

(
1− VM∆VDC

2PL
|CV(2ωG)| sin(2ωGt + argCV(2ωG))

)
sin ωGt

= 2PL
VM

(
sin ωGt + VM∆VDC

4PL
|CV(2ωG)| cos(ωGt + argCV(2ωG))−

−VM∆VDC
4PL

|CV(2ωG)| sin(3ωGt + argCV(2ωG))

)
,

(21)

formed by the first and the third harmonic components only. Note that (21) also holds in the
case of bridgeless grid-interfacing converter implementation. Consequently, the grid-side
current THD is given by (cf. (20))

THD ∼=
VM∆VDC

4PL
|CV(2ωG)|. (22)

Furthermore, (20) may be reformulated as

2 · THD << 1, (23)

which is typically true since THD values of 5% and below are typically considered. Hence,
(20) is justified and (21) is a valid approximation.

It may be concluded from (21) that the pulsating ripple component of the DC link
voltage (13) imposes a non-zero grid-side current THD. Denoting the maximum tolerable
THD value as THD*, the combination of (13) and (21) yields the following constraint

VM
8ωGV∗DCCDC

|CV(2ωG)| = THD∗ ⇒ |CV(2ωG)| =
4(2ωG)V∗DCCDC

VM
THD∗, (24)

which must be satisfied within the region given by the following union (cf. (3))

(2αmin · 100π ≤ 2ωG ≤ 2αmax · 100π) ∪ (2αmin · 120π ≤ 2ωG ≤ 2αmax · 120π). (25)

Considering (23) with (17) yields

K
√

(2ωGτ)2+1
2ωG

×
(200π)2−(2ωG)

2√
((200π)2−(2ωG)

2)
2
+(4ωGξ f (200π))

2
(240π)2−(2ωG)

2√
((240π)2−(2ωG)

2)
2
+(4ωGξ f (240π))

2

=
4(2ωG)V∗DCCDC

VM
THD∗.

(26)

Combining (26) with (3) leads to

K
√

(2ωGτ)2+1
2ωG

×
1√

1+4ξ2
f

α2

(1−α2)
2

1√√√√√1+4ξ2
f

( 5
6 α)

2(
1−( 5

6 α)
2
)2

=
4(2ωG)V∗DCCDC

VM
THD∗,

ωG = α100π

K
√

(2ωGτ)2+1
2ωG

×

1√
1+4ξ2

f
α2

(1−α2)
2

1√√√√√1+4ξ2
f

( 6
5 α)

2(
1−( 6

5 α)
2
)2

=
4(2ωG)V∗DCCDC

VM
THD∗, ωG = α120π

(27)

unified as
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K

√
(2ωGτ)2 + 1

2ωG
f (α) =

4(2ωG)V∗DCCDC

VM
THD∗ (28)

with

f (α) =
1√

1 + 4ξ2
f

α2

(1−α2)
2

·



1√√√√√1+4ξ2
f

( 5
6 α)

2(
1−( 5

6 α)
2
)2

, ωG = α100π

1√√√√√1+4ξ2
f

( 6
5 α)

2(
1−( 6

5 α)
2
)2

, ωG = α120π
(29)

denoting the multiplication of tuned and un-tuned notch term gains, respectively. Plots
of f (α) versus 0.99 ≤ α ≤ 1.01 (signifying 1% mains frequency uncertainty) are depicted
in Figure 4 for different values of ξf. As expected, the gain of the notch term is zero at
nominal frequency (theoretically implying THD = 0), increasing with detuning. Moreover,
the highest total f (α) is attained at αmin for 50 Hz mains and at αmax for 60 Hz mains.
Nevertheless, since the magnitude response of the PI term in (17) monotonically decreases
until the effect zero begins to kick in, the gain at ωG = αmin·100π may be expected as the
worst case one. In addition, it is well-evident that increasing ξf improves robustness to
frequency variations. It should be emphasized that if ξf = 0 is selected, the control structure
in (17) reduces to the typical PI regulator.
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L
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M
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V

p t P p t p t P t p tω

= + = + = +
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4. Dynamic Response

