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Abstract: The statistical modeling with ILR-RPCA-back CLR has two problems when dealing with
the closure effect of geochemical data. Firstly, after performing isometric logratio (ilr) transformation,
robust principal component analysis (RPCA) is employed for processing. The double-plot diagram
illustrates that the element sequence transformation occurs in the first and second principal com-
ponents, while the unique principal component remains unattainable. Secondly, by transforming
both the score and load into the centered logratio (CLR) space using the U matrix, it is possible to
obtain a score result that corresponds to the original order of elements according to the CLR = ILR·U
formula. However, for obtaining a load result that corresponds to the original order of elements,
an alternative formula “CLR = UT·ILR” must be used instead. In order to determine the optimal
element assemblage for porphyry copper deposits, this study conducted statistical analysis on mineral
assemblages from discovered deposits in the Gangdese metallogenic belt and identified Cu, Mo, Au,
Ag, W, and Bi as key elements associated with porphyry copper deposits. Subsequently, by analyzing
the singularities of the composite elements, the spatial overlay of the combined element is carried out,
and concentration-area (C-A) fractal filtering is applied to identify the anomaly and background areas.
To facilitate comparison, we conducted an analysis of various mineral and ore deposit types, revealing
the following findings: (1) Combination elements exhibit superior recognition capability than single
elements in porphyry copper deposits; (2) Skarn-type copper deposits unrelated to porphyry show a
high degree of dissimilarity compared to those related to porphyry; (3) this method offers advantages
over the single element method in evaluating porphyry gold deposits by reducing anomaly levels
and initial investment during the evaluation stage for porphyry copper anomalies; (4) However, this
method has limited ability in distinguishing between porphyry copper and molybdenum deposits.

Keywords: geochemical singularity index; spatial overlay analysis; Gangdese metallogenic belt;
porphyry Cu deposit

1. Introduction

Porphyry deposits are globally significant sources of copper, molybdenum, and gold.
Among them, porphyry copper deposits contribute approximately 55% of the world’s
copper reserves, while porphyry molybdenum deposits account for approximately 90%
of global molybdenum reserves. Additionally, porphyry gold deposits make up around
20% of the world’s gold reserves. Notably, China possesses a significant proportion of
porphyry deposits [1–4]. In recent years, extensive exploration and research efforts have
been conducted on large-scale porphyry copper mines such as Qulong, Jiama, Xiongcun,
Duolong, and Tiegelongnan. These endeavors have revealed the Qinghai-Tibet Plateau as a
region of utmost importance and potential for copper production in China [5].
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Mineralization is a process that leads to the concentration and accumulation of valu-
able materials within a relatively limited temporal and spatial range, as compared to
normal regional geological processes [6]. The complexity of the metallogenic process stems
from the intricate dynamics of multi-component and multi-geological interactions, cou-
pled with overlay and other complex processes [7]. Relying solely on the exploration of
single elements through geochemical analysis is insufficient for the porphyry copper mine
prospecting work. Therefore, the identification of combination elements plays a crucial role
in geochemical data processing. Currently, methods such as principal component analysis
(PCA), robust principal component analysis (RPCA), factor analysis (FA), and robust factor
analysis (RFA) are employed for combination element identification [8–13].

These methods often require logarithmic transformations or logratio transformations
(such as alr: additive logratio, clr: centered logratio, ilr: isometric logratio, etc.) to eliminate
the closure effect of compositional data. However, they encounter challenges during the
analysis process, such as difficulties in interpretation and singularity effects, which are
difficult to resolve. To address these issues, some researchers have proposed the ILR-
RPCA-back CLR statistical model. This model involves transforming the raw geochemical
data through an isometric logarithm (ILR) transformation and subsequently applying
robust principal component analysis (RPCA) for data processing. The scores and loads
obtained from RPCA are then transformed into the centered logratio (CLR) space using
the U-matrix [14]. While this method has been applied in the analysis of geochemical
data related to magma-hydrothermal ore deposits [14,15], challenges in interpretation and
other aspects persist (please refer to Section 4 for more details). Moreover, the combination
elements extracted during the analysis of the above method, particularly in small-scale
geochemical data, are predominantly associated with environmental (background) elements
rather than ore-forming elements. In the Gangdese metallogenic belt, the porphyry copper
deposits exhibit a distinct combination of mineralization elements. Utilizing spatial overlay
analysis pertaining to deposit genesis is more advantageous for identifying porphyry
copper deposits.

