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Abstract: Diagnostic radiologists need artificial intelligence (AI) for medical imaging, but access
to medical images required for training in AI has become increasingly restrictive. To release and
use medical images, we need an algorithm that can simultaneously protect privacy and preserve
pathologies in medical images. To address this, we introduce DP-GLOW, a hybrid that combines the
local differential privacy (LDP) algorithm with GLOW, one of the flow-based deep generative models.
By applying a GLOW model, we disentangle the pixelwise correlation of images, which makes it
difficult to protect privacy with straightforward LDP algorithms for images. Specifically, we map
images to the latent vector of the GLOW model, where each element follows an independent normal
distribution. We then apply the Laplace mechanism to this latent vector to achieve ε-LDP, which
is one of the LDP algorithms. Moreover, we applied DP-GLOW to chest X-ray images to generate
LDP images while preserving pathologies. The ε-LDP-processed chest X-ray images obtained with
DP-GLOW indicate that we have obtained a powerful tool for releasing and using medical images for
training AI.

Keywords: differential privacy; deep generative models; medical images; privacy protection; database;
image obfuscation

1. Introduction

Diagnostic radiologists need artificial intelligence (AI) for medical imaging to reduce
workloads and enhance productivity. However, access to medical images required for the
training of AI has become increasingly restrictive owing to the increasing demands for the
protection of personal information in each country. Moreover, data use agreements bind the
purpose of use for even medical image datasets open to researchers upon request (e.g., [1]).
Additionally, if someone specifies personal identities in medical images, irreversible leakage
of personal information may occur.

Here, we assume a situation in which we anonymize test datasets when training
datasets are open to the public. We further assume that probabilistic distributions of
medical images for the training and test datasets are similar. For example, the training
dataset can be a large-scale dataset already open to the public from a hospital, and the test
dataset can be a dataset privately held by another hospital.

Differential privacy (DP) algorithms [2] have recently emerged as tools with a provable
privacy protection guarantee and usefulness. We specifically focus on local DP (LDP) [3],
which adds noise to each image so that we cannot specify any identity in an image. Because
one can anonymize the image upstream of image processing using LDP algorithms, we can
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use the processed images without limiting the purpose of use. At the same time, LDP can
retain valuable information in the original image, e.g., lung opacity suggesting pneumonia
in chest X-ray (CXR) images.

Because CXR images are the most representative medical images, in this study, we
adopt CXR images from the Radiological Society of North America (RSNA) dataset. How-
ever, we can extend the proposed method to natural images and medical images of arbitrary
modality and dimensions.

To summarize, our contributions are as follows:

1. We adopt GLOW to disentangle image pixels and realize the ε-LDP algorithm for
images (DP-GLOW).

2. We generate ε-LDP-processed CXR images.
3. We evaluate the usefulness of ε-LDP-processed CXR images using a pneumonia

detection model.
4. We visually confirm how the proposed method obscures identities in medical images.

2. Related Works

Abadi et al. [4] proposed a differentially private stochastic gradient descent (DP-SGD)
method, in which a controlled noise is added to the gradient of parameters and then
clipped during the training of a deep model. Ziller et al. [5] proposed the training of a
segmentation network for CXR images using a discriminative model trained with DP-SGD.
Kossen et al. [6] proposed the generation of differentially private time-of-flight magnetic
resonance angiography (TOF-MRA) images using generative adversarial networks (GANs)
trained with DP-SGD. For DP-SGD, the theoretical guarantee that images generated using
GANs trained with DP-SGD satisfy ε-LDP is not apparent.

Fan [7] adopted LDP (although it is not explicitly stated in the paper) for pixelized
images. Image pixelization has the effect of reducing the global sensitivity of the LDP
algorithm. Fan [8] proposed another LDP algorithm using pixelization and Gaussian
blur. However, these methods can significantly degrade the quality of the original images.
Croft et al. [9], Liu et al. [10], and Li and Clifton [11] almost simultaneously proposed
another LDP algorithm for images. Liu et al. [10] showed a concrete implementation using
GANs, whereas Croft et al. [9] showed an abstract formulation. The implementation of the
LDP algorithm for images by Li and Clifton is similar to that by Liu et al., but Li and Clifton
adopt clipping so that the generated LDP images are within the probabilistic distribution
of training images. Finally, Croft et al. [12] experimented with an LDP algorithm for facial
obfuscation. On the other hand, we propose an algorithm for local differential privacy
using GLOW [13], one of the flow-based deep generative models. We adopt GLOW as it is
a renowned and representative flow-based deep generative model. While it is challenging
to map real images to latent space without degrading them in GANs, it is easily achievable
with flow-based deep generative models.