Reformulating (6) as

CDCvDC(t)
dvDC(t)

dt
= 0.5vM(t)iM(t)− pL(t)− 0.5vM(t)iM(t) cos

(
2
∫

ω(t)dt
)

︸ ︷︷ ︸
p2(t)

(30)

and linearizing around the operating point by substituting

vDC(t) = V∗DC + ṽDC(t), iM(t) = 2PL
VM

+ ĩM(t), vM(t) = VM + ṽM(t),
pL(t) = PL + p̃L(t), p2(t) = PL cos(2ωGt) + p̃2(t),

(31)
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into (31) and neglecting high-order small-signal terms yields

CDCV∗DC
dṽDC(t)

dt
= 0.5VM ĩM(t) +

PL
VM

ṽM(t)− p̃L(t)− p̃2(t). (32)

The resultant control structure is depicted in Figure 5 [22].
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The corresponding loop gain is obtained as

L(s) = 0.5VM
CDCV∗DCs CV(s) =

0.5VMK
CDCV∗DC

τs+1
s2

s2+(200π)2

s2+2ξ f (200π)s+(200π)2
s2+(240π)2

s2+2ξ f (240π)s+(240π)2 =

ω2
n

2 ξn
ωn s+1

s2 NF1(s)NF2(s), ωn =
√

0.5KVM
CDCV∗DC

, ξn = ωn
τ
2 .

(33)

Denoting the crossover frequency of the voltage loop as ωCV, the corresponding phase
and gain contributions of the notch terms are given by

arg NF1(ωCV) = − tan−1
(

2ξ f
200π
ωCV
− ωCV

200π

)
, arg NF2(ωCV) = − tan−1

(
2ξ f

240π
ωCV
− ωCV

240π

)
,

|NF1(ωCV)| =
√√√√ 1

1+
4ξ2

f(
200π
ωCV

− ωCV
200π

)2

, |NF2(ωCV)| =
√√√√ 1

1+
4ξ2

f(
240π
ωCV

− ωCV
240π

)2

,
(34)

respectively. The Bode diagram of dual-notch term NF1(s)·NF2(s) is depicted in Figure 6
for different values of ξf and ω < 200π (since ωCV < 200π in practice). It is well-evident
that increasing the value of ξf escalates both the phase and gain contributions of the
dual-notch term.

It is well-evident that the gain contribution may be neglected within the whole fre-
quency range considered, thus

|L(ωCV)| ∼=
ω2

n

ω2
CV

√(
2ξn

ωCV
ωn

)
+ 1 = 1 (35)

should be satisfied at the crossover frequency ωCV, yielding the crossover frequency

ωCV = ξn

√√√√2 + 2

√
1 +

1
4ξ4

n︸ ︷︷ ︸
θn

ωn = θnωn. (36)
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On the other hand, the phase contribution in (34) must be taken into account, imposing

arg (L(ωCV)) =

tg−1
(

2ξn
ωCV
ωn

)
− tan−1

(
2ξ f

200π
ωCV
− ωCV

200π

)
− tan−1

(
2ξ f

240π
ωCV
− ωCV

240π

)
− π = −π+ PM∗V

(37)

at the crossover frequency with PM∗V indicating the desired voltage loop phase margin.
Solving (37) with (36), there is

ξn =


(

tg(PM∗V+β)
2
√

2

)4

2

(
tg(PM∗V+β)

2
√

2

)2

+ 1
4


1
4

, β = tan−1
(

2ξ f
200π
ωCV
− ωCV

200π

)
+ tan−1

(
2ξ f

240π
ωCV
− ωCV

240π

)
. (38)

Note that β in (38) may be approximated for simplicity (with some safety margin) as

β ∼= 2 tan−1

(
2ξ f

200π
ωCV
− ωCV

200π

)
, (39)

hence, in order to minimize it, ξ f should satisfy

ξ f <<
1
2

(
200π
ωCV

− ωCV
200π

)
. (40)

Setting ξ f to

ξ f =
1
2

λ

(
200π
ωCV

− ωCV
200π

)
, (41)

and substituting into (39), there is

β ∼= 2 tan−1(λ) ≈ 2λ, λ << 1. (42)
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In order to bound β by βmax degrees, λ should be set to

