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Abstract: In the era of deep learning, representational text-matching algorithms based on BERT and
its variant models have become mainstream and are limited by the sentence vectors generated by the
BERT model, and the SimCSE algorithm proposed in 2021 has improved the sentence vector quality to
a certain extent. In this paper, to address the problem that the SimCSE algorithm has—that the greater
the difference in sentence length, the smaller the probability that the sentence pairs are similar—an
EdaCSE algorithm is proposed to perturb the sentence length using a simple data enhancement
method without affecting the semantics of the sentences. The perturbation is applied to the sentence
length by adding meaningless English punctuation marks to the original sentence so that the model
no longer tends to recognise sentences of similar length as similar sentences. Based on the BERT
series of models, experiments were conducted on five different datasets, and the experiments proved
that the EdaCSE method improves an average of 1.67, 0.84, and 1.08 on the five datasets.

Keywords: BERT; data augmentation; sentence vector representation

1. Introduction

Currently, the text-matching technique based on sentence representation is one of
the mainstream text-matching algorithms, which converts two sentences into a vector
representation and measures the degree of similarity of the sentences by calculating the
similarity between the two vectors. A good sentence vector representation should satisfy
two conditions: one is alignment, which means that similar sentence vectors should have
similar distances in the vector space. The second is homogeneity, which means that word
vectors should be uniformly distributed in the vector space. The word vectors produced by
native BERT [1] are anisotropic and affected by word frequency. The word vector space
is vertebrate-shaped, with high-frequency words clustered in a small region in the space
(the top of the cone) and low-frequency words dispersed at the bottom of the vertebra. The
spatial distribution is not only uneven, but a large part of the space is vacant and does not
represent any semantics, so the sentence vectors produced at this time are of low quality
and have no way to characterise the sentence semantics well. The SimCSE [2] (Simple
Contrastive Learning of Sentence Embeddings) algorithm, proposed in 2021, improves the
quality of sentence vectors to some extent. extent improves the quality of sentence vectors.

In this paper, we will study the sentence representation-based text-matching algorithm
based on the BERT family of models, analyse the advantages and disadvantages of SimCSE,
and aim to construct a better sentence vector representation algorithm.

2. Related Work

Traditional sentence vector standard-type algorithms perform post-processing on top
of BERT-generated sentence vectors without directly optimising for the BERT model itself,
and these methods usually neglect how to make the BERT model itself generate better
sentence vectors. However, due to the feature space collapse problem in BERT models,
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researchers have started to focus on contrast learning methods to solve the feature space
collapse problem [3]. Contrastive learning aims to distance the vectors between dissimilar
samples while bringing the vectors between similar samples closer together to learn a
higher-quality representation [4]. The method forces the model to cluster similar samples
in the embedding space by introducing a similarity metric into the training process in order
to better learn a more discriminative feature representation.

Methods that use contrast learning to solve the feature space collapse problem have
made significant progress in improving the quality of sentence representations compared
with traditional standard-type algorithms for sentence vectors. These approaches have
enabled models to focus more on similarity and differentiation when generating sentence
vectors, thus enabling better application to a variety of natural language processing tasks.

Yan Y et al. [3] proposed a contrast learning framework, ConSERT, using BERT as
a shared encoder with the last layer output averaged and pooled as a sentence vector,
and proposed data enhancement strategies such as Dropout, constructing adversarial
samples based on gradients, randomly cropping words or features, and disrupting word
order to construct positive and negative samples for contrast learning. Experimentally,
ConSERT proved to be effective in ameliorating the problem of collapsed representations
of native BERT sentences. Gao T et al. [2] proposed a simple contrast learning framework,
SimCSE, with two training approaches: an unsupervised approach, where two different
representations of the same sentence are obtained as positive sample pairs through the
Dropout mechanism and constitute negative sample pairs with other sentences in the
same batch; and a supervised approach, where using the NLI dataset, sentence pairs with
embedded relations are used as positive sample pairs and sentence pairs with contradictory
relations are used as negative sample pairs for comparison training.

