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Abstract: Photovoltaic (PV) powered Electric Vehicle Charging Stations (PVCS) have received exten-
sive attention recently due to the complementary relationship of PV energy and electric vehicles. This
paper proposes a methodology aimed at assisting a Charging Point Operator (CPO) in determining
the size of the main components of such PVCS. The modular structure of the method gives flexibility
for possible use on a new sizing problem by modifying key parameters such as the EV charging
demand (i.e., arrival/departure times and energy needed to fill the battery), the EV charging strategy
or the business model, independently from each other. It is of particular interest for a CPO that sizes
many PVCS operated in the same environment (for example, a car park at a workplace). In that
case, the CPO first has to apply the method on a representative charging station. Next, he can re-use
parts of the obtained results to drastically speed up (from weeks to hours) the sizing of the other
charging stations. The proposed method has been applied to the EVCS of an industrial research
complex in southern France. The input dataset used to apply the method consists of more than
32,000 charging transactions spanning over 6 years with 350 EV users and 80 charging points. Three
charging strategies with different levels of complexity are investigated, including Mean Power, Plug
and Charge, and Solar Smart Charging. The considered business model is based on the maximization
of the self-production rate. The numerical findings reveal that employing a straightforward charging
strategy, such as Mean Power, leads to a substantial reduction of nearly half in the required size of
the PV plant compared to the basic Plug and Charge mode. In addition, our analysis demonstrates
that Solar Smart Charging has the potential to decrease the PV plant size by nearly three times.

Keywords: electric vehicle; smart charging; empirical data; electric vehicle charging infrastructures
(EVCI); PV-powered electric vehicles charging stations (PVCS); collective self-consumption rate (SCR);
self-production rate (SPR)

1. Introduction

On 4 November 2022, the French Senate enacted legislation mandating exterior parking
stations for light-duty vehicles exceeding 1500 square meters to allocate at least 50% of
their surface area to solar panels [1]. The French government has also established a series
of financial incentives to accelerate the transition towards a sustainable transportation
sector, encompassing both the purchase of electric vehicles and the installation of charging
infrastructure. These legal obligations and incentives collectively pave the way for the
widespread adoption of energy systems that integrate both PV and EV. Reviews of all
the possible interactions between these two technologies are provided in [2–5]. Amongst
all these possible interactions, we consider that large PV-powered EV Charging Stations
(PVCS) near workplaces are one of the most promising use-cases. First, from a technical
point of view, in such a case, the EV charging demand (that lasts all the working day long)
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is “nearly” concurrent to the PV production. Second, if the number of EVs is large enough,
this demand is also rather predictable. These two points a priori facilitate the optimization
of the PV energy use. This use-case is also one of the simplest in terms of interactions
between the stakeholders, rendering their cooperation possible, as proven experiments
described in [6] and on a larger scale ten years later in [7]. Furthermore, when the PVCS
are large enough (both in terms of PV capacity and the number of charging points), it takes
advantage of the scale effect on costs. Finally, when the PV panels make car park canopies,
the PVCS provides a better customer/worker experience (by shading the user’s car and by
offering EV charging service) and promotes the energy transition.

In the context of large PVCS, several technical and financial stakeholders interact with
each other [2]. An EV Charging Infrastructure (EVCI) with multiple charging points is
managed by a Charging Point Operator (CPO). For the sake of simplicity, we consider
that the EV driver interacts directly with the CPO, even if, in practice, another stakeholder
called e-MSP (for e-Mobility Service Provider) sometimes acts as a third party between the
CPO and the driver. Within the vicinity of the EVCI, ground-mounted PV plants and/or
solar carports are installed and operated by a Photovoltaic Operator (PVO). In order to be
as generic as possible, we assume that PVO and CPO are distinct legal entities. We consider
that the PV plant and the charging stations are both connected to the distribution network,
managed by the Distribution System Operator (DSO), but are associated with two different
connection points (i.e., they have two different power meters). These power connections
serve a dual function; they provide power to the EV stations during periods of insufficient
PV generation and enable the surplus PV energy to be injected into the grid when there is
an excess of production.

Sizing PVCS at the earliest design step is crucial, especially for the CPO, because such
sizing will be the basis for the next design phases. However, this step is a particularly
difficult task. First, by essence, the technical details of the final PVCS, such that the IT and
power architecture and the EV charging control algorithms (if any), are unknown. Thus,
during the sizing phase, the designer has to choose models that not only have to be “rough”
(i.e., that do not include technical details) but also have to correspond to feasible and
practical technical solutions. Second, data about the EV demand (i.e., arrival/departure
times and energy needed to fill the EV batteries) that spans a large time horizon (at least half
or one year) is key data to size the PVCS. In general, such data is not available or is of poor
quality at this stage. Third, many business interactions between the different stakeholders
can be imagined, rendering the formalization of a generic sizing method rather difficult.

The objective of this paper is to provide a method that encompasses these difficulties.
First, the “rough” models of the PVCS used in this paper are based on more than ten years
of expertise in analyzing the interactions between PV and EVs at CEA. In particular, this
paper takes into account three different EV charging strategies. The most complex one
sketches a strategy that has been validated in practice with real users in two different
places [6,7]. Second, the method proposed in this paper is based on four relationships
that can be studied independently from each other. One of them determines which part
of the EV annual consumption comes from the PV, given the number of EVs, a charging
strategy and the size of the PV plant. This relationship is determined in this paper thanks
to a massive empirical dataset collected over more than 6 years, from 1 June 2016 to
31 August 2022, with 350 EV users and 80 charging points at the workplace. Computing
this relationship requires time and resources. However, it can be re-used for PVCS that are
in the same context (i.e., a large car park at a workplace). The use of such pre-computations
drastically speeds up the time needed to apply the method (from several days to several
hours). This property may be, for example, particularly interesting for a CPO that has to size
several charging stations with approximately the same EV charging demand. Third, one of
the four relationships is specific to a given financial exchange between the stakeholders.
This relationship may be adapted easily to different business cases without changing the
other relationships. To the best of our knowledge, the method proposed in this paper is the
only one that has such properties.
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The remainder of the paper is organized as follows: Section 2 describes the state of the
art research on this topic and highlights our main contributions. Section 3 summarizes the
proposed methodology, context, input data and variables. Section 4 details the computation
of the different relationships between input and variables. These relationships are related to
(1) the business models (i.e., stakeholders and their interactions); (2) the EV consumptions;
(3) the PV production and forecast; and (4) the charging strategy. Section 5 presents
numerical examples of the methodology, while Section 6 provides an overview of the results
with the perspectives of the study. Finally, an Appendix A section is made to model the
relationship between the Production-to-Consumption ratio and the Self Production Rate.

2. State of the Art
2.1. Research Positioning

There are four stages in the procedure of project development of an energy system [8].

• The first one is the “idea development.” It consists of “brainstorming and idea genera-
tion activities to give the project a more rounded shape”;

• The second one is the “concept development” which describes the scope of the project
(case descriptions, investment context, system and stakeholder overviews, etc.). It
also specifies the resources required and estimates key financial (such as revenue
stream, CAPEX, OPEX, etc.) and technical figures. Amongst them, the size of the
main components of the system is determined. For example, the sizing of PVCS
consists in determining one or all of the following quantities: the maximum power
that the PV plant may deliver (also called “peak power”), the number of charging
points (and possibly the maximum power that each of these charging points may
deliver), the number of EVs that may be charged on the PVCS, or the capacity and the
maximum power of the storage system. For such sizing studies, EV demand (number
of daily EVs and their arrival and departure time), users’ behavior, and vehicles’
characteristics are the most imperative type of input data. Other types of input data
are also required, such as incentives, taxes, grid codes, PV potential, etc. The concept
development phase also determines the project risks, its social and environmental
impacts and its profitability;

• The third stage is called “business development” and outlines all the actions needed
to make “real” the system sketched during the previous phase. During this phase, the
system is first designed in detail and an operation plan to build it is provided;

• The last stage is dedicated to the project execution. This phase entails the construc-
tion and installation of the final system, plus any other civil work needed for the
project operations.

The concept development phase usually consists of a prefeasibility study (PFS) and a
feasibility study (FS). As explained in [8], “the PFS scans a series of options and determines
the best one in the set. The FS analyzes in depth the best solution from the prefeasibility
phase. The PFS reduces the number of options that are chosen to proceed with a more
detailed feasibility study and eventually with business development, ultimately saving
time and money”.