In the eastern section of the Gangdese metallogenic belt, which is known as the largest
district for dense porphyry copper deposits, numerous large and super large deposits
like Qulong, Tinggong, Chongjiang, Jiama, and Bairong have been discovered. However,
in the western section of the belt, the number of discovered deposits remains relatively
limited. Due to the limitations of traditional methods in identifying complex anomalies and
low-delay anomalies, it becomes necessary to employ advanced theories and techniques
to guide prospecting efforts for porphyry copper deposits in the western section of the
Gangdese metallogenic belt. Local singularity analysis is not only a powerful multifractal
tool to identify weak anomalies but also a type of local neighborhood statistical analysis
that can reduce the effects of regional background and provide useful statistical information
by involving the data within a small singularity around a specific spatial location [16–23].
Therefore, local singularity analysis is widely used. This study specifically concentrates
on porphyry copper deposits in the western section of the Gangdese metallogenic belt
and aims to address the limitations of the ilr-RPCA-back-clr model. To investigate the
spatial distribution pattern of geochemical elements and identify real anomalies related
to porphyry copper deposits, the study employs overlay analysis of the local singular
elements of geochemical combination elements.

2. Geological Setting and Geochemical Data
2.1. Regional Geological Background

The western part of the Gangdese belt is located in the south-central part of Tibet. The
tectonic structure belongs to the Gangdese-Nyainqentanglha landmass in the Gangdese-
Himalayan tectonic area, which is between the Yarlung Zangbo River and the Bangong Lake-
Nujiang Belt [24]. The basement consists of the Nyainqentanglha group from Presinian.
The Cambrian and low-middle Triassic strata are generally absent, with more complete
development observed in the Ordovician stratigraphy. The Ordovician-Permian strata are
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mainly distributed in the northern part of the study area, and the Upper Triassic-Jurassic
strata are distributed in the northern part of the study area, while the Cretaceous-Neogene
strata are distributed in the whole area (Figure 1). The region exhibits a significant presence
of magmatic rocks, characterized by extensive chronological distribution, large exposed
areas, wide distribution ranges, complex origins, and diverse types. The intrusive and
volcanic rocks have been extensively developed since the Triassic, mainly formed in the
Cretaceous-Paleogene, with the latest volcanic magma activity in the Miocene. Pan et al. [25]
classified the tectonic unit of the Gangdese orogenic belt. By comparing these tectonic
units, the study area can be divided into four magmatic belts consisting of intermediate-
acidic magmatic rocks, including South Gangdese, Longgeer-Nyainqentanglha, Ze long,
and Ban-Bengcuo. These four magmatic belts are closely associated with the distribution
of the porphyry copper-molybdenum-gold deposits. The porphyry copper polymetallic
deposits in the study area are mainly distributed in the Gangdese magmatic arc, including
Zhunuo, Jiru, Xiongcun, Dongga, etc. Additionally, deposits can be found in the uplifted
area of the Longgeer-Nanmulin arc-back belt, which includes Ria in Cuoqin, as well as in
the island arc belt of Cuoqin-Xainza, consisting of Balazha, Gaerqiong, and others. The
detailed chronology and tectonic setting of the typical porphyry deposits mentioned above
have been studied by many authors. The results suggest that the formation environment
and metallogenic characteristics of the porphyry deposits in this area are formed in three
tectonic settings: island arcs, syn-collisional environments, and post-collisional extensional
environments, occurring during four metallogenic periods: the Early Middle Jurassic,
Late Cretaceous, Eocene, and Miocen. The porphyry deposits in island arcs such as
Dongga and Xiongcun are only distributed in the south of the southern margin of the
Gangdese magmatic arc zone. The porphyry deposits in syn-collisional and post-collisional
extensional environments such as Zhunuo and Jiru are mainly distributed in the southern
Gangdese magmatic arc. Additionally, a few porphyry deposits, such as Balazha and
Gaerqiong, are distributed in the northern part of the Cuoqin-Xainza Island arc and the
Bangor magmatic arc belt. All these insights greatly extend the geochemical prospecting of
porphyry copper polymetallic ore in the western Gangdese.
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Figure 1. (a) Major tectonic units and boundary map of the Tibetan Plateau. (b) Regional geological
map of the western Gangdese.