λ =
1
2

tan(βmax) (43)

and PM∗V increased by βmax degrees to compensate for β. For the value of βmax = 5◦

recommended in [51], λ = 0.0437 should be selected. In case ξ f is bounded according to
(40), ξn and θn are presented graphically versus the typical range of the desired voltage
loop phase margin values in Figures 7 and 8, respectively. It may be concluded that both
parameters increase with the rise in PM∗V . In addition, the crossover frequency ωCV is
always higher than ωn for the practical values of the desired voltage loop phase margin.
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In practice, the variations of grid voltage magnitude and frequency are slower with
respect to the voltage loop time constant. Consequently, a critical transient response is the
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one caused by load power variations. The corresponding transfer function of interest may
be derived from Figure 5 (neglecting the influence of the dual notch term) as

ṽDC(s)
p̃L(s)

∣∣∣
p2(t)=0

≈ −Gn
s

s2+2ξnωns+ω2
n

, Gn = 1
CDCV∗DC

. (44)

Therefore, the load power step of ∆PL imposes a DC link voltage perturbation ex-
pressed as

ṽDC(s)|p2(s)=0 = − Gn∆PL

s2 + 2ξnωns + ω2
n
⇒ ṽDC(t)|p2(t)=0 = − Gn∆PL

ωn
√

1− ξ2
n

e−ξnωnt sin
(

ωn

√
1− ξ2

nt
)

. (45)

On the other hand, the contribution of p2(t) is given by ∆vDC(t) in (13). Consequently,
the total DC link voltage deviation may be approximated by

ṽDC(t) = ṽDC(t)|p2(t)=0 + ∆vDC(t) =

− Gn∆PL

ωn
√

1−ξ2
n

e−ξnωnt sin
(

ωn
√

1− ξ2
nt
)
− ∆PL

2ωGV∗DCCDC
sin(2ωGt),

(46)

bounded by

ṽDC(t) = vDC(t)−V∗DC ≥

max
(

ṽDC(t)|p2(t)=0

)
+ max(∆vDC(t)) = − ∆PL

V∗DCCDC

 1
ωn

e
− ξn cos−1 ξn√

1−ξ2
n + 1

2ωG

.
(47)

Since the value of ξn is dictated solely by PM∗V + βmax (cf. (38)), the total DC link
voltage deviation is reduced when ωn is increased. Since ωn is proportional to ωCV (cf. (37))
for a given PM∗V , increasing ωn is equivalent to increasing the voltage loop bandwidth.
Moreover, the right-hand side within the brackets of (46) implies that ωG = αmin·100πwould
also be the worst case in terms of contribution to the DC link voltage deviation. It should be
recalled that in an earlier work [51], the desired undershoot value rather than the minimal
tolerable phase margin was used as a performance merit, yielding excessive stability at the
expense of a larger DC link voltage overshoot. Here, a minimal tolerable phase margin is
imposed, yielding an improved DC link voltage undershoot, as shown next.

5. Controller Parameters Selection

Combining (28) with (33) and solving while considering the worst-case grid frequency
ωG = αmin·100π yields

ωn =
√

8ξnαmin100π

√√√√√1 +
(THD∗)2

ξ4
n f 2(αmin)

− 1. (48)

with
f (αmin) =

1√
1 + 4ξ2

f
α2

min

(1−α2
min)

2

1√
1 + 4ξ2

f
( 5

6 αmin)
2(

1−( 5
6 αmin)

2)2

. (49)

As mentioned at the end of the preceding section, ωn should be maximized in order to
optimize the transient response (i.e., minimize the DC link voltage deviation). According
to (43), this implies minimizing the value of f (α) since ξn is dictated solely by PM∗V + βmax.
However, this conclusion contradicts the one drawn in Section 3, where the opposite was
required in order to improve the steady-state performance. Consequently, the trade-off
between steady-state and dynamic performances remains and the proposed methodology
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aims to improve it but not eliminate it. According to (36) and (48), the crossover frequency
is then given by