The objective of this paper is to provide a method to size PVCS during the early steps
(i.e., during the PFS) of the concept development phase. As explained in [9], such sizing is
particularly crucial, especially for the CPO, because it is considered a strong basis for the
business development phase. Such sizing is a particularly difficult task because many of
the details of the final system are not known. For example, much data necessary for sizing
the PVCS is not available or is of poor quality at this stage. To circumvent this difficulty,
EV demand could, for example, be synthesized from statistical distributions derived from
experimental data [10]. However, due to daily and seasonal variations, this data also have
to span a large time horizon (at least half or one year). Moreover, the details of the power
infrastructure, of the IT architecture and of the control system that will be implemented on
the final system are also generally not known. In the following, the term “control system”
covers the algorithms (classified into scheduling, clustering and forecast in [11]) and all the
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interactions with the IT and the power systems that aim at optimizing the PVCS functioning
for a given objective (expressed in terms of financial, efficiency and environmental [4]).
Thus, the person who conducts the concept development phase has to use models of the
control system that describe the behavior of the final one in a way as relevant as possible,
but such models also have to be simple enough to explore many design possibilities [12].

The following section describes the state of the art on the problem of sizing during the
concept development phase of energy systems that integrate at least both EVs and PV (in
the context of micro-grid or not). In particular, we do not take into account works focusing
solely on the design of the control algorithm. The reader could find such references in
Table 1 of [9] (column ‘optimal control’).

2.2. Sizing PVCS at the Concept Development Step

The study in [9] details the sizing of the main components of a system constituted of a
household, a battery, a PV plant and bidirectional EV chargers. Three EVs with identical
parking time schedules during weekdays (8 a.m.–6 p.m.) are considered. The authors
integrate the sizing problem into the optimal power management problem by considering,
in addition to the EV and battery power profiles, the components ratings as decision
variables. These variables are the BES capacity (kWh) and their charger power ratings
(kW), the PV system power rating (kW), the inverter power rating (kW) and the EV charger
power rating (kW). Power management minimizes the costs (including those due to battery
degradation) by taking into account network and component constraints. Such constraints
allow for elaborate business models based on self-consumption, energy arbitrage and FCR
market participation. The optimization algorithm is formulated and implemented in GAMS
(Generic Algebraic Modeling System) [13].

The authors in [14] propose an optimal sizing-control methodology for residential
microgrids where EVs are viewed as controllable loads. The microgrid contains PV, Wind
Turbines (WT), a bidirectional inverter and a local Battery Energy storage System (BES). The
optimization algorithm is based on Mixed Integer Linear Programming (MILP) and solved
using CPLEX [15]. It is designed to minimize the annual cost of electricity. The size of the
components are the decision variables of this algorithm, in addition to the dispatched power
profile. In this paper, the number of EVs is fixed and, so, is not considered as part of the
sizing decision variables. EV mobility data include three EVs with a deterministic nature.

The authors in [16] identified the optimal sizes of PV, WT and BES in a smart home
microgrid configuration and vehicle-to-home context. The energy management system
aims at minimizing the annual cost of electricity, and it follows rule-based logic, whereas the
sizing problem utilizes the particle swarm optimization technique [17]. The meteorological
and EV mobility data (for one single vehicle) are randomly generated (based on probabilistic
distribution functions obtained from various datasets).

The authors in [18] study a microgrid made of an EV charging station, a BES and a PV
plant. This microgrid is located at a workplace. The operation of the charging stations is
controlled using customized expert rules that aim to minimize the energy fed/drawn from
the grid. The authors propose a methodology for determining the optimal PV panel tilt and
the BES size for two scenarios and for eight different charging profiles. The optimal values
are found by testing a set of values in a given range and selecting the value that gives the
best results. In this paper, for example, the author tests the capacity of the BES from 5 kWh
to 75 kWh by steps of 5 kWh. Such a technique that tests a given set of parameters will
further be called “parametric analysis”.

In [12], the authors consider a system constituted of a PV plant and EVs (that embed
bidirectional chargers). In one of their numerical examples, they consider a 2.64 MWp plant
and 184 EVs. The algorithm that controls the charge/discharge of the EV is designed to
minimize the difference between the day-ahead production commitment of the PV plant
and its real production. The optimization problem is formulated as a linear optimization
problem. The authors consider a deterministic charging demand, i.e., all the vehicles are
supposed to be available from 9 a.m. to 6 p.m. Lastly, they compared the results of their
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control algorithm for different ratios between the number of EVs and the peak power of
the PV plant.

An economic study of EV parking lots at workplaces equipped with PV in the states
of Ohio and California in the US [19] was conducted to demonstrate the economic at-
tractiveness of such an installation with different PV installed capacities and financial
hypothesis. Vehicle mobility data (arrival time, parking time) are statistically simulated
using probability distributions derived from the Ohio State University’s parking garage
empirical data. Various incentives and tax deductions from multiple levels of authority
are taken into consideration for the financial model. MatlabTM is utilized for EV charging
demand simulation and grid emission, while PV production and cash flow computation are
performed in the System Advisor Model (SAM) [20,21]. A constant 6.6 kW charging power
is simulated in this case. To follow up with this, the authors also conducted a similar study
with a more sophisticated charging algorithm using dynamic programming and optimiza-
tion technics [22]. This algorithm maximizes the use of PV energy and reduces the impact
on the grid while satisfying the energy demand of EVs. Parametric analyses are conducted
with multiple varying factors (PV size, PV installation costs, incentives, electricity rates,
parking rates) to study their financial impacts (mainly in terms of payback time).

The work in [23] presents a methodology for sizing different energetic components of
a PVCS in the microgrid context, including the size of the PV system, the stationary battery
systems and the transformer. Theses sizes and other operational constraints are part of the
objective function of an optimization algorithm that aims to minimize the entire system’s
economic costs. The EVs’ initial SOCs are assumed to follow Gaussian distribution within
the range of 0.2 and 0.5. The EVs’ battery capacities, number of daily EVs and arrival
time are also synthesized using Gaussian distributions. The paper concluded that with
this methodology, the cost of the optimally sized configuration without PV would be
higher than that of an optimal configuration with PV installation. In one of their numerical
examples, they consider a charging station made of four chargers of 40 kW each, a 300 kWp
plant, a 600 kWh battery and a 200 kW transformer.

The authors in [24] introduced a rather simple multi-phased methodology to size a
microgrid made of a PV plant, a BES and a charging station. This method is formalized
with an Excel-based tool customized for various stakeholders and authorities. The cus-
tomization of EV charging profiles and of physical as well as financial parameters allows
users from different backgrounds to efficiently analyze the performance of the charging
infrastructure from multiple aspects. The energy management strategy in this work is
rather straightforward and representative of the real deployment strategy: energy from
the grid would be required if PV production (and sequentially a stationary battery system
production) is insufficient. However, if PV production surpasses the EV demand, then the
surplus would be stored in the stationary battery or injected into the grid if there is still
excess energy. The aim of this control is to avoid overloading the power grid and guarantee
a high percentage of PV energy.

In [25], the authors study the integration of EV and PV in an office building located
in southern Italy. In this study, one EV is charged during working hours. Four different
charging needs are considered (from 0 km per day to 120 km per day). They also compare
two charging modes: the first one is an AC charge without control, and the second one is a
DC charge with control such that the EV consumes the surplus of the PV production. The
authors compute the self-consumption and self-production rates obtained for four different
values of PV peak powers (from 4.5 kWp to 9 kWp) for the two charging modes and for
different sizes of charging points.

In [26], the authors study the integration of EV and PV in a household. Several
scenarios are simulated over a long-term period (ten years) in order to take into account the
aging of the battery and the PV panels. The parameters that distinguish the scenario are
the yearly driving distance of EV users (from 10,000 km per year to 25,000 km per year), the
charging strategy (uncontrolled or basic control that increases the self-production) and the
location and size of the PV plant (varies from 2 kWp to 10 kWp). The last parameter is the
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type of EV user: he is either a commuter who is not parked at home during working days
or a “private user” who, on the contrary, returns home several times a day. The EV charging
profiles associated with these types of users are synthetized from statistics described in [27].