2.2. Geochemical Data

The datasets used in this study were a digital 1:500,000 geological map and a regional
stream sediment geochemical dataset (Figure 2). The regional stream sediment geochemical
dataset is based on 9546 stream sediment samples collected and analyzed for 39 major, mi-
nor, trace, and subtrace elements at a density of one sample per 20 km2 during the Chinese
National Geochemical Mapping (CNGM) project as part of the “Regional Geochemistry
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National Reconnaissance (RGNR) Project”. These 39 elements in stream sediments are
determined based on inductively coupled plasma-mass spectrometry (ICP-MS), X-ray fluo-
rescence (XRF), and inductively coupled plasma-atomic emission spectrometry (ICP-AES)
as the backbone combined with other methods. The concentration values of Bi, Cd, Co, Cu,
La, Mo, Nb, Pb, Th, U, and W are determined by ICP-MS. The concentration values of Al,
Cr, Fe, K, P, Si, Ti, Y, and Zr were determined by XRF. The concentration values of Ba, Be, Ca,
Li, Mg, Mn, Na, Ni, Sr, V, and Zn were determined by ICP-AES. The concentration values
of Ag, B, and Sn were determined by emission spectrometry (ES). The concentration values
of As and Sb were determined by hydride generation-atomic fluorescence spectrometry
(HG-AFS). The concentration values of Au, Hg, and F are determined by graphite furnace-
atomic absorption spectrometry (GF-AAS), cold vapor-atomic fluorescence spectrometry
(CV-AFS), and ion-selective electrode [26], respectively. The detection limit for each of the
39 elements is given in Table 1 [27].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 13 
 

2.2. Geochemical Data 
The datasets used in this study were a digital 1:500,000 geological map and a regional 

stream sediment geochemical dataset (Figure 2). The regional stream sediment geochem-
ical dataset is based on 9546 stream sediment samples collected and analyzed for 39 major, 
minor, trace, and subtrace elements at a density of one sample per 20 km2 during the Chi-
nese National Geochemical Mapping (CNGM) project as part of the “Regional Geochem-
istry National Reconnaissance (RGNR) Project”. These 39 elements in stream sediments 
are determined based on inductively coupled plasma-mass spectrometry (ICP-MS), X-ray 
fluorescence (XRF), and inductively coupled plasma-atomic emission spectrometry (ICP-
AES) as the backbone combined with other methods. The concentration values of Bi, Cd, 
Co, Cu, La, Mo, Nb, Pb, Th, U, and W are determined by ICP-MS. The concentration values 
of Al, Cr, Fe, K, P, Si, Ti, Y, and Zr were determined by XRF. The concentration values of 
Ba, Be, Ca, Li, Mg, Mn, Na, Ni, Sr, V, and Zn were determined by ICP-AES. The concen-
tration values of Ag, B, and Sn were determined by emission spectrometry (ES). The con-
centration values of As and Sb were determined by hydride generation-atomic fluores-
cence spectrometry (HG-AFS). The concentration values of Au, Hg, and F are determined 
by graphite furnace-atomic absorption spectrometry (GF-AAS), cold vapor-atomic fluo-
rescence spectrometry (CV-AFS), and ion-selective electrode [26], respectively. The detec-
tion limit for each of the 39 elements is given in Table 1 [27].  

 
Figure 2. Stream sediment sample location map of the western Gangdese. 

Table 1. The detection limits of 39 elements [28]. 