The ESimCSE proposed by Wu et al. in 2022 [5] addresses two problems: (1) positive
examples constructed using Dropout have the same sentence length, leading the model
to consider sentences of the same length as more similar; and (2) increasing the batch size
introduces more negative examples, which in turn leads to a decrease in effectiveness. To
address these two issues, ESimCSE uses repeated words to construct positive examples
and momentum sequences to expand negative samples. The ArcCSE proposed by Zhang Y
et al. [6] addresses two problems: (1) vulnerability to noisy data interference and (2) inability
to model the semantic order between multiple sentences. To address these issues, ArcCSE
converts the NT-Xent objective function, which previously operated in Euclidean space,
to angle space and adds angle decision boundaries, resulting in a more robust sentence
representation. In addition, to model the semantic order between multiple sentences,
ArcCSE proposes a new pre-training task to model the implication relations of ternary
sentence pairs. Jiang T et al. [7] proposed Sentence-T5 (abbreviated as ST5) to train a
sentence vector model by contrast learning using CommQA and NLI datasets with a twin-
tower structure. Experiments show that the average pooling result of the ST5 encoder
output works best as a sentence vector. Klein T et al. [8] proposed a joint self-contrast
learning and feature de-correlation method, SCD. On the semantic similarity task, SCD
does not have an advantage over SimCSE but has a respectable performance on several
other downstream tasks.

Chuang Y S et al. [9] proposed DiffCSE, an unsupervised contrast learning framework,
whose research idea comes from the CV domain, i.e., for input samples, contrast loss
can be constructed based on insensitive transformations and prediction loss based on
sensitive transformations, and this approach helps to improve the representational power
of the model. SNCSE was proposed by Wang H et al. [10], aiming to solve the problem of
feature suppression caused by data enhancement methods; SNCSE introduces soft negative
examples and bi-directional marginal loss to limit the range of similarity. Meanwhile,
SNCSE acquires word vectors through cue learning and syntactic parsing using spacy and
constructs soft negative examples. ease was proposed by Nishikawa S et al. [11] to enhance
the learning of sentence vectors by using entity information. Ease constructs positive
samples by hyperlinking entities from Wikipedia, and negative entities need to have the
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same type as positive entities and cannot be on the same Wikipedia page. Randomly
selected candidate entities that satisfy the conditions are used as hard negative example
data to construct the ternary data.

Scholars have researched sentence vector representation algorithms based on contrast
learning from different directions and have achieved rich research results. In this paper,
based on the SimCSE algorithm, we will analyse its current shortcomings and make
improvements.

3. Contrastive Learning Algorithm for Sentence Representation Based on Simple
Data Augmentation
3.1. SimCSE Introduction
3.1.1. Comparative Learning

Contrastive Learning is a self-supervised learning method based on learning a compact
representation of data. The basic idea of Contrastive Learning is to bring a pair of similar
data as close together as possible by comparing them while pushing them as far away
as possible from other data. This allows similar data to be brought closer together in the
representation space and dissimilar data to be moved away. Contrast learning is commonly
used for feature learning on unlabeled data, especially in the fields of computer vision and
natural language processing.

The core of contrast learning is the loss function, which is usually employed, such
as InfoNCE loss [12] or triplet loss [13]. InfoNCE loss measures the difference between
positive and negative samples in the feature space by calculating their relative probabilities.
An effective feature representation is learned by adjusting the feature representation so that
the relative difference between positive and negative samples is minimised. Triplet loss is
constructed in the form of a triad (samples, positive instances, and negative instances) so
that the positive samples are as close as possible and the negative samples as far away as
possible in the feature space.

InfoNCE Loss was adopted by SimCSE into the sentence representation, as shown in
Equation (1):

Contrastive Lossi = −log

eS(zi,z
+
j )/τ /

∑K
j=0 eS(zi,zj)/τ

 (1)

where K represents the amount of data in a batch, zi represents the total samples i in
this batch, Contrastive Lossi represents the loss value of sample i, S

(
zi, z+j

)
represents

the cosine similarity between the sample and its similar samples, and τ represents the
temperature parameter, which is used to control the degree of attention to the difficult
negative samples, and the larger the value is, the greater the attention to the difficult
negative samples. ∑K

j=0 eS(zi,zj)/τ represents the sum of similarity values between sample
i in a batch and samples within other batches. Overall, the goal of the loss function is to
make the numerator value larger and the denominator value smaller, z, that is, to make
the distance between positive samples increase and the distance between negative samples
decrease.

3.1.2. SimCSE Theory

SimCSE (Similarity-based Contrastive Self-supervised Learning) is a contrastive learning-
based framework for learning sentence representations. SimCSE is not a new model; it
proposes two contrastive learning-based agent tasks to learn sentence representations in
unsupervised and supervised ways.

SimCSE’s first agent task was inspired by Dropout, an anti-overfitting technique
in neural networks where Dropout randomly closes the connections of some neurons,
which results in different closed neurons and different outputs from the final model.
Based on this observation, SimCSE obtains two sentence embeddings by passing the same
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sentence through the same model twice but using different Dropout operations. These two
embeddings are treated as positive examples of the model, while other embeddings in the
same batch are treated as negative examples.