2.3. Synthesis

The authors in [2] propose to distinguish systems that integrate PV and EV according
to three criteria:

• Their spatial configuration. The authors distinguish systems that span over house-
holds, buildings, charging stations or territories. We also propose to add the size of
the PV plant and the number of EV users as criteria;

• Their technological environment. It consists of the technological components that are
included in or are added on. Such components could be BES, WT, Heat Ventilation Air
Conditioning (HVAC), network technologies (such as DC micro-grids), etc.;

• Their smart control strategy. The authors in [2] also distinguish the strategies by their
objectives that can be expressed in monetary terms (such as maximizing the revenues
or minimizing electricity costs, etc.), in energy efficiency terms (such as improving
self-consumption or reducing the impact on the grid) or in ecological footprint terms
(such as reducing the CO2 emissions). The authors also distinguish the strategies by
their “coordination method”, that is, their mathematical formulation. These methods
could be based on “optimization methods” (such as MILP, etc.), “heuristics methods”
(such as those based on expert rules) or “hybrid methods” (i.e., a combination of the
two previous methods).

As explained in Section 2.1, prefeasibility studies aim at exploring several potential
solutions, whereas feasibility studies focus on the most promising ones. In practice, the two
phases are distinguished by their levels of complexity, specifically in terms of required data
and level of expertise. The level of expertise is mainly about the complexity of the charging
schedule algorithms and the software that is used for their implementations. Heuristics
methods are mostly used during prefeasibility studies, whereas optimization methods are
rather used in feasibility studies.

Table 1 summarizes these reviewed papers in Section 2.2 using the aforementioned
criteria along with additional ones: targeted project development stage, EV fleet and PV
size, EV mobility data, sizing methods, and the variables/parameters to be sized.
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Table 1. Summary of literature review: Abbreviations: FS = Feasibility Study, PFS = Prefeasibility Study, CS = Charging Station, MILP = Mixed Integer Linear
Programming, LP = Linear Programming, DP = Dynamic Programming, PSO = Particle Swarm Optimization.

[9] [14] [16] [18] [12] [22] [23] [24] [25] [26] This work

Development
Stage FS FS PFS PFS FS FS PFS PFS PFS PFS PFS

Spatial
Configuration Household Residential

Microgrid Household CS CS CS CS CS Office Household CS

Fleet and PV
Size

3 EVs
From 0 to
50 KWp of PV

Hundreds of
EVs
Hundreds
KWp of PV

1 EV
Several kWp
of PV

1 EV
Several kWp
of PV

Dozens to
hundreds of
EVs
Dozens to
thousands
KWp of PV

Dozens to
hundreds of
EVs
Dozens to
thousands
KWp of PV

Several EVs
Hundreds
kWp of PV

Several EVs
Several KWp
of PV

One EV
4.5 kWp to
9 kWp of PV

One EV
Several KWp
of PV

Dozens to
hundreds of
EVs
Dozens to
thousands
KWp of PV

EV Mobility
Data Deterministic Deterministic Probabilistic Deterministic Deterministic Probabilistic Probabilistic User defined Deterministic Probabilistic Empirical

Components PV, BES, EV
Charger PV, WT, BES PV, WT, BES PV, BES PV, EV PV, EV PV, BES,

Transformer PV, BES, EV Building, PV,
HVAC, EV PV, EV PV, EV

Control
Algorithm

Nonlinear
Optimization MILP Rule-based Rule-based LP DP MILP Rule-based Rule-based Rule-based Rule-based

Sizing
Algorithm

Nonlinear
Optimization MILP Optimization

(PSO)
Parametric
Analysis

Parametric
Analysis

Parametric
Analysis MILP Parametric

Analysis
Parametric
Analysis

Parametric
Analysis

Parametric
Analysis

Sized
Variables

PV, BES, EV
Charger
Ratings

PV, WT, BES
sizes

PV, WT, BES
Ratings BES Ratings PV Ratings,

#EV PV Ratings
PV, BES,
Transformer
Ratings

PV, BES, EV
Charger
Ratings

PV, EV
Charger
Ratings

PV Ratings PV, #EV

Tool GAMS CPLEX - - - Matlab and
SAM - Customized

Tool TRNSYS PVSOL Matlab
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2.4. Our Contribution

We consider that the EV charging demand data are one of the most important input
data in prefeasibility/feasability studies. More precisely, we think that, in order to obtain
precise results, this EV charging demand has to be as “representative” as possible of the
use-case under study. In particular, this data has to encounter the variability of the EV
users’ behavior over a long period but also has to take into account the characteristics of the
EVs and of the charging points. We also think that it could be possible to define “standard”
EV charging demands corresponding to:

• Workplace parking lots (where the EVs remain plugged in during work hours);
• Shopping centers (where the users arrive all day long and stay only a couple of hours);
• Residential (where the users arrive at the end of the day and leave in the morning);
• Delivery fleet (where the EV arrives at a fixed time in the day and also leaves at another

fixed time).

The workplace parking lots use-case illustrates this article; we have collected empirical
data over a horizon of more than six years at an industrial and research complex in southern
France. As detailed in Section 4.2, the dataset includes more than 32,000 transactions,
350 EV users, more than 40 EV models and 80 charging points. According to the literature
review and to the best of our knowledge, this paper is the first that describes a sizing
procedure based on a large and real EV charging dataset.

Furthermore, the computational logic of the proposed methodology can be split into
four main relationships between input data and internal variables (defined in Section 3.3).
Obtaining relationship 4, which relates the self-production ratio and the Production-to-
Consumption ratio, is a rather complex task; the designer has to (1) collect and process input
data (that are mainly the EV demand and the PV production and forecast), (2) perform
simulations and (3) aggregate all the simulations results. Relationship 1 relates the price of
the energy and the self-production rate. This relationship may be quite easily adapted to all
the business models that aim at increasing this self-production rate. At last, relationships 2
and 3 are quite easy to compute. Thus:

• When the PVCS designer assumes that the EV charging demand is a standard one,
the pre-computations of relationship 4 can be re-used. The designer may also modify
relationship 1 if the considered business model is not the same as the one described in
this article. In the two cases, minimum effort, in terms of time and resources (i.e., a
few hours for a non-specialist), is required;

• When the designer encounters a specific use-case (i.e., non-standard), pre-processed
data proposed in this paper is not usable. The four relationships of the methodology
have to be computed. This level of involvement allows us to obtain an estimation of
the project’s performance with the highest precision, but the effort is also the highest.
We estimate that 3 or 4 weeks with decent programming competences are required.

In other words, the modular structure of our method enables us to modify the business
models independently of the other parameters. It also enables to pre-compute intermediate
results. Once these pre-computations are performed, the sizing procedure may be quick
and simple. To our knowledge, this is the only method that has such properties. It is of
particular interest, for example, for a CPO that will have to size many charging stations with
approximately the same charging demand. In that case, the CPO will first have to compute
all the relationships from the charging demand of a representative charging station. Next,
he will re-use the relationships (in particular, the 4th) to drastically speed up the sizing of
the other charging stations.

3. Context and Methodology
3.1. Use-Case: CEA Cadarache EV Charging Infrastructure (EVCI) and PV Plant

The data collection took place in the Cadarache research center of the French Alter-
native Energies and Atomic Energy Commission (otherwise known as CEA, the French
acronym for “Commissariat à l’Énergie Atomique et aux Énergies Alternatives”) located
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near Aix-en-Provence. This research center disposes its own water, heating, lighting and
electricity distribution network in which it operates as the DSO. A private bus service is
offered to its employees for commuting and for trips between laboratories and canteens. A
taxi service is also offered for intra-site trips. Thus, the Cadarache center can be seen as a
town with a population of approximately 5000, privately owned and managed by CEA.

The CEA also set-up an EVCI during the summer of 2016. It involves 40 Diva-type
terminals, produced and installed by G2Mobility, which was bought out by TotalEnergies
in 2018. Each Diva terminal has two 22-kW AC charging points. Each of these charging
points has a type 2 socket for mode 3 connection and a type E socket for mode 1 and 2
connections. These charging stations have been installed alone or in groups of up to four
Diva terminals to create 30 charging stations spread throughout the center. Each charging
station has an embedded IoT gateway that enables communication through 3G networks
by using Open Charge Point Protocol (OCPP) commands. As soon as the EV is plugged in,
it is charged at its nominal power. In other words, the EVCI lets the EV charge as rapidly
as possible from the moment the vehicles are plugged in. This charging strategy, further
named “Plug and Charge” strategy in this work, is generally the default strategy of most
commercial charging points.