In previous studies [7–12], LDP was not adopted for medical images. Therefore,
previous studies did not evaluate the usefulness of LDP-processed images being able to
contain valuable information for AI for medical imaging; in this study, we aim to evaluate
the usefulness experimentally and quantitatively. As a metric of usefulness, we adopt the
area under the curve (AUC) for pathology detection (we assume pneumonia detection in
this study), which is essential in AI for medical imaging.

3. Materials and Methods
3.1. Dataset for CXR Images

We took CXR images from the RSNA Pneumonia Detection Challenge dataset [14].
This dataset comprises 30,000 frontal-view CXR images, with each image labeled as “Nor-
mal”, “No Opacity/Not Normal”, or “Opacity” by one to three board-certified radiolo-
gists. The Opacity group consists of images with suspicious opacities suggesting pneumo-
nia, and the No Opacity/Not Normal group consists of images with abnormalities other
than pneumonia.
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We show the composition of the CXR image sets in Table 1. We randomly sampled
CXR images for the three datasets. We then trained GLOW, one of the flow-based deep
generative models (DGMs) using S train

mixture. The goal was to ensure that lung opacity, which
suggests pneumonia, was not overly obfuscated for the DP-GLOW algorithm. For testing
purposes, we used images from S test

unknown to generate ε-LDP-CXR images with DP-GLOW.
Subsequently, we detected pneumonia from these ε-LDP-CXR images. Additionally, we
utilized S train

normal to train a separate model specifically designed to detect pneumonia from
CXR images (see Appendix A for details).

Table 1. Composition of datasets. S train
normal and S train

mixture share 6529 normal CXR images.

Set Normal Abnormal

S train
normal 7808 0

S train
mixture

6553 6631

S test
unknown

1358 13,863

3.2. Preliminary for GLOW

The probability distribution from which images arise is complex and difficult to handle.
Thus, flow-based deep generative models (DGMs) [13,15,16] transform this probability
distribution into more manageable distributions, e.g., the elementwise independent normal
distribution, by requiring the neural network to be bijective. Specifically, using the change
of variables formula, we obtain the following:

log p(x) = log p(z) + log
∣∣∣∣ ∂z
∂x

∣∣∣∣, (1)

where z is a random variable vector that follows a Gaussian distribution independent for
each element, and x is a random variable vector sampled from the probability distribution to
which images belong. During this transformation process, the logarithm of the determinant
appears with respect to the neural network. To efficiently compute this, the neural network
is decomposed and represented as a product of functions where the determinant is easy to
compute. Specifically, we define the relationship between z and x:

z = G−1
θ (x), (2)

= g−1
K ◦ g−1

K−1 · · · g
−1
1 (x), (3)

where G−1
θ is a trainable (parameters θ) invertible map between a probabilistic distribution

of images and a tractable probabilistic distribution (elementwise independent normal
distribution in our settings) and g−1

K · · · g
−1
1 are decomposed functions. Using Equation (1),

the flow-based DGMs maximize the average logarithm likelihood of training images (L)
during training:

L =
1
|D|

D
∑

i
log p(xi), (4)

where D represents image dataset, xi indicates an image in the dataset, and |D| is number
of images in the dataset. After the training, the flow-based DGMs can generate fake but
realistic images using Equation (3) (sampling) and can explicitly compute the value of the
probabilistic density function of images using Equation (1) (density estimation).

GLOW [13] is one of the flow-based DGMs. The deep network in GLOW recursively
contains the actnorm, coupling, and permutation layers. The actnorm layer normalizes the
data. The coupling layer contains deep convolutional neural networks while it guarantees
the invertibility of the layer. The permutation layer ensures that processing in coupling lay-
ers affects all the elements of data and is implemented using 1× 1 convolution. Moreover,
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GLOW adopts a multiscale architecture, which can contain multiple deep networks of dif-
ferent recursive levels. This approach can reduce memory requirements and computational
costs without significant compromise to image quality. For a detailed understanding of
GLOW, we refer the reader to [13].

3.3. Our Framework: DP-GLOW

We represent a gray-scale CXR image as a vector x ∈ RH×W , where H and W are the
height and width of the image, respectively. We assume that the abovementioned GLOW
has already been trained with many CXR images. Moreover, as a result of the training,
we assume that we obtained an invertible map G−1

θ between an elementwise independent
normal distribution and a probabilistic distribution of CXR images.