ωCV = θn
√

8ξnαmin100π

√√√√√1 +
(THD∗)2

ξ4
n f 2(αmin)

− 1. (50)

Substituting (50) into (41) and rearranging, there is

ξ f =

1
2 λ

 1

θn
√

2ξnαmin

√√√√√1+ (THD∗)2

ξ4
n f 2(αmin)

−1

− θn
√

2ξnαmin

√√
1 + (THD∗)2

ξ4
n f 2(αmin)

− 1

. (51)

Since θn and ξn are known from (36) and (38), solving (51) with (49) yields the value of
ξ f . Then, ωn is obtained from (48) and the coefficients of the PI controller term in (17) are
obtained as (cf. (33))

K =
2CDCV∗DC

VM
ω2

n, τ = 2 ξn
ωn

. (52)

The proposed process of controller coefficient tuning is then summarized as follows:

1. Initialize βmax and PM∗V .
2. Obtain θn using (36), ξn using (38) and λ using (43).
3. Initialize THD* and αmin.
4. Obtain ξf using (51) and ωn using (48).
5. Initialize VM, CDC and V∗DC.
6. Determine K and τ using (52).
7. Verify the design by Bode diagram.
8. Release requirement/s and iterate if necessary.

6. Example and Validation

Consider a bidirectional 500 W single-phase grid-connected converter shown in
Figure 9 (the downstream DC-DC converter is represented by the power load element
pL [55]) operating at a switching frequency of 30 kHz with L = 3.5 mH. The value of the DC
link capacitance was set to CDC = 385 µF [22] and the DC link voltage set point was selected
as V∗DC = 400 V [51]. The desired performance merit pair was selected as THD* = 0.05,
PM∗V = 40◦. The grid frequency uncertainty was assumed to be 1%, i.e., α ∈ [αmin = 0.99,
αmax = 1.01] were considered for both 50 Hz and 60 Hz mains and the corresponding
magnitude was set to VM = 325 V. According to the process of controller coefficient tuning
proposed in the previous section:

1. β = 7.5◦ and PM∗V = 40◦ + 7.5◦.
2. θn = 1.2, ξn = 0.45 and λ = 0.066.
3. THD* = 0.05 and αmin = 0.99.
4. ξf = 0.047 and ωn = 2π·45 rad/s.
5. VM = 325 V, CDC = 385 µF and V∗DC = 400 V.
6. K = 76 and τ = 0.0032.

The resulting Bode diagram of the DC link voltage loop gain (cf. (33)) is depicted in
Figure 10, indicating a crossover frequency of ωCV = 2π·52 rad/s and a phase margin of
39.2◦ in accurate agreement with PM∗V = 40◦.
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It is interesting to compare the expected performance to the one demonstrated in [51].
Here, voltage deviation of ~10 V is expected (cf. (47)) under a 40◦ phase margin. On the
other hand, a DC link deviation of 20 V was attained in [51] under a 58◦ phase margin. It
may be then concluded that imposing a minimal tolerable phase margin yields an optimized
DC link voltage deviation, as stated at the end of Section 4.

6.1. Simulations

During simulations (PSIM 2022 software), the transient responses of the DC link voltage
and grid-side current to a zero-to-rated power step-like load variation, and the correspond-
ing steady-state performance under the proposed control methodology were evaluated. The
results are depicted in Figures 11 and 12 for 50 Hz and 60 Hz mains, respectively.
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It may be concluded that the system operates as expected under the proposed method-
ology in terms of dynamic response (a ~10 V DC link voltage deviation is evident irrespec-
tively of mains frequency). As to the grid-side current quality, Table 1 summarizes the
corresponding steady-state THD values. It is evident that the system designed according to
the proposed approach complies well with THD* at ωG = αmin·100π. Moreover, the THD
attains near-zero values at the nominal values of the mains frequency, as predicted above.

Table 1. PSIM-measured THD in simulations.