No. Elements Detection Limit No. Elements Detection Limit No. Elements Detection Limit 
1 Ag 0.02 14 La 30 27 U 0.5 
2 As 1 15 Li 5 28 V 20 
3 Au 0.0003 16 Mn 30 29 W 0.5 
4 B 5 17 Mo 0.4 30 Y 5 
5 Ba 50 18 Nb 5 31 Zn 10 
6 Be 0.5 19 Ni 2 32 Zr 10 
7 Bi 0.1 20 P 100 33 SiO2 0.10% 
8 Cd 0.05 21 Pb 2 34 Al2O3 0.10% 
9 Co 1 22 Sb 0.1 35 TFe2O3 0.05% 

10 Cr 15 23 Sn 1 36 MgO 0.05% 
11 Cu 1 24 Sr 5 37 CaO 0.05% 
12 F 100 25 Th 4 38 Na2O 0.05% 
13 Hg 0.0005 26 Ti 100 39 K2O 0.05% 

  

Figure 2. Stream sediment sample location map of the western Gangdese.

Table 1. The detection limits of 39 elements [28].

No. Elements Detection Limit No. Elements Detection Limit No. Elements Detection Limit

1 Ag 0.02 14 La 30 27 U 0.5
2 As 1 15 Li 5 28 V 20
3 Au 0.0003 16 Mn 30 29 W 0.5
4 B 5 17 Mo 0.4 30 Y 5
5 Ba 50 18 Nb 5 31 Zn 10
6 Be 0.5 19 Ni 2 32 Zr 10
7 Bi 0.1 20 P 100 33 SiO2 0.10%
8 Cd 0.05 21 Pb 2 34 Al2O3 0.10%
9 Co 1 22 Sb 0.1 35 TFe2O3 0.05%

10 Cr 15 23 Sn 1 36 MgO 0.05%
11 Cu 1 24 Sr 5 37 CaO 0.05%
12 F 100 25 Th 4 38 Na2O 0.05%
13 Hg 0.0005 26 Ti 100 39 K2O 0.05%

3. Methods
3.1. Multifractal Inverse Distance Weighted (MIDW)

Kriging and inverse distance weighting (IDW) are two frequently used methods for
constructing contours and surfaces to determine spatial variations and anomalies. However,
one limitation of Kriging is that it tends to smooth the data due to its reliance on variograms
and moving weighted averages [29]. As a result, it may not effectively capture outliers
during interpolation. A common drawback of moving average interpolation techniques lies
in their failure to consider the local properties of the data. In contrast, the Modified Inverse
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Distance Weighting (MIDW) method incorporates a local singularity into the basic model
of moving average interpolation, considering spatial correlations such as Kriging [30].
Compared to the traditional interpolation methods, the MIDW method has two significant
advantages: (1) it improves the accuracy of interpolation results, and (2) it retains the local
structure of the interpolation surface. The MIDW method has been proven to be effective
in both exploration and environmental geochemistry [27,30,31].

3.2. Local Singularity Spatial Overlay Analysis (α-Value)

The local singularity analysis is another important progress for fractal/multifractal
modeling of geochemical data [32]. It is defined as the characterization of the anoma-
lous behaviors of singular physical processes that often result in anomalous amounts of
energy release or material accumulation within a narrow spatial–temporal interval [16].
The singularity can be estimated from the observed element concentration within small
neighborhoods based on the following equation:

X = c · rα−E, (1)

where X represents element concentrations, c is a constant value, α is the singularity, E is a
normalized distance measure, such as block cell edge, and E is the Euclidian dimension [19].