Our objective is to generate another image x̃ from x, which satisfies the definition
of ε-LDP:

log p(x̃|x)− log p(x̃|x′) ≤ ε, (5)

where ε(≥ 0) is the privacy budget, x′ is an arbitrary image taken from a probabilistic
distribution of CXR images, p(x̃|x) is the posterior probability to obtain x̃ when we already
obtained x, and p(x̃|x′) is the posterior probability to obtain x̃ when we already obtained
x′. Specifically, even if we simply add noise that follows a Laplace distribution to the
image itself, the image satisfies local differential privacy. However, especially when the
privacy budget is small, the intensity of the noise increases, and the class of the image
(in this case, CXR images) is not retained. In such cases, the utility drastically decreases.
To avoid this, in this study, we add noise following the Laplace distribution to the image
mapped to the latent space and then revert the perturbed latent space vector back to the
image space. To this end, we introduce a trained invertible vector function G−1

θ , which
maps x into another vector z (a latent space vector), each element of which does not have
a correlation with other elements. This vector function is, in general, dependent on the
probabilistic distribution of images we adopt (e.g., CXR, head computed tomography, and
mammography images). Therefore, we explicitly represent this dependence as parameters
θ. We further define z′ ≡ G−1

θ (x′), and z̃ ≡ G−1
θ (x̃). As we will prove later, we can add

noise that follows the Laplace distribution to the latent space vector:

z̃k = zk +Nk, (6)

Nk ∼ Lap
(

µk = 0, σk =
∆zk

ε
H·W

)
, (7)

where µk and σk are, respectively, the expectation (a scalar) and scale (a scalar) of the
Laplace distribution, ε is the user-defined privacy budget, and ∆zk is the sensitivity for the
element k defined as:

∆zk := max
z,z′ :z 6=z′

|zk − z′k|, (8)

where z and z′ run latent vectors of all the training images. Moreover, we set a bound for
each element of the latent space vector so that x and x̃ are in the probabilistic distribution
of CXR images:

zk ← clip
(

zk, ck −
wk
2

, ck +
wk
2

)
, (9)

z̃k ← clip
(

z̃k, ck −
wk
2

, ck +
wk
2

)
, (10)

wk = α · (maxzzk −minzzk), (11)

ck =
(maxzzk + minzzk)

2
, (12)
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where min and max operators, respectively, find the minimum and maximum values over
all the latent space vectors z for training images, the scalar function clip(x, a, b) bounds
the value of x such that a ≤ x ≤ b, and the subscript k means the element number (runs
all the elements of the latent space vector). We empirically set α = 0.4 in this study. An
overly large α can cause significant collapse of the input images, while an excessively small
α tends to overly normalize them. Now we can generate a differentially private image x̃ for
the budget ε,

x̃ = Gθ(z̃). (13)

We prepare the vector function G−1
θ by training one of the flow-based DGMs, i.e.,

GLOW, with many CXR images prior to executing this locally differential private algorithm.
We summarize our DP-GLOW algorithm to generate ε-LDP images below:

1. Train GLOW (maximize the average logarithm likelihood) with many CXR images to
obtain G−1

θ .
2. Set the privacy budget ε.
3. Compute sensitivity from the training CXR images following Equation (8).
4. Compute image-dependent clipping parameters following Equations (11) and (12)

from the training CXR images.
5. Map an image x from the test CXR images set onto the latent vector z.
6. Clip z following Equation (9).
7. Add noise following Equation (6) to obtain z̃.
8. Clip z̃ following Equation (10).
9. Map the clipped latent vector z̃ onto the CXR image space by Gθ to obtain a ε-LDP

CXR image.

In Figure 1, we visually illustrate the DP-GLOW algorithm to clarify the step where
we introduce noise using the Laplace mechanism.