CEA also conducts research at Cadarache with INES on solar thermal energy and
photovoltaics. In particular, CEA tests and evaluates innovative PV systems (such as
Tandem Pérovskite-Silicium PV, bifacial PV, single- and dual-axis solar trackers) ranging in
size from modules to a few tens of kW systems. The energy produced from all these pieces
of equipment (which aggregates up to 50 kWp) is injected into the CEA private power
network. Furthermore, the CEA plans to install other PV plants, either ground-mounted or
on buildings, and to install PV solar shade. In this latter case, these PV plants will be sized
for a self-consumption scheme, described in the following section.

3.2. Collective Self-Consumption Scheme

As explained in the introduction and visualized in Figure 1, we consider the general
case where the EVCI and the PV installation are managed by two separate entities, namely
the Charging Point Operator and PV Operator (CPO and PVO). The CPO has to manage
the charging of a certain number of EVs while utilizing the production from the PV plant,
characterized by a certain peak power, noted Ppeak

PV . We also consider that they agree on an
exchange of PV energy. Without loss of generality, this agreement could be a partnership
with a ‘third party’ called Legal Person (LP), or Personne Morale Organisatrice (PMO) in
French, according to the scheme called “collective self-consumption” in France. This LP
entity plays the role of a facilitator for the financial as well as power flows between the
CPO and the PVO. The CPO also contracts with an energy supplier (ESEV) that provides
supplementary energy to the charging stations when PV production is insufficient to the EV
charging consumption. In the meantime, the PVO also establishes a contract with another
energy supplier (ESPV), which extracts the surplus PV energy produced when there is
more PV production than EV consumption.

In this paper, the power x is denoted Px. The energy of Px over a period ∆, E∆
x is the

integral of this power over ∆: (E∆
x =

∫ ∆ Pxdt). The energy of the power Px calculated over a
day, a month and a year are noted Ed

x, Em
x and Ea

x, respectively. The energy of the power Px
computed on an arbitrary period is noted without a subscript, i.e., Ex. The price per kWh
that actor A pays when he buys a given amount of energy from actor B is noted PrB−A. It
is important to note that this price may also include other services, apart from the energy
production fee itself, such as transport, taxes and contributions.

With these notations (summarized in Table 2), the principle of this scheme, represented
in Figure 2, is the following:

• The PV power (PPV) and the corresponding energy (EPV), produced by the PV plant
during the period, are visualized in the top left part of the figure;

• The charging power (PEV) and energy (EEV) consumed by the EVs are represented on
the bottom left diagram;
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• The CPO partially charges the EVs with the power PSP (SP for Self-Production) such
that PSP = min(PPV , PEV). The CPO buys the associated energy, represented in green
and noted ESP to the LP at a price noted PrLP−CPO;

• The PVO, for his part, sells ESP to the LP at a price noted PrPVO−LP;
• The CPO also charges the EVs with the power PESEV that complements PSP when

there is not enough solar power (i.e., such as PESEV = max(PEV − PPV , 0)). The CPO
buys the associated energy, represented in dark blue and noted EESEV, to the power
supplier ESEV at a price noted PrESEV−CPO;

• The PVO injects in the network the power PESPV , if any, produced by the PV plant
but not consumed by the EVS (i.e., such as PESPV = max(PPV − PEV , 0)). The PVO
sells the associated energy, represented in pink and noted EESPV, to the power supplier
ESPV at a price PrPVO−ESPV .

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 28 
 

 

Figure 1. Interactions of the EVCI’s stakeholders. 

In this paper, the power 𝑥 is denoted 𝑃𝑥. The energy of 𝑃𝑥 over a period Δ, 𝐸𝑥
Δ is 

the integral of this power over Δ: (𝐸𝑥
Δ = ∫ 𝑃𝑥𝑑𝑡

Δ

 
). The energy of the power 𝑃𝑥 calculated 

over a day, a month and a year are noted 𝐸𝑥
𝑑, 𝐸𝑥

𝑚 and 𝐸𝑥
𝑎, respectively. The energy of the 

power 𝑃𝑥 computed on an arbitrary period is noted without a subscript, i.e., 𝐸𝑥. The price 

per kWh that actor A pays when he buys a given amount of energy from actor B is noted 

𝑃𝑟𝐵−𝐴. It is important to note that this price may also include other services, apart from 

the energy production fee itself, such as transport, taxes and contributions. 

With these notations (summarized in Table 2), the principle of this scheme, 

represented in Figure 2, is the following: 

• The PV power (𝑃𝑃𝑉) and the corresponding energy (𝐸𝑃𝑉), produced by the PV plant 

during the period, are visualized in the top left part of the figure; 

• The charging power (𝑃𝐸𝑉) and energy (𝐸𝐸𝑉) consumed by the EVs are represented on 

the bottom left diagram; 

• The CPO partially charges the EVs with the power 𝑃𝑆𝑃 (SP for Self-Production) such 

that 𝑃𝑆𝑃 = 𝑚𝑖𝑛(𝑃𝑃𝑉 , 𝑃𝐸𝑉). The CPO buys the associated energy, represented in green 

and noted ESP to the LP at a price noted 𝑃𝑟𝐿𝑃−𝐶𝑃𝑂 ; 

• The PVO, for his part, sells ESP to the LP at a price noted 𝑃𝑟𝑃𝑉𝑂−𝐿𝑃; 

• The CPO also charges the EVs with the power 𝑃𝐸𝑆𝐸𝑉  that complements 𝑃𝑆𝑃 when 

there is not enough solar power (i.e., such as 𝑃𝐸𝑆𝐸𝑉 = 𝑚𝑎𝑥(𝑃𝐸𝑉 − 𝑃𝑃𝑉 , 0)). The CPO 

buys the associated energy, represented in dark blue and noted EESEV, to the power 

supplier ESEV at a price noted 𝑃𝑟𝐸𝑆𝐸𝑉−𝐶𝑃𝑂 ; 

• The PVO injects in the network the power 𝑃𝐸𝑆𝑃𝑉 , if any, produced by the PV plant 

but not consumed by the EVS (i.e., such as 𝑃𝐸𝑆𝑃𝑉 = 𝑚𝑎𝑥(𝑃𝑃𝑉 − 𝑃𝐸𝑉 , 0)). The PVO sells 

the associated energy, represented in pink and noted EESPV, to the power supplier 

ESPV at a price 𝑃𝑟𝑃𝑉𝑂−𝐸𝑆𝑃𝑉 . 

 

  

Figure 2. Principle of collective self-consumption scheme. 
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Table 2. Nomenclature of variables used in this paper.

Symbol Explanation

PEV Power supplied for EV Charging (kW)
PPV Power generated by PV (kW)
PESEV Power extracted from the grid to charge EV (kW)
PESPV Power injected to the grid from PV (kW)
PSP Power from PV for EV charging (kW)
E∆

EV, PV, ESEV, ESPV,SP Integration of the corresponding powers over certain duration ∆ (kWh)
PrPVO−ESPV Purchasing price of EESPV by ESPV (€/MWh)
PrESEV−CPO Purchasing price for EESEV by CPO (€/MWh)
PrLP−CPO Purchasing price for ESP by CPO (€/MWh)
PrCPO Mean power price for the CPO (€/MWh)
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In such a configuration, the local DSO is responsible for the virtual dispatch (“virtual”
because the dispatch is performed in front of the meter); the DSO measures EEV and EPV
from the power meters of the EV charging point and the PV plants, respectively. The
meters are read at a frequency that depends on the market time step whose value depends
on countries. The DSO computes EESPV , EESEV , ESP based on the following logics and
transfers these values to the LP, ESPV and ESEV, respectively.

• EESPV = max(EPV − EEV , 0)
• EESEV = max(EEV − EPV , 0)
• ESP = min(EPV , EEV)

3.3. Main Internal Variables

The ratio between the total PV production to the total EV, computed for an arbitrary
period, is termed Production-to-Consumption ratio (or PTC).