The window-based method can be used to estimate the singularity index α [16].
Based on either raw point geochemical data or raster maps using the following steps: (1)
defining a set of sliding square (or other shapes) windows A(r) with variable window sizes,
rmin = < r1 < r2 < . . . < rn = rmax, and calculating the average concentration C[A(ri)] for each
window size for a given location on the map, where C[A(ri)] is equal to the sum of all the
cell concentrations divided by the total number of cells within the window; (2) plotting
the pair data set of C[A(ri)] (i = 1, . . ., n) and ri in a log–log graph, the following linear
relationship can be obtained.

logC[A(ri)] = c + (α− 2)log(r), (2)

The value of α − 2 can be estimated from the slope of the fitted straight line, and
in step (3), repeat the same procedure to all other locations on the geochemical map.
For a geochemical map, most of the areas are linked with a singularity value close to
2, representing a normal distribution, whereas the areas with α < 2 or α > 2 represent
enrichment and depletion of element concentrations, respectively [16].

The method of spatial overlay local singularity analysis proposed in this paper is as
follows. First step: determine the effective combination of geochemical elements, perform
the local singularity analysis of geochemically combined elements, and make a grid di-
agram. In the second step, using the local singularity raster of the appropriate selected
elements, we use Formula (3) to carry out the overlay analysis:

[O] = ∑n
i [αi], (3)

where i denotes proportionality element (such as Au, Ag, and so on), n denotes types of
geochemical combination elements, [αi] denotes the local singular raster datasets of the
i element, and [O] denotes geochemical composition element local singular value space
overlay raster dataset, whose significance represents the anomaly map of the deposit type.

According to the geological basis and geochemical prospecting mark, a geochemical
combined element model is established. According to the model of the geochemical
combined element of the porphyry copper mine, the geological significance of the local
singularity map is given.
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3.3. Concentration–Area Model (C–A)

The C–A model, originally developed by [33], represents the first important step in
fractal/multifractal modeling of geochemical data and has been “a fundamental technique
for modeling of geochemical anomalies” [34]. The C–A fractal model gives:

A(ρ ≤ ν) ∝ ρ−a1 ; A(ρ > ν) ∝ ρ−a2 , (4)

where A(ρ) represents the area with concentrations greater than or equal to the contour
value ρ, v is the threshold, and a1 and a2 are fractal dimensions, which are greater than zero.
These two fractal parameters can be estimated from the slopes of the best-fitting straight
lines in the log–log plot of A(ρ) versus ρ. ∝ denotes proportionality (is the mathematical
symbol for “proportional to”). The C–A model can be used for raw point geochemical data,
contour maps, or raster maps of elements. Two approaches can be used to calculate the
enclosed area. One is based on the contour map created by interpolation procedures, and
the other is based on superimposing a grid with cells on the study area and calculating the
area by means of a box counting method. Distinct patterns, each corresponding to a set
of similarly shaped contours, can be separated by different straight segments fitted to the
values of the contours and enclosed areas on the log–log plot. The slopes of these straight
lines can be taken as an estimation of the exponents of the power-law relation in Equation
(4). The optimum threshold for separating geochemical anomalies from the background
is the concentration value common to both linear relationships on the log–log plot [22,32].
Based on the deposit type diagram, the optimal threshold is determined quantitatively by
the C–A method.

4. Results and Discussion
4.1. The Question of ilr-RPCA-Back clr

The extraction of geochemically combined elements has attracted much attention
in geochemical prospecting, with various methods available. Currently, the methods of
combination element identification are mainly PCA, RPCA, FA, RFA, and so on. These
methods require the use of logarithmic transformations or logarithmic ratio transformations
(alr, clr, ilr, and so on) to eliminate or attenuate the effect of component data closure as
much as possible. Here, the widely used ilr-RPCA-back clr method is discussed.

Question 1: How does the process of element exchange impact the compositional
variations of geochemical elements?

The ilr transform method itself belongs to the asymmetric transformation, and the
correspondence between the variables before and after the transformation is disrupted.
This disruption is primarily due to changes in the order of elements in the ilr formula.
Consequently, when applying this method to stream sediment data, different combinations
of elements can be obtained through the same transformation. Based on the experiments
with the six elements related to the original data of the porphyry copper deposit, the
influence of the order change of different elements on ilr transformation is discussed. As
shown in the figure, the Ag, Mo, and W elements in Figure 3a represent the first principal
component and exhibit strong positive correlations (Table 2). However, in Figure 3b, these
same elements show poor representation and weak correlation (Table 2). In Figure 3c, the
Ag-Mo-W and Au-Cu elements, respectively, demonstrate negative loadings on the first
principal component and positive loadings on the second principal component (Table 2).
Figure 3d reveals that Ag and Mo elements maintain a strong positive correlation as they
represent the first principal component. From these results, it can be concluded that
further research is required to investigate the application of this method for determining
geochemical elements.
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Table 2. ILR-RPCA-back CLR Statistical Table of different elements in sequence.