ωG/2π 49.5 Hz 50 Hz 50.5 Hz 59.4 Hz 60 Hz 60.6 Hz

THD% 5 0.1 4.52 3.98 0.067 3.68

6.2. Experiments

In order to validate the proposed methodology experimentally, a modified Texas
Instruments High Voltage Single Phase Inverter Kit [56] (Figure 13) was utilized.
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Figure 13. Texas Instruments High Voltage Single Phase Inverter Development Kit.

The control algorithm was realized adopting first-order hold digitization [57] by a
TMS320F28335 DSP-based control card under an average-current-controlled inner loop.
The utility was emulated by an APS-7100 Gw Instek programmable AC power source
operating as 50 Hz/60 Hz ± 1%, 230Vrms sinusoidal voltage source. The M9715B Maynuo
DC electronic load functioning in constant power mode was employed to emulate the
power load pL (cf. Figure 9).

During the simulation framework, it was shown that frequency variations have a
negligible influence on the shape of transient responses; hence, the latter were recorded
for nominal mains frequency values only. The corresponding results are depicted in
Figure 14, matching well the corresponding simulation results demonstrating ~10 V DC
link deviations upon a step-like load variation.



Appl. Sci. 2023, 13, 10144 19 of 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 25 
 

 
Figure 13. Texas Instruments High Voltage Single Phase Inverter Development Kit. 

The control algorithm was realized adopting first-order hold digitization [57] by a 
TMS320F28335 DSP-based control card under an average-current-controlled inner loop. 
The utility was emulated by an APS-7100 Gw Instek programmable AC power source op-
erating as 50 Hz/60 Hz ± 1%, 230Vrms sinusoidal voltage source. The M9715B Maynuo DC 
electronic load functioning in constant power mode was employed to emulate the power 
load pL (cf. Figure 9). 

During the simulation framework, it was shown that frequency variations have a 
negligible influence on the shape of transient responses; hence, the latter were recorded 
for nominal mains frequency values only. The corresponding results are depicted in Fig-
ure 14, matching well the corresponding simulation results demonstrating ~10 V DC link 
deviations upon a step-like load variation. 

 
Figure 14. Experimental results. DC link voltage response to load increase for (a)ωG = 2π·50 rad/s,
and (b)ωG = 2π·60 rad/s.

The steady-state performance under a rated load around 50 Hz and 60 Hz mains is
demonstrated in Figures 15 and 16, respectively. Prior to the experimental framework,
the AC power source voltage THD was measured and found to be 0.5%, as shown in
Figure 9 in [22]. This value should be taken into account in order to correctly interpret the
measured values of THDi. Table 2 summarizes the corresponding steady-state THD values.
It is evident that the system designed according to the proposed approach complies well
with THD*.
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Table 2. Scope-measured THD in experiments.

ωG/2π 49.5 Hz 50 Hz 50.5 Hz 59.4 Hz 60 Hz 60.6 Hz

THD 0.0535 0.0261 0.053 0.0528 0.0212 0.046

7. Conclusions

A method for deriving the coefficients of a proportional-integral and dual-notch con-
troller employed for regulating the DC link voltage of single-phase converters interfacing
either 50 Hz or 60 Hz mains was proposed in this work. The suggested approach allows for
the optimization of the DC link voltage transient caused by step-like load changes while
attaining the prescribed values of the grid-side current total harmonic distortion and the DC
link voltage loop phase margin under a certain uncertainty range of mains frequency. An
explicit process of controller coefficient tuning was established and successfully validated
both by simulations and experimentally. It was shown that the 50 Hz and 60 Hz notch
terms are nearly decoupled in frequency domain, allowing the proposed methodology
to attain an approximate 5-fold increase in the DC link voltage loop crossover frequency
compared to the classical PI control under a 5% grid-side current THD restriction, a 45◦

phase margin and a 1% grid frequency uncertainty. Future work on the subject will focus
on distorted grid interfacing (calling for multi-dual-notch-based control structure) and
examining the advantages of replacing the PI term of the controller with a type-II regula-
tor. It is expected that the additional degree of freedom inherent in the type-II regulator
may further improve the trade-off between steady-state and transient converter behavior.
Moreover, multi-dual-notch-based control structures may give rise to stability issues which
must be identified and appropriately resolved.
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