PTC =
EPV
EEV

(1)

We also consider the Self-Production Rate (SPR) and Self-Consumption Rate (SCR),
which represent the proportion of total EV charging demand being supplied by the PV
production and the proportion of total PV production used for EV charging, respectively.
These variables are, for an arbitrary period, defined as follows:

SPR =
ESP
EEV

(2)

SCR =
ESP
EPV

(3)

Let us consider a period di such that the different prices are constant. The duration of
such a period depends on the pricing scheme; if the prices are flat, the period is generally
one year. On the contrary, if the prices are time-varying, the period is the market time
step. The annual energy cost and the Mean Power Price, PrCPO (€/MWh), which is the
effective price of electricity that the CPO has to pay for both electricity from the PV and the
electricity from the grid, are then calculated using Equations (4) and (5).

Costa
CPO =

Year

∑
di

Edi
SP × Prdi

LP−CPO + Edi
ESEV × Prdi

ESEV−CPO (4)

PrCPO =
Costa

CPO
Ea

EV
(5)

3.4. Methodology Description
3.4.1. Inputs/Output Data

This section describes the input data required, depending on the elements that are to
be sized:

• Given a target PrCPO (€/kWh) and a number of EV users, what should the PV peak
power be (kWp)?

• Given a PV peak power (kWp) and a number of EV users, what should the PrCPO be
(€/kWh)?

• Given a PV peak power (kWp) and a target PrCPO, what should be the maximum
number of EV users?

The row name of Table 3 represents the targeted outputs, while the columns are the
input data. For example, in order to calculate the peak power of a PV plant (first line
of the table), 8 out of 9 inputs (marked with an X symbol) must be collected. The CPO
has to provide the price of the power from the network (PrESEV−CPO) and from the PV
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plant (PrESPV−CPO); he also needs its target of Mean Power price (PrCPO), obtain data
about potential PV production (location of the plant, orientation, tilt angle and possibly PV
production and forecast profiles), the expected number of EVs and their main characteristics
(size and efficiency of the embedded charger, capacity of the battery, etc.). He also needs a
charging session history that contains, for each session, the start date and the end date of
the session. This history also has to contain the energy withdrawn by the car during each
session. The history also has to record the name of the charging point and the user’s badge
number. Lastly, the CPO has to obtain the relationship between a badge and the EV model.

Table 3. Input and Output data.

Input
Output

Price
Network
Power
PrESEV−CPO

Price PV
Power
PrESPV−CPO

Mean Power
Price
PrCPO

PV
Potential

PV Peak
Power
Ppeak

PV

# EV
Users

EVs
Characteristics

Charging
Session
History

Badge/EV
Model

Peak Power X X X X X X X X
Mean Power Price X X X X X X X X
#EV users X X X X X X X X

3.4.2. Principles

In this section, we briefly describe the main principles of the methodology, expressed
in the form of four different relationships among different inputs, outputs and variables,
as illustrated in Figure 3. First, we need to specify the energy exchange scheme between
the CPO and the PVO. This scheme is then used to derive a relationship between the
self-production rate (SPR) and the Mean Power price (PrCPO), with different prices as
inputs. This first relationship is described in Section 4.1.
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The charging session history is then used to express the annual EV energy consumption
as a function of the number of EVs. This second relationship is then given in Section 4.2.

Next, we need to estimate the yearly PV production as a function of the PV peak
power Ppeak

PV . This production depends on the solar potential that varies with the location
of the PV plant, its orientation and its tilt angle. Section 4.3 will specify more details about
this relationship.

Lastly, we need the PV production forecast profile which is then combined with
the charging session history to reconstruct the corresponding charging power profiles
according to a given charging strategy. Based on these profiles and PV production profiles,
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we are able to compute the SPR. In addition, it is also possible to compute the Production-
to-Consumption ratio, noted PTC. The relationship between the SPR and PTC is an abacus
(that can then be approximated using empirical formulas as described in Appendix A),
which is presented in Section 4.4.

The diagram in Figure 3 describes the computational logic flow for this methodology.
The black plain line boxes are inputs and the dotted ones are inputs or outputs. The red
boxes represent internal variables. Lastly, the bidirectional arrows represent the reciprocal
relationship between two quantities (if one is known, the other can be determined and
vice versa).

4. Relationships Necessary for the Application of the Method
4.1. Business Model
4.1.1. Hypothesis

We consider that PrESPV = PrPVO−LP in this paper, this means that all revenues of the
PVO come with the same price, thus making its revenue independent of neither SPR nor SCR.

4.1.2. Relationship 1: Self-Production Rate versus Mean Power Price

The cost CostCPO given in Equation (4) can be rewritten by replacing EESVE with
EESEV = EEV − ESP = EEV − SPR × EEV = EEV × (1 − SPR), we obtain:

CostCPO = SPR × EEV × PrLP−CPO + (1 − SPR)× EEV × PrESEV−CPO (6)

The Mean Power price, previously given in Equation (5), is then obtained by dividing
Equation (6) by EEV , thus establishing a linear relationship between PrCPO and SPR:

PrCPO = PrESEV−CPO − SPR × (PrESEV−CPO − PrCPO−LP) (7)

When PrESEV > PrCPO−LT , the Mean Power price for the CPO linearly decreases
with the increasing value of SPR. In other words, if electricity from the PV plant is more
affordable then from the grid, self-production has to be prioritized. When SPR = 0,
PrCPO = EEV × PrESVE. This means that when there is no PV available for EV charg-
ing, the Mean Power price is equivalent to the price of the power from the grid. When
SPR = 1, PrCPO = PrCPO−LP. This means that when there is no power coming from the
network, the Mean Power price is the price of the power coming from the PV plant.

4.2. EV Consumption
4.2.1. Charging Periods

Data from 32,014 charging sessions were collected for more than 6 years, spanning
from 1 June 2016 to 31 August 2022. Each charging session record contains the start and end
time stamps of the session (noted ST and ET, respectively), the identification number (ID)
of the charging point, the badge number of the user and the energy that has been supplied
to the EV. The transaction duration, ET-ST, is denoted TD.

Figure 4 illustrates the distributions of the start and end times of the dataset. It is
observed that the start time of the charging sessions is statistically concentrated around
8 a.m. (start of work hours), lunch time and early afternoon (after 4 p.m., when the business
trips are terminated). There are also three main periods during which the majority of
the charging sessions terminate. The first one is at 9 a.m. when the service cars that
have been connected the day before are disconnected to be used for business trips, the
second one is after lunchtime and the last period is at the end of the working day (around
5 p.m.) when employees leave the center. The average duration and energy consumption
of each charging session were 11.3 h and 17.22 kWh, respectively, and a total of 551 MWh
of electricity was consumed.
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4.2.2. EV Users and EV Fleet Compositions

From the EVCI charging session history, we compute the number of “active” and
“delivered” badges. A badge is said to be “active” from the start of its first charging session
until the end of its last recorded session. The status “inactive” will be given otherwise. A
badge is said to be “delivered” from its first connection to the EVSE. Figure 5 describes
the number of active and delivered badges per day, where we can observe that 348 RFID
badges were delivered for EV (including PHEV) owners and up to 200 active badges at
the end of the considered period. Between 2021 and 2022, the number of delivered badges
increased steadily by around 100 per year. At the end of the collection horizon, all the
badges are inactive due to the definition of an active badge (i.e., they are all inactive after
their last connection). It is also noted that there is a considerable amount of delivered
inactive badges. This can be attributed to the loss of badges or to the fact that the users left
them permanently or they stopped charging their EVs within the facility.
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4.2.3. EV Characteristics

Technical information regarding the vehicle corresponding to the badge was also
recorded: vehicle model and usage category (personal, internal taxi and service car).
Amongst all the delivered badges, two hundred and thirty two vehicles are attributed to
employees’ personal vehicles, eighty-four vehicles are for facility services and three Renault
Zoé for internal taxi services. An additional 29 vehicles serving external companies are
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also among the considered EVs. In terms of car models, there is a very clear predominance
of Renault Zoé, which represents 38% of the fleet. There are also, among others, 10% of
Peugeot e208, 7% of Renault Twingo, 8% of Tesla (Model 3 and Model S) and 5% of Nissan
Leaf vehicles.