Finally, we prove that our framework indeed satisfies ε-LDP. We can obtain the
following equations using the change of variable formula:

log p(x̃|x) = log p(x̃, x)− log p(x) (14)

= log p(z̃, z) + log
∣∣∣∣det

(
∂(z̃, z)
∂(x̃, x)

)∣∣∣∣
− log p(z)− log

∣∣∣∣det
(

∂z
∂x

)∣∣∣∣ (15)

= log p(z̃|z) + log
∣∣∣∣det

∂z̃
∂x̃

∣∣∣∣
+ log

∣∣∣∣det
∂z
∂x

∣∣∣∣− log
∣∣∣∣det

∂z
∂x

∣∣∣∣ (16)

= log p(z̃|z) + log
∣∣∣∣det

∂z̃
∂x̃

∣∣∣∣, (17)

where p(x) is the same as in Equation (1), and we used the following modification:

log
∣∣∣∣det

(
∂(z̃, z)
∂(x̃, x)

)∣∣∣∣ = log
∣∣∣∣ ∂z̃

∂x̃
∂z
∂x̃

∂z̃
∂x

∂z
∂x

∣∣∣∣ (18)

= log
∣∣∣∣ ∂z̃

∂x̃
∂z
∂x̃

0 ∂z
∂x

∣∣∣∣ (19)

= log
∣∣∣∣det

∂z̃
∂x̃

∣∣∣∣+ log
∣∣∣∣det

∂z
∂x

∣∣∣∣. (20)
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Figure 1. Overview of the DP-GLOW algorithm.
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We have ∂z̃
∂x = 0 because vector z is fixed and there is no correlation between proba-

bilistic vector N and any image vector x.
Therefore, we have:

log p(x̃|x) = log p(z̃|z) + log
∣∣∣∣det

∂z̃
∂x̃

∣∣∣∣, (21)

and

log p(x̃|x′) = log p(z̃|z′) + log
∣∣∣∣det

∂z̃
∂x̃

∣∣∣∣. (22)

Substituting those equations, we have:

log p(x̃|x)− log p(x̃|x′) = log p(z̃|z)− log p(z̃|z′). (23)

Combined with the Laplace mechanism, we can ensure:

log p(x̃|x)− log p(x̃|x′) = log p(z̃|z)− log p(z̃|z′) (24)

=
H·W
∑
k

log p(z̃k|zk)

−
H·W
∑
k

log p(z̃k|z′k) (25)

=
H·W
∑
k
−|z̃k − zk|

H·W·∆zk
ε

+
|z̃k − z′k|
H·W·∆zk

ε

(26)

≤ ε

H ·W ·
H·W
∑
k

| − z′k + zk|
∆zk

(27)

≤ ε, (28)

where k runs each element of vectors.

3.4. Hyperparameters

We show the hyperparameters for the training of CXR image sets S train
normal and S train

mixture
in Table 2. The ‘learn-top’ option determines whether we train the means and variances
of the latent space in GLOW. The minibatch size refers to the number of images trained
simultaneously during batch learning. To train GLOW, we used Tensorflow 1.12.0 [17]. The
versions of CUDA and cuDNN were 9.0 and 7.4, respectively. We carried out all processes
in one computing node of the Reedbush-L supercomputer system, Rackable C1102-GP8,
SGI, Mountain View, CA, USA, in the Information Technology Center, The University of
Tokyo. The system consists of 64 computing nodes equipped with two Xeon E5-2695v4
processors, Intel, Santa Clara, CA, USA, 256 GB memory, and four GPUs (Tesla P100 SXM2
with 16 GB memory, NVIDIA, Santa Clara, CA, USA).

To obtain ε-LDP-CXR images and to detect pneumonia in CXR images, we used
Tensorflow 1.15.5. The versions of CUDA and cuDNN were 9.0 and 8.1, respectively. We
carried out all processes in one computing node of the Wisteria/B-DEC01 supercomputer
system, PRIMERGY GX2570 M6, FUJITSU, Tokyo, Japan in the Information Technology
Center, The University of Tokyo. The system (Wisteria-Aquarius) consists of 45 computing
nodes equipped with two Xeon 8360Y processors, Intel, and eight GPUs (A100 with 40 GB
memory, NVIDIA).
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Table 2. Hyperparameters for GLOW.

Coupling Layer Affine
Learn-top option False
Flow permutation 1 × 1 convolution
Minibatch size 4
Number of training samples per epoch 50,000
Network levels 7
Depth per level 32
Image size (in pixel) H512 ×W512 × C1
Total epochs 200
Learning rate in steady state 10−3