Sequence 1 (Figure 3a) Sequence 2 (Figure 3b) Sequence 3 (Figure 3c) Sequence 4 (Figure 3d)

Elements PC1 PC2 Elements PC1 PC2 Elements PC1 PC2 Elements PC1 PC2
Bi 0.17 0.86 W −0.08 0.42 W 0.29 0.24 W 0.26 −0.31
W −0.33 0.04 Ag −0.57 −0.36 Au −0.44 −0.38 Bi −0.47 −0.66
Au 0.29 −0.42 Bi 0.30 0.58 Cu −0.69 0.20 Mo 0.34 0.07
Cu 0.68 −0.19 Au 0.22 −0.49 Mo 0.29 −0.20 Cu −0.52 0.30
Ag −0.38 −0.21 Cu 0.58 −0.30 Ag 0.34 −0.52 Au −0.16 0.61
Mo −0.42 −0.08 Mo −0.44 0.14 Bi 0.21 0.67 Ag 0.55 −0.01

Cumulative
Proportion 0.34 0.58 Cumulative

Proportion 0.32 0.61 Cumulative
Proportion 0.37 0.63 Cumulative

Proportion 0.31 0.58

Question 2: Score and load transform to clr space; has the element correspondence
changed?

clr(Y) = log
xi

D
√

∏D
i=1 xi

(i = 1, 2, 3, · · · , D− 1, D), (5)
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ui =

√
i

i + 1

 1
i

, · · · ,
1
i︸ ︷︷ ︸

i elements

,−1, 0, · · · , 0

(i = 1, 2, 3, · · · , D− 1), (6)

U = [u1, u2, · · · , uD−2, uD−1]
T(i = 1, 2, 3, · · · , D− 1), (7)

ilr(X) =

√
i

i + 1
ln

 i
√

∏i
j=1 xj

xi+1

(i = 1, 2, 3, · · · , D− 1), (8)

clr(Y) = ilr(X)U (9)

Based on the information provided, this paper analyzes the reasons for the aforemen-
tioned problems, starting with the fundamental formula. Although the score and load can
be projected into the clr space after the transformation between clr and ilr, the calculation
steps of ilr-RPCA-back clr reveal the following issues:

Step 1: The original data matrix A (R × D), after the ILR transformation, finds that
the last element has not been given the value of the ILR transform, so that the matrix
B (R × (D − 1)) of an element is reduced.

Step 2: The RPCA transformation of data matrix B (R × (D − 1)) after ilr can only obtain
D − 1 principal components; at this time, the elements represented are only the first D − 1
elements, the score is matrix C (R × (D − 1)), and the load is matrix D ((D − 1) × (D − 1)).

Step 3: U transformation of matrix C and D transform to CLR space, U score matrix
(R × (D − 1))·((D − 1) × D) to obtain a new score matrix E (R·D), namely UT·matrix
(D × (D − 1))·((D − 1) × (D − 1)) obtain the new matrix F (D × (D − 1)) and set up a
corresponding contact element.

It is evident that the final element does not contribute to the principal component
analysis, and consequently, the transformed load obtained using the transformation formula
does not contain any information pertaining to this specific element. Furthermore, the
relationships among elements in the transformed load are not identical to their original
relationships but rather represent comprehensive associations. Additionally, it should be
noted that the relationship between clr and ilr is U instead of UT. Hence, it is necessary to
handle the correspondence between elements in the new load matrix appropriately. Since
ilr is not a matrix, clr = ilr·U cannot be converted to “clr = UT·ilr”. So, for the final clr space
inverse transformation, the only problem is the corresponding elements of the relationship.