Primary characteristics of vehicles were also collected from publicly available sources,
namely, the nominal power of the on-board chargers (kW) and their battery capacity (kWh).
Figure 6 displays the histogram of these nominal powers and battery capacities of the
considered fleet. We observe that approximately 45%, 30% and 25% of EVs have nominal
charging power at 22 kW, 11 kW and less than 11 kW, respectively. We also observe that
more than half of the EVs have a battery capacity between 45 and 55 kWh.
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4.2.4. Energy Consumption

From the EV charging session history, we have computed the aggregated daily, weekly,
monthly, quarterly and annual energy delivered to the EVs. Figure 7 demonstrates that
the total monthly energy consumption data can be classified into four groups over the
entirety of the data collection. The first period, called pre-COVID-19, started in June 2016
and terminated at the beginning of the COVID-19 crisis. The second period corresponds to
the first COVID-19 lockdown in France (March 2020–April 2020), during which very little
charging service was used, leading to minimal electricity consumption. The third period
(May 2020 to February 2022) has seen the introduction of the hybrid-working mode (i.e.,
normal onsite and work from home) and, thus, resulted in charging patterns similar to that
of the first period but with slightly lower consumption. The last period of the considered
horizon (March 2022 to August 2022) bears an identical context to the first period since
the facility has returned to the pre-COVID-19 working mode (work from home is still
available but has been exercised negligibly). We can notice that the electric consumption
has increased significantly as compared to the first and third periods. This can be attributed
to the increase in number of active badges during this period (as seen in Figure 5).

4.2.5. Relationship 2: Active Badge versus Energy Consumption

Figure 8 illustrates the relationship between the monthly energy consumption (noted
Emonthly, in kWh) and the number of active badges (noted Bmonthly without units) during
the same month. The colors used in Figure 8 represent the same periods in Figure 7. It can
be observed that there exists a simple linear dependence (represented with a dotted line)
between the number of active badges and the maximum monthly energy consumption.
This dependency is expressed in the following formula, further referred to as the second
relationship in our methodology:

Emonthly[kWh] = 100 × Bmonthly (8)
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4.3. PV Production
4.3.1. Production and Forecast Profiles

The PV production forecast is based on public forecasts provided by the French TSO,
RTE. This forecast is the aggregated French PV production. It is calculated on the morning
(approximately at 8 o’clock) of the current day. The time step of the forecast is one hour.
We have retrieved the forecast data for the considered period. It is represented in Figure 9
(left). As the installed PV capacity increased significantly in France during this period, we
have corrected the values in order to obtain forecasts such that the installed capacity would
have been constant. We also normalized these values in such a way that they correspond to
the production of a plant with a given peak power. In Figure 9 (right), this peak power is
equal to 1 kWp.
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In order to eliminate the effect of forecast imprecision, we suppose that the CPO is
able to perfectly forecast the PV production. Thus, forecasted data is considered as the
PV production.

4.3.2. Relationship 3: Yearly PV Production versus Peak Power

There are two manners to obtain the yearly PV energy production from a peak power
value for a given location as required to obtain the third relationship.

• If production profiles are available, integrating the power over a complete year gives
the energy produced during this year;

• If production profiles are not available, many free software tools like PVGIS [28]
estimate the annual PV production per peak power value.

4.4. Solar EV Charging
4.4.1. Production-to-Consumption Ratio

We have calculated the Production-to-Consumption ratio for annual periods (each
begins on the 1st of June and ends on the 31st of May the next year) and for the period that
begins on the 1 June 2021 and ends on the 31 August 2022. These values are summarized in
Table 4, in which we can observe that the annual PV production is relatively constant while
EV electricity consumption varies considerably.

Table 4. Sum-up of the PV production, the EV consumption and the PTC ratio over the 6-year period.

Periods Duration (Months)
Annual PV

Production (100 kWp)
MWh

Annual EV
Consumption (MWh) Annual PTC Ratio

1 June 2016–31 May 2017 12 178 24 7.21
1 June 2017–31 May 2018 12 171 76 2.25
1 June 2018–31 May 2019 12 180 109 1.66
1 June 2019–31 May 2020 12 173 76 2.28
1 June 2020–31 May 2021 12 171 77 2.21

1 June 2021–31 August 2022 15 238 178 1.33

It is also worth noting that the total production for the PV is rather large compared to
the installed peak power (i.e., ~1.7 kWh per kW peak compared to ~1.6 kWh per kW peak
estimated with PVGIS and with optimal orientation and tilt angle). This is because we have
calculated the PV production from forecast data provided by RTE, and the normalization
factor used for this aim has certainly been overestimated.

4.4.2. EV Charging Strategies

The charging power profiles for individual vehicles were not recorded during the
period considered. Thus, we conduct simulations with different EV charging strategies
based on charging session history to reconstruct these profiles. As the charging records
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contain the energy withdrawn by the vehicle i (Ei) and the transaction duration DT, we
suppose that this data are used by the CPO for controlling the charges. In practice, this
data are not known, but they could be statistically estimated by the CPO. In this work, we
consider three charging strategies with different complexity.

The first strategy is the Plug and Charge (PC) strategy described in Section 3.1. In
that case, the charging power is limited by the nominal charging power of the embedded
charger of the vehicle, noted Pi

max. The effective duration of the charging session is then
equal to Ei/Pi

max.
The second strategy is called ‘Mean Power’ (MP). In that case, the vehicle charges at

constant power from the beginning to the end of the charging session. The duration of the
charge is thus equal to DT and the constant charging power for vehicle i is Ei/DT.

The third strategy is a Smart Charging (SC) strategy, whose main objective is to increase
the self-production rate. The detailed algorithm is out of the scope of the article but can
be briefly explained as follows. The PV production forecast of the PV plant is considered
as the power that is “available” to charge the EVs. The planning algorithm then sorts the
EVs according to the alphabetical order of the badges and allocates a part of this available
power to each car. The principle of this allocation is as follows. The setpoints of a car are
constituted of a constant power part added to a part that is proportional to the available
power. Two constraints have been taken into account when choosing the setpoints: the sum
of the power has to be less than the maximum power of the car (Pi

max) and the integrate of
the setpoints has to be equal to the energy withdrawn by the car ( Ei).

4.4.3. Load Curve Reconstruction

Figure 10 represents the simulated load curves of 11 July 2018, obtained for different
strategies and with a 75 kWp PV installation. The PV production is represented in blue.
The curve that corresponds to the EV consumption with the PC strategy, in red, shows
a large peak of approximately 200 kW at the beginning of the day and a second peak at
noon. The curve that corresponds to the MP strategy, in yellow, is smoother and relatively
synchronized with the PV production, but we observe that the EVs consume energy during
the night (due to EVs that stay connected for more than a day). The curve that corresponds
to the Smart Charging strategy, in purple, is in line with the PV production. We observe
that there is no power consumption during night-time.
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On this particular day, the Self-Consumption and Self-Production Rates are consid-
erably higher for MP and SC strategies than the basic PC since their charging profiles are
distributed throughout the day, in particular, when the PV production is the highest. Thus,
the SPR is equal to 49% with the PC strategy, 89% with the MP and 100% with the PC
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strategy. The SCR is equal to 31% with the PC strategy, 62% with the MP and 69% with the
PC strategy.

4.4.4. Relationship 4: Production-to-Consumption Ratio versus and Self-Production Rate

This section explores the relationship between the Production-to-Consumption ra-
tio (PTC) and the SPR, given a particular charging strategy chosen among the three de-
scribed in Section 4.4.2. In order to vary the PTC, as the total energy consumption of
the cars is independent of the charging strategy, we have modified the value of the PV
production. Fifteen different sizes of the PV plant have been considered for this study:
Speak = [0, 1, 25, 50, 75, 100, 125, 150, 175, 200, 300, 700, 1000, 5000, 12,000] kWp.

First, we perform the following 17 simulations with the horizon spanning more than a
6-year period:

• One simulation of the Plug and Charge strategy;
• One simulation of the Mean Power strategy;
• One simulation Smart charging strategy for each of the 15 different values of Speak.