4. Results
4.1. ε-LDP-Processed CXR Images

In Figure 2, we show ε-LDP-processed CXR images of four clinical cases obtained
with the image domain LDP, which directly imposes the Laplace mechanism on the input
image, with different privacy budgets together with the original images. Figure 3 shows
four ε-LDP-processed CXR images of clinical cases obtained with DP-GLOW and different
privacy budgets together with the original images. In case 1 for DP-GLOW, there is
decreased permeability in the bilateral hilar regions. Although this hilar opacity tends
to be preserved with a larger privacy budget, the entire image is degraded when the
privacy budget becomes 101 · H ·W. A similar tendency is observed in the images of all
the four cases for DP-GLOW; for example, in case 4 with ε = 101 · H ·W, the lung opacity
suggesting pneumonia in the right lower lung field is well preserved, while the entire
image is degraded.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)
Figure 2. ε-LDP-processed CXR images (we applied the Laplace mechanism in the image domain).
(a) Original, case 1; (b) ε = 103 · H ·W, case 1; (c) ε = 102 · H ·W, case 1; (d) ε = 101 · H ·W, case 1;
(e) Original, case 2; (f) ε = 103 · H ·W, case 2; (g) ε = 102 · H ·W, case 2; (h) ε = 101 · H ·W, case 2;
(i) Original, case 3; (j) ε = 103 · H ·W, case 3; (k) ε = 102 · H ·W, case 3; (l) ε = 101 · H ·W, case 3;
(m) Original, case 4; (n) ε = 103 · H ·W, case 4; (o) ε = 102 · H ·W, case 4; (p) ε = 101 · H ·W, case 4.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)
Figure 3. ε-LDP-processed CXR images obtained with DP-GLOW. (a) Original, case 1;
(b) ε = 103 · H ·W, case 1; (c) ε = 102 · H ·W, case 1; (d) ε = 101 · H ·W, case 1; (e) Original,
case 2; (f) ε = 103 · H ·W, case 2; (g) ε = 102 · H ·W, case 2; (h) ε = 101 · H ·W,case 2; (i) Original,
case 3; (j) ε = 103 · H ·W, case 3; (k) ε = 102 · H ·W, case 3; (l) ε = 101 · H ·W, case 3; (m) Original,
case 4; (n) ε = 103 · H ·W, case 4; (o) ε = 102 · H ·W, case 4; (p) ε = 101 · H ·W, case 4.

4.2. Qualitative Assessment of LDP-Processed CXR Images

Here, we assume two possible privacy leakage scenarios. To CXR images, we inten-
tionally add features that can lead to the re-identification of the subject appearing in a CXR
image. The first feature is an artificial block marker. The second feature is a rare anatomical
abnormality known as situs inversus, simulated by flipping a CXR image along the vertical
axis. Figure 4a,c show CXR images with the artificial block marker. Figure 5a shows a
flipped CXR image to represent a case of situs inversus. We applied DP-GLOW to these
CXR images. In Figure 4b,d, the image domain LDP fails to obfuscate the artificial block
marker with a moderate privacy budget. In contrast, in Figure 6b,d, DP-GLOW successfully
obfuscated the artificial block marker with the moderate privacy budget. On the other
hand, the anatomical shape of the chest and the abnormal opacity (hilar regions in the
case 1) are preserved. In Figure 5b, we observed that the right edge of the heart does not
become obfuscated with the image domain LDP. In contrast, in Figure 7b, we observed that
the right edge of the heart becomes obfuscated and the heart appears at the center of the
thoracic cage with DP-GLOW. However, DP-GLOW with this privacy budget is insufficient
to almost completely erase the feature of situs inversus.
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(a) (b)

(c) (d)
Figure 4. Block obfuscation with the image domain LDP. (a) Original, case 1 with a block.
(b) ε = 102 · H ·W, case 1. (c) Original, case 2 with a block. (d) ε = 102 · H ·W, case 2.

(a) (b)
Figure 5. Flip obfuscation with the image domain LDP. (a) Original, case 5 (simulated situs inversus).
(b) ε = 102 · H ·W, case 5.
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(a) (b)

(c) (d)
Figure 6. Block obfuscation with DP-GLOW. (a) Original, case 1 with a block. (b) ε = 102 · H ·W,
case 1. (c) Original, case 2 with a block. (d) ε = 102 · H ·W, case 2.

(a) (b)
Figure 7. Flip obfuscation with DP-GLOW. (a) Original, case 5 (simulated situs inversus).
(b) ε = 102 · H ·W, case 5.

4.3. Pneumonia Detection in ε-LDP-Processed CXR Images

Table 3 shows the area under the curve (AUC) with different privacy budgets for
ε-LDP-processed CXR images obtained with the image domain LDP and DP-GLOW. For
details of AUC computation, see Appendix A.
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Table 3. AUC for pneumonia detection (ID-LDP: Image Domain LDP).