This paper argues that the CLR, ILR, and RPCA do not have any problems, but the
combination of the three should be considered carefully for the identification of geochemi-
cally combined elements and types of deposits. For this issue, this paper does not propose
a definitive solution but would like to take this opportunity to raise the question and hope
that the mathematical geologists will study deeply and solve this problem.

4.2. Selection of Element Association Associated with Porphyry Copper Mineralization

Since stream sediment data belong to compositional data, it is not appropriate to
conduct relevant combinatorial analysis of the data without eliminating the closure effect.

Based on the original geochemical data, this paper is under the guidance of the study
of geological laws, the establishment of geochemical markers, and the exploration of
geochemical models (supergene). According to the porphyry deposits in the Gangdese
metallogenic belt, part of the geochemical elements combined statistically have been found
to be elements of the porphyry copper deposits in combination with Cu, Mo, Au, Ag, W,
and Bi, which is convenient to distinguish from other types of ore deposits (Table 3).
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Table 3. Composite element statistics table.

Deposits and Metallogenic Belts Geochemical Anomaly Element
Combination Sampling Mode References

Xiong Cun Cu, Au, Mo regional geochemical anomalies [35]
Xiong Cun Cu, Au, Ag, Pb, Zn soil anomaly [36]

Ji Ru Cu, Mo, W, Bi regional geochemical anomalies [35]
Zhu Nuo Au, Cu, Mo, W regional geochemical anomalies [35]
Zhu Nuo Cu, Mo, W, Au, Pb, Zn, Ag stream sediment [37]

Chong Jiang Cu, Mo, Au, Ag, Pb, Zn, Hg, Sb stream sediment [37]
Chong Jiang Cu, Mo, W, Bi, Pb, Ag regional geochemical anomalies [37]

Qu Long Cu, Mo, W, Bi, Pb, Ag stream sediment [38]
Qu Long Cu, Mo, W, Bi, Sn regional geochemical anomalies [5]

Jia Ma Cu, Bi, Au, Ag, Pb, Zn stream sediment [39]
Jia Ma Cu, Mo, Au, Ag, Bi, Sn soil geochemistry [39]

Gangdese polymetallic
metallogenic belt Cu, Mo, W, Au, Ag, Bi geochemical anomaly [40]

Gangdese polymetallic
metallogenic belt Cu-Mo, Au-Ag, Cu-Mo-Au, Cu-Au-Ag combination geochemical anomaly [40]

Gangdese porphyry copper
deposit Cu, Mo, Pb, Zn, Ag [41]

Gangdese copper polymetallic
metallogenic belt Cu, Au, Ag, W, Mo, Bi geochemical anomaly [42]

Gangdese copper polymetallic
metallogenic belt Cu-Mo, Cu, Cu-Mo-Au, Cu-Au geochemical anomaly [42]

statistical results Cu(21), Mo(16), Au(14), Ag(12), W(8),
Bi(8), Pb(7), Zn(5), Hg(1), Sb(1), Sn(1) final choice Cu(21), Mo(16), Au(14),

Ag(12), W(8), Bi(8)

4.3. Spatial Overlay Analysis of Geochemical Singularity Index α-Value of Porphyry Copper Deposit

Recent advances in identifying weak geochemical anomalies refer to the singularity
mapping technique proposed by Cheng [16], and it has been demonstrated as a powerful
multifractal tool for identifying weak geochemical anomalies in complex geological settings
or areas covered by overburden [20,22,23,43]. The window-based method was used to
calculate the local singularity index based on GeoDAS. Considering that the formation of
porphyry copper deposits in the western Gangdese metallogenic belt is closely related to
the specific geochemical composition elements, the local singularity analysis of individual
elements cannot be used to meet the objective of recognizing the weak anomalies of
porphyry copper deposits. Therefore, according to the geochemical composition elements
of porphyry copper deposits, singularity analysis of each element has been carried out, and
the local singular maps of porphyry copper deposits have been obtained by spatial overlay
analysis. The spatial distribution map of α-A (Figure 4b) highlights the weak anomalies
relative to α-Cu raster contour maps (Figure 4a). It is also shown that the spatial overlay
singular values (α-A) are apparently enriched in the acid intrusive rocks and volcanic rocks
and spread in the NW-trending direction according to the regional faults. The anomaly
threshold values of α-A and α-Cu were obtained by the C–A model. Furthermore, the
log–log plots of the concentration (α) versus the number of samples with concentration
values greater than or equal to α are constructed to examine whether or not the distribution
of A and Cu follows a fractal. It can be observed that two straight lines can be fitted
(Figure 5), suggesting they may satisfy a multifractal distribution.