Daily PTC and SPR for each of these simulations and for each value of PV plant size
are then calculated. Figure 11 illustrates the values of daily PTC along with daily SPR,
computed for a peak power value of 100 kWp, using more than 6 years of data. This figure
distinguishes between the different charging strategies: in yellow, the results with smart
charging, in red with Mean Power and in blue with Plug and Charge. We observe that the
SPR is the highest for the smart charging strategy and is the lowest for the Plug and Charge
strategy. We also observe that very high values of SPR are obtained with the SC strategy as
soon as the PTC is higher than 1.
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In addition, we have computed the PTC and SPR over the entire 6-year long period.
Each point of Figure 12 has PTC as x-coordinates and SPR as y-coordinates. For the purpose
of simplicity, only the PTC values obtained with the 10 lowest PV peak power values
{0, 1, 25, 50, 75, 100, 125, 150, 175, 200} are displayed. The colors of the points distinguish
different strategies similar to those in Figure 11.



Appl. Sci. 2023, 13, 10128 20 of 27

Appl. Sci. 2023, 13, x FOR PEER REVIEW  20  of  28 
 

Charge strategy. We also observe that very high values of SPR are obtained with the SC 

strategy as soon as the PTC is higher than 1. 

 

Figure 11. Daily SPR and Daily PTC for every day for 6 years of the experimentation. 

In addition, we have computed the PTC and SPR over the entire 6-year long period. 

Each point of Figure 12 has PTC as x-coordinates and SPR as y-coordinates. For the pur-

pose of simplicity, only the PTC values obtained with the 10 lowest PV peak power values 

{0, 1, 25, 50, 75, 100, 125, 150, 175, 200} are displayed. The colors of the points distinguish 

different strategies similar to those in Figure 11. 

We observe that, for a given value of PTC, the self-production increases with the SC 

strategy compared with the MP strategy. In the same way, the SPR increases with the MP 

strategy compared to the PC strategy. For example, for PTC = 1, the SPR is equal to 56% 

for the SC strategy, is equal to 48% for the MP strategy and  is equal to 38% for the PC 

strategy. We can also observe that in order to obtain an SPR of 70%, the PTC has to be 

equal to 1.5 with the SC strategy, to 2.5 with the MP and to 4.1 with the PC strategy. 

Notice that the results presented in Figure 12 allow us to simplistically aggregate our 

dataset and chosen strategies into the computational procedure described in Section 3.4.2. 

Such a choice  is discussed  in Section 5.2. The  following subsection exemplifies  the  im-

portance of these results in a specific use-case. 

 

Figure 12. Relationship 4: PTC vs SPR, computed for different PV peak powers (0, 1, 25, 50, 75, 100,
125, 150, 175, 200) over a more than 6-year period.

We observe that, for a given value of PTC, the self-production increases with the SC
strategy compared with the MP strategy. In the same way, the SPR increases with the MP
strategy compared to the PC strategy. For example, for PTC = 1, the SPR is equal to 56% for
the SC strategy, is equal to 48% for the MP strategy and is equal to 38% for the PC strategy.
We can also observe that in order to obtain an SPR of 70%, the PTC has to be equal to 1.5
with the SC strategy, to 2.5 with the MP and to 4.1 with the PC strategy.

Notice that the results presented in Figure 12 allow us to simplistically aggregate our
dataset and chosen strategies into the computational procedure described in Section 3.4.2.
Such a choice is discussed in Section 5.2. The following subsection exemplifies the impor-
tance of these results in a specific use-case.

5. Sizing Procedure Examples
5.1. Price Examples

Since there are several stakeholders participating in the collective self-consumption
scheme, the electricity would be billed differently according to stakeholder interactions.
As assumed in Section 4.1.1, these bills are computed with flat rates and the cost of the
electricity subscription is not considered.

The price of the electricity coming from the grid in this example is calculated by
the Energy Regulation Commission (CRE) in France for 2023 [29]. The price structure of
PrESEV−CPO (424 €/MWh in total) is then composed of:

• Energy Component: 322 €/MWh corresponding to “non-residential blue” tariff (ver-
sion B, power subscription less than 36 kVA, included transportation, “supplementary
power case” also called ‘alloproduit’ in french), as described in Annex B2 of [29];

• Contribution Component: 31 €/MWh corresponding to the electricity consumption tax
(Taxe Intérieure sur la Consommation Finale d’Electricité) or TICFE until 31 January
2022. This contribution since then has been reduced to 1 €/MWh as a result of
electricity subsidy for French consumers (called “bouclier tarifaire” in french). Such a
subsidy lasts until the end of 2024;

• Tax Component: 71 €/MWh corresponding to 20% of the VAT on the energy, transport
and contribution parts.

PV fit-in-tariff is a selling price also regulated by the CRE and is currently at
120 €/MWh (Tariff Tc, 100 kWp < Ppeak < 500 kWp in 2023) [30]. The purchase price
PrPVO−LP = PrPVO−ESPV is thus supposed to be equal to 120 €/MWh as well. We consider
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that LP sells this energy at this price (i.e., without margin) but increased with transport,
contribution and taxes. The price structure of PrLP−CPO (197 €/MWh in total) is as follows:

• Energy component: PrPVO−LP = 120 €/MWh;
• Transportation component: 13 €/MWh (as explained in [31]);
• Contribution part: 31 €/MWh corresponding to TICFE;
• Tax Component: 33 €/MWh corresponding to 20% of the VAT on the energy, transport

and contribution.

A summary of these prices’ structure described above is given in Table 5.

Table 5. Electricity Prices for different stakeholder interactions. Notice that these prices are simple
flat rates.

Interaction Nomenclature Prices (€/MWh) Price Structure

PVO sells to LP PrPVO−LP 120 120 Energy

LP sells to CPO PrLP−CPO 197 120 Energy + 13 Transport + 64
(Taxes and contribution)

ESEV sells to CPO PrESEV−CPO 424 322 (Energy + transport),
102 (Taxes and contributions)

5.2. Hypothesis

In the following examples, we suppose that the CPO plans to apply the methodology
for prefeasibility studies (i.e., with the lowest effort but at the price of relatively low
precision). Its use-case has to be similar to the one described in this paper in order to utilize
the integrated dataset of the fourth relationship. In particular:

• The configuration of the charging points must be similar to the one presented in
Section 3.1, i.e., 100% of the charging points are 22 kW AC;

• The characteristics of the EVs are identical to the presented ones (i.e., a probability
distribution similar to the one of Figure 6);

• The working time and user behavior (i.e., the statistics of the start and end date of the
transaction, as depicted in Figure 4) are comparable;

• The EVCI has to be large enough to integrate new users such that there is no congestion
in the charging stations.

Note that if these assumptions are not satisfied, the fourth relationship is not valid
and all the simulations would have to be performed again.

5.3. Sizing PV Given a Targeted Number of EVs and a Targeted Mean Power Price

As an illustration, let us consider that the CEA applies the method of this paper to size
a PV plant located at Cadarache (near Aix-En-Provence, France) in order to charge its EV
fleet in 2030. By using Figure 5, CEA observes that the number of EVs currently increases
by approximately 100 per year. Thus, the number of EVs is assumed to be 1000 in 2030
(instead of 200 in 2022). By using Equation (8), this represents an annual consumption of
12 × 100 × 1000 = 1.2 GWh.

Let us consider that the CPO has a target price of PrCPO = 265 €/MWh. Equation (7)
gives SPR =

PrCPO−PrESEV−CPO
PrCPO−LP−PrESEV−CPO

≈ 70%. Thanks to Figure 12, we identify that, in order to
obtain an SPR of 70%, the ratio PTC has to be equal to 1.5, 2.5 and 4 for SC, MP and PC
strategies, respectively.