The second agent task of SimCSE directly employs a supervised dataset of NLI (Natu-
ral Language Inference) for comparative learning training. The goal of the NLI task is to
determine the relationship between two sentences, and the possible relationships include
entailment, contradiction, or neutral. In this task, sentence pairs with entailment can be
directly used as positive examples. Meanwhile, other embeddings in the same batch can be
used as negative examples. By comparing the similarities and differences between positive
and negative examples, the model can learn to encode semantically similar sentence pairs
as similar embeddings. In addition, the authors try to add hard negative examples to the
negative examples, here referring to sentence pairs of contradiction in the NLI dataset. By
introducing contradictory sentence pairs as negative examples, the difficulty of contrast
learning can be further increased, thus improving the performance of the model.

SimCSE solved the problem of characterising anisotropy in native BERT word vectors
to a certain extent while achieving a substantial lead on the major sentence similarity tasks,
making it the state-of-the-art model of its time.

3.2. Existing Problems

In SimCSE, positive samples are constructed in such a way that sentence vectors
obtained from the same sample encoded twice by the same encoder are positive samples
of each other. Therefore, under this model of contrast learning, all positive samples are
constructed as samples of the same length, which may introduce a bias to the model by
incorrectly assuming that the more similar the lengths of the samples are, the higher the
probability of being a positive sample pair, and the higher the difference in lengths, the
lower the probability of sentence pairs being similar. Such a bias may negatively affect the
performance of the model in some scenarios.

Three sets of cases are shown in Table 1. The sentences in the column Sentence1
are taken from the training set. The sentences in the column Sentence2 are processed by
adding irrelevant words to the sentences in Sentence1. Row1, Row2, Row3, and Row4
show negative sample pairs, and Row5 and Row6 show positive sample pairs. It can be
seen that for both positive and negative sample pairs, as long as the length of the two
sentences is convergent, the similarity is improved. It can be seen that the words added
here are completely meaningless and should not interfere with the relationship between
the sentences, so the model will “unintentionally” learn this kind of misinformation during
the training process.

Table 1. Offset display.

Row Sentence1 Sentence2 Cosine Similarity

1 How to type the currency symbols
on computer? What are the currency symbols? 0.388

2 How to type the currency symbols
on computer? What are the currency symbols? Okay, okay, okay. 0.437

3
Billy Billy Bateson appeared in the first four
issues of Black Adam, published from late

2008 to early 2009.

He moved back to Philadelphia in 2009 and now
lives in New York City. 0.102

4
Billy Billy Bateson appeared in the first four
issues of Black Adam, published from late

2008 to early 2009.

He moved back to Philadelphia in 2009 and now
lives in New York City. What are the currency

symbols for each country? What
0.154

5 Can I cancel if I borrowed money but it
hasn’t gone through yet? Can it be cancelled? 0.8784

6 Can I cancel if I borrowed money but it
hasn’t gone through yet? Can it be cancelled? ? ? ? ? ? 0.8845
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3.3. Algorithm Design

In this paper, we propose a simple data augmentation-based Contrastive Learning of
Sentence Embeddings (EdaCSE), an algorithm for the comparative learning of sentence
representations. The core idea of the method is to perturb the length of positive sample
pairs without making changes to the meaning of the sentences.

Nowadays, BERT and its variants are prevalent in major tasks; however, conventional
data enhancement methods for BERT, such as replacing synonyms, disrupting the order
of sentences, and back-translation methods, are sensitive transformations, and these data
enhancement methods cause the semantics of the sentence vector representations generated
by the model to be highly biassed, impairing the performance on downstream tasks. The
emergence of Adversarial Learning [14] addresses such problems to a large extent. In
adversarial learning, generally labelled data is required, and the basic process is to have the
model forward propagate once, then calculate the loss for backpropagation, then calculate
a perturbation value, add this perturbation value to the parameters, and then perform
forward propagation and back propagation again, and the gradients obtained from the
two times are summed up, restoring the model to what it was before the addition of the
perturbation and updating it. This method serves as data augmentation and also enhances
the robustness of the BERT model, but there are problems: (1) labelled data is required;
(2) backpropagation has to be performed twice for the same sample; (3) and the training
time is greatly increased.

Therefore, this paper explores the non-sensitive enhancement of sentences without
labelling. It was found that randomly adding English punctuation marks “.” in Chinese
sentences, “,”, “!”, “?”, “;” and “:” can achieve the above goal. As shown in Table 2, before
and after the application of data augmentation to a sentence, it does not literally affect the
meaning of the original sentence to a large extent. In Section 5.3, the strongly intonated
symbols “?” and “!” were further explored to see if they interfered with the meaning of the
sentences.