In order to facilitate the analysis of the advantages and disadvantages of the two
methods, this paper presents a typical deposit analysis map (Figure 6) based on the known
deposit and the abnormal range of the degree of fit. The analysis diagram clearly shows that
the recognition degree of porphyry copper is obviously improved compared with the single
element method (Figure 6(a1–a3, b1–b3)). For skarn-type copper deposits, there is a large
area anomaly in the Ri a deposit. The reason is that the copper ore bodies in the Ri a deposit
are produced in the porphyry bodies. Therefore, this method makes it difficult to identify
or distinguish such deposits and porphyry copper mines. However, for skarn-type deposits
unrelated to porphyry, the method demonstrates a certain degree of distinction, especially
the Shesuo deposit (Figure 6(b5)). This method distinguishes porphyry molybdenum
ore from the single element method, but both of them have anomalies, indicating that
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these two methods have limited ability to distinguish porphyry copper and porphyry
molybdenum. Although this method is not as effective as the single element method in
distinguishing porphyry-type molybdenum ore, it still shows some abnormalities. In the
case of porphyry gold, this method has the advantage of reducing the abnormal level
compared with the single element method. For such deposits as Sa ka (Figure 6(a5,b5)) and
Ri na (Figure 6(a6,b6)), the use of the single element method is divided into three abnormal
zones, but the use of this method only allows for two levels of zoning. This advantage can
be reduced in the early stages of abnormal evaluation of porphyry copper, reducing the
input of such abnormal identification.
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Figure 6. Geochemical anomaly map of typical deposits in western Gangdese. (a1–a8) Singular
anomalies of copper elements of Zhu nuo, Jianglaang-zong, Balazha, Ri a, She suo, Tuan jie, Sa ka,
and Ri na; (b1–b8) Singular anomalies of association elements of Zhu nuo, Jianglaangzong, Balazha,
Ri a, She suo, Tuan jie, Sa ka, and Ri na; porphyry Cu deposit: Zhu nuo, Jianglaangzong, and Balazha;
skarn Cu deposit: Ri a and She suo; porphyry Mo deposit: Tuan jie; porphyry Au deposit: Sa ka and
Ri na.

5. Conclusions

The results of this study led to the following conclusions.

1. The ilr-RPCA-back CLR model has two issues. (1) The change in element position
severely affects the relationship between geochemical elements. (2) The score and
load transformation to clr space disrupts the corresponding relationship between the
elements. Therefore, it is important to carefully consider the use of this model for the
identification of geochemical element combinations.

2. The proposed method of singular value overlay analysis has clear advantages in
identifying porphyry copper deposits. However, it is difficult to distinguish skarn-
type copper related to porphyry from porphyry molybdenum. Additionally, the
distinction between porphyry skarn-type copper deposits and porphyry gold deposits
is not well defined. Nevertheless, this method can reduce the anomaly grade.
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3. This paper investigates the geochemical laws, geochemical markers, and geochemical
models based on geological foundations. It provides objective geological connotations
for the identification and evaluation of anomalies using geochemical data. By over-
coming the limitations of traditional technical methods and single element analysis,
which are influenced by elemental chemical properties, redox environment, weather-
ing erosion, and other factors, these methods offer significant advantages in anomaly
screening. They greatly reduce multiple solutions and subjectivity, highlighting the
prospecting value of anomalous regularity.
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