With an EV consumption of 1.2 GWh, these correspond to an annual PV production
of 1.8, 3 and 4.8 GWh. Once the required annual PV production has been identified, the
PV peak power can be determined using solar potential for a particular location. For
example, it is estimated that the PV production is about 1.4 GWh/MWp at the location
of the experiment (south orientation, tilt angle of 20◦ and system loss of 18%). With such
hypotheses, the peak power of the PV plant has to be equal to 1.28, 2.14 and 3.42 MWp to
reach the targeted PrCPO−LP.
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5.4. Estimating the Mean Power Price Given an Existing PV Installation and a Number of EVs

Let us now suppose that the owner of an existing PV installation of 100 kWp in the
same region wants to estimate the Mean Power price of the energy needed to feed 100 EVs
with the smart charging strategy. The procedure for deriving this price, according to
Figure 3, is the following:

• From PVGIS: Annual PV Production EPV = 100[kWp]× 1.4
[

MWh
kWp

]
= 140 MWh;

• From Equation (8): Annual EV Charging Consumption EEV = 12 × 100
[

kWh
badge

]
×

100[badge] = 120 MWh;
• Production-to-Consumption ratio PTC = EPV/EEV = 1.16;
• Self-Production Ratio (for Smart Charging) according to Figure 12: SPR = 0.6;
• PrCPO can then be estimated from Equation (6);
• PrCPO = PrESEV−CPO − SPR(PrESEV−CPO − PrLP−CPO) ≈ 287 €/MWh;

5.5. Estimating the Number of EVs Given an Existing PV Installation and a Target Mean
Power Price

Let us now suppose that the owner of an existing PV installation of 100 kWp in the
same region wants to determine the number of EVs that it could charge with the Mean
Power strategy and with a targeted Mean Power price of PrCPO = 265 €/MWh. The
procedure for deriving the number of EVs that it can support is as follows, according
to Figure 3:

• From PVGIS: Annual PV Production EPV = 100[kWp]× 1.4
[

MWh
kWp

]
= 140 MWh;

• From Equation (7), SPR =
PrCPO−PrESEV−CPO

PrCPO−LP−PrESEV−CPO
= 265−424

197−424 ≈ 0.7;

• The Production-to-Consumption ratio for different strategies is determined using
Figure 12: PTCMP = 2.5;

• Annual EV Charging Consumption (using the MP strategy) is then EEV = EPV
PTC =

140[MWh]
2.5 = 56 MWh;

• From Equation (8), the optimal number of EVs is then: EEV
(12×100) =

56 MWh
12×100 kWh ≈ 46.

6. Conclusions and Perspectives

In this study, we proposed a method for:

• Sizing the PV plant required to properly charge a certain number of EVs, given a
targeted Mean Power price;

• Estimating the Mean Power price, given a PV plant size and the number of EVs to
be charged;

• Estimating the number of chargeable EVs for a particular PV installation and charging price.

We have applied this method to a car park located in a research center in southern
France. The main input of this study is a massive empirical dataset collected over more
than 6 years with 350 EV users and 80 charging points. To generate the EV charging
power profiles, simulations were conducted with different charging strategies based on
historical real data. This allowed us to obtain simulated EV profiles for the individual
power demand and for different sizes of the PV plant. The effect of implementing rule-
based charging strategies (Mean Power and Solar Smart Charging) has been proven to
be significantly beneficial as compared to the simple Plug and Charge mode. In one of
the showcases, the PV peak power required for 1000 vehicles to attain a charging cost
of 265 €/MWh for Smart Charging, Mean Power and Plug and Charge strategies are
1.28, 2.14 and 3.42 MWp, respectively.

The main advantage of our methodology is its modularity, i.e., each key parameter
(PV production, EV charging demand, business models and EV charging strategies) may be
analyzed independently from each other. Thus, when the method is fully applied once on a
given case, some computations may be re-used for other “similar” cases. In some cases,
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as fully exemplified in the previous section, the application of the method becomes very
simple and quick.

The described methodology and results offer several avenues for future expansion:

• Different simple and advanced strategies can be further integrated into this methodol-
ogy, among which optimization-based methods are the most promising, in particular,
Mixed Integer Linear Programming (MILP);

• More realistic electricity tariff schemes (time-of-use or dynamic spot price) should be
considered instead of flat rates from the energy provider ESEV;

• Costs due to power subscription (in €/MW) should also be taken into account, in
addition to the total electricity consumption (in €/MWh) as the number of EVs grows;

• This paper assumes that the PV forecast is perfectly precise and omits any negative
impact on the PV forecast accuracy. Hence, further studies are required to determine
the impact of real PV forecast;

• Individual Battery Degradation should be considered [32].

In contrast, we think that datasets representative of standard use-cases could be openly
disseminated within the research community, as suggested in [33]. Such datasets could
serve as valuable resources for benchmarking purposes. Furthermore, with increasingly
higher aggregated EV capacity, the EVCI is also eligible for different market participation,
thus creating several revenue streams for the CPO. For example, two of these markets
encompass the European frequency containment market and demand-response market.
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PV Photovoltaic
EV Electric Vehicle
CPO Charging Point Operator
PVO Photovoltaic Operator
DSO Distribution System Operator
EVCI Electric Vehicle Charging Infrastructure
ESEV Energy Supplier of Electric Vehicles
ESPV Energy Supplier of Photovoltaics
FS Feasibility study
LP Legal Person (La Personne Morale)
PVCS Photovoltaic-powered Electric Vehicle Charging Station
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PTC Production-to-Consumption Ratio
PFS Prefeasibility study
SPR/SCR Self-Production/Consumption Ratio
BES Battery Energy storage System
WT Wind Turbine

Appendix A

Appendix A.1. Analytical Expression of the Relationship 4

Relationship 4, discussed in Section 4.4.4, is obtained from simulation results and is
represented as an abacus. However, using the abacus directly is impractical due to the need
for more automation in determining SPR from the PTC ratio (and vice-versa). Additionally,
the points on the abacus are widely spaced, posing challenges for users trying to obtain one
value given another. We propose utilizing analytical functions that interpolate between
the abacus points to address these limitations. These functions can be integrated into
software as mathematical expressions or lookup tables. To achieve this, we used the Matlab
Curve Fitting ToolboxTM. Based on this analysis, the best-fit model for the data in Figure 12
is a two-term exponential function, which can be defined using the specific coefficients
in Table A1.

Table A1. Coefficients of the analytical expression.

Strategy Analytical Formula

Plug and Charge: SPR(PTC) = 70.1 × e0.012×PTC − 69.5 × e−0.709×PTC

Mean Power: SPR(PTC) = 78.3 × e0.005×PTC − 77.8 × e−0.902×PTC

Smart Charging: SPR(PTC) = 92.9 × e0.002×PTC − 92.6 × e−0.893×PTC

Figure A1 presents the points of the abacus and the associated analytical functions for
the three control strategies.
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Figure A1. Self Production Rate (SPR) as a Function of Production-to-Consumption (PTC) Ratio for
over Six Years, Illustrated for Three strategies.

We generated a look-up table using the derived analytical formulas to compute PTC
ratios based on SPR input. Figure A2 illustrates the results for the three strategies, including
an example of PTC ratios for an SPR of 70% (which is the value targeted in the sizing
example of 5.3). Among the strategies, Smart Charging achieved the best ratio (PTC = 1.6),
outperforming Mean Power (PTC = 2.4) and Plug and Charge (PTC = 4.2).
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Appendix A.2. Sensitivity Analysis

Based on the six defined periods in Table 4, we computed the SPR and PTC, resulting
in six abacus diagrams shown below (Figure A3). Each sub-figure represents SPR versus
PTC for the three strategies: Plug and Charge (blue), Mean Power (green), and Smart
Charging (magenta). In the first period (June 2016 to May 2017), PTC ranges from 0 to
80; in the last period (from June 2021 to August 2022), PTC ranges from 0 to 15. This
variation is due to similar PV production during both periods but a significant increase in
EV consumption.
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Figure A3. SPR versus PTC ratio calculated for each of the six periods and for the three strategies.

We applied the same curve fitting method to the six periods, resulting in curves
represented in different colors. Figure A4 shows the curves for each period: blue (starting
June 2016), green (starting 1 June 2017), pink (starting 1 June 2018), black (starting 1 June
2019), cyan (starting 1 June 2020), and yellow (starting 1 June 2021). The dotted red line
also represents the curve obtained for the entire period.

We notice that all the curves are nearly identical except for the curve associated with
the first period and the Plug and Charge strategy (blue in the left sub-figure). The former
curve is noticeably lower than the others, indicating that the SPR during that period was
lower compared to the other periods for a given PTC. This can be attributed to the scarcity
of EVs during that time (less than 50, according to Figure 5), with a higher proportion of
them charging early in the morning. Furthermore, we observe that the curves calculated
over the period of more than six years are consistently below those for period 2, period 3,
period 4, and period 5. This suggests that the SPR estimated by relationship 4 is slightly
pessimistic compared to the SPR observed during these four periods. In other words, our
methodology, as described in Section 3.4, tends to oversize the PV peak power, overestimate
the Mean Power price, and underestimate the value of EVs.
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