ε AUC (ID-LDP) AUC (DP-GLOW)

∞ (without clip) 0.807 0.807
103 · H ·W 0.813 0.679
102 · H ·W 0.559 0.665
101 · H ·W 0.643 0.539

5. Discussion

We showed an algorithm (DP-GLOW) for generating useful images for diagnosis
and medical AI, while ε-LDP is guaranteed against any image in the training distribution.
Furthermore, this is the first study to apply an ε-LDP algorithm against a medical image
itself. Additionally, we validated the usefulness of the ε-LDP CXR images generated by AI
for pneumonia detection: we showed the AUC as a function of the privacy budget. Finally,
this is the first work to adopt flow-based DGMs for LDP processing.

For DP-GLOW, the AUCs for pneumonia detection significantly change from 0.539
to 0.807, while the privacy budget varies from 101 · H ·W(= 2, 621, 440) to ∞. This means
that this range of the privacy budget is indeed meaningful, whereas the privacy budget is
very large compared with usual values of ε-LDP for scalar quantities. This finding implies
that we must normalize the privacy budget so that we can consistently handle ε-LDP for
vector quantities. To normalize the budget, we compute the privacy budgets per image
pixel. To this end, we intentionally indicated the privacy budget to have a common factor
H ·W. Therefore, the actual privacy budgets per image pixel in this study are from 101 to
∞, which are not much larger than commonly accepted privacy budgets.

Most of the approximate forms in CXR images are preserved and privacy is not
protected with the image domain LDP. On the other hand, given a low privacy budget,
DP-GLOW deforms the image so much that individuals cannot be identified. However, the
AUCs for pneumonia detection are similar with the low privacy budget between DP-GLOW
and the image domain LDP.

This study has several future directions. First, we adopted CXR images but one can
adopt other kinds of image including nonmedical images. Second, we can readily extend
this method to three-dimensional (3D) flow-based DGMs to generate ε-LDP 3D images,
such as CT (Computed Tomography) and MR (Magnetic Resonance) images. Third, we can
use other flow-based DGMs different from GLOW. Fourth, although we have formulated
our LDP algorithm using flow-based deep generative models, we are now attempting to
adapt it for denoising diffusion probabilistic models [18].

This study has a limitation—we must train GLOW with many medical images to
generate ε-LDP-processed medical images using DP-GLOW. The training is very difficult
when medical images of interest are not available. However, once the GLOW is trained
with the medical images of interest, we can distribute the GLOW model to further release
medical images of the same kind to the public using DP-GLOW. Empirically, we know
that at least 1000 images are needed to train the GLOW model satisfactorily. However,
the number of images required may vary if we use a different flow-based deep generative
model. Additionally, due to memory limitations, it is expected that we cannot process
large-sized 3D images. Furthermore, DP-GLOW cannot handle medical images with
varying resolutions.

6. Conclusions

We proposed DP-GLOW, the ε-LDP algorithm for images built upon the flow-based
DGMs, which can simultaneously ensure provable privacy protection and usefulness, e.g.,
the preservation of pathologies, with a controllable privacy budget. The ε-LDP-processed
CXR images obtained with DP-GLOW indicate that we have obtained a powerful tool to
release and use medical images for training AI. Furthermore, DP-GLOW could benefit
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other areas such as images obtained from surveillance cameras and those uploaded to
social networking services.
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SGD Stochastic Gradient Descent

Appendix A. Pneumonia Detection with GLOW

Using the density estimation obtained by two trained flow-based DGMs and Bayes’ the-
orem, Shibata et al. [19] proposed the computation of the logarithm posterior log p(Cn|xi),
where Cn is a classification label that an image is a normal case, as follows:

log p(Cn|xi) = log p(xi|Cn)− log p(xi) + log p(Cn), (A1)

where log p(xi|Cn) is a conditional likelihood that we can estimate with a flow-based
DGM trained with images of normal cases (S train

normal), log p(xi) is a likelihood that we can
estimate with the other flow-based DGM trained with images of normal and abnormal
cases (S train

mixture), and log p(Cn) is a constant, which we can safely neglect when we draw the
receiver operating characteristic curve (ROC curve) and thus when computing the area
under the curve (AUC). We adopt the logarithm posterior to detect lung opacity suggesting
pneumonia and other abnormalities from CXR images. We share the model trained with
S train

mixture between DP-GLOW for generating ε-LDP CXR images and pneumonia detection
with GLOW.
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