Table 2. Sentences before and after applying data augmentation methods.

Original Sentence Sentences after Applying Data
Augmentation

Why can’t I open Microparticle Loan on my
mobile phone

Why. can’t I open: Microparticle Loan on my
mobile phone

Failure to meet borrowing requirements Failure to meet borrowing requirements;

This high-resolution picture, who has it This, high-resolution picture, who has it?

How’s Deng’s singing ? How’s Deng’s: singing

Figure 1 shows the structure of the EdaCSE algorithm.
As can be seen from Figure 1, the model receives two inputs: one is the original sample,

and the other is the sample after simple data augmentation. The output generated by the
original sample is used to calculate the contrast loss according to the model in SimCSE,
while the output generated by the sample after data augmentation is used as a candidate
sample, and the sentence vector representation of the original sample and its sentence
vector representation after data augmentation are mutually positive samples. The sentence
vector representations produced after data augmentation with other data in the batch
then form a negative sample, and in this way, an additional augmented contrast loss is
calculated, which is the Contrastive LossEdaCSE in Equation (2), and the two losses are then
combined in some proportion to form the EdaCSE algorithm.

Loss = Contrastive LossCSE + λ ∗ Contrastive LossEdaCSE (2)

Here, the Contrastive Loss is calculated as shown in Equation (1), where Contrastive
LossCSE represents the loss calculated by using the original SimCSE and Contrastive
LossEdaCSE represents the loss calculated by using the EdaCSE algorithm. Both of them are
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calculated in the same way, but the latter calculates the loss by constructing comparative
learning between the simple data-augmented samples and the original samples as positive
example pairs.
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The samples augmented with simple data are used as positive examples to construct
comparative learning with the original sentences, and similarly, additional information
to the model is introduced to correct for bias in SimCSE and enhance generalization.
Contrastive LossEdaCSE is the loss value generated by the EdaCSE method, and λ is a
hyperparameter with values from 0 to 1.

4. Description of the Experiment
4.1. Experimental Environment Setting

The hardware and software environments applied for the experiments in this paper
are shown in Table 3 below.

Table 3. Experimental hardware and software configuration.

System Development
Environment

Development
Environment

CUDA
Version GPU CPU Memory Size

Ubuntu20.04 Pycharm2020.1 11.3 NVIDIA RTX
A5000 (24 G) AMD EPYC 7551P 64 G

The experimental Chinese text splitting and pre-training models use Transformers, an
open-source NLP model library provided by the Huggingface community, which provides
a range of pre-training models and corresponding tools that can be used in a variety of deep
learning frameworks. In addition, the experiments used Python 3.8 as the programming
language, Pytorch as the deep learning framework, and adamW as the optimizer [15]. All
experimental results were evaluated using the Spearman correlation coefficient as a metric.

4.2. Evaluation Metrics Setting

Spearman’s correlation coefficient is a commonly used similarity measure algorithm
for evaluating the relevance of a non-linear relationship between two variables. Compared
with other similarity measures such as cosine similarity, Minkowski distance, and Pearson’s
correlation coefficient, Spearman’s correlation coefficient has the following characteristics:

(1) Non-parametric approach: the Spearman correlation coefficient is a non-parametric
statistic that does not depend on the specific form of the distribution of the data, which
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makes it effective in assessing correlation on a wide range of data types (continuous,
discrete, ordered, etc.).

(2) Suitable for ordered data: the Spearman correlation coefficient is particularly suit-
able for ordered or ranked data, and it is able to alleviate the limitations of other
measurement algorithms on this type of data by comparing the rank order of the
variables.

(3) Evaluation of non-linear relationships: Unlike the Pearson correlation coefficient,
which applies only to linear relationships, the Spearman correlation coefficient is able
to capture the correlation of non-linear relationships, which makes it more flexible
in practical applications and allows for a more comprehensive description of the
interrelationships between variables.

Due to the applicability and flexibility of Spearman’s correlation coefficient, Spear-
man’s correlation coefficient was chosen as the evaluation metric for the subsequent experi-
ments in this paper.

The Spearman’s correlation coefficient is calculated as shown in Equation (3), which
takes values between −1 and 1, where −1 indicates a perfect negative correlation, 1 indi-
cates a perfect positive correlation, and 0 indicates no correlation. Positive values indicate
that as one variable increases, the value of the other increases; negative values indicate
that as one variable increases, the value of the other decreases. The Spearman correlation
coefficient can be used to measure the degree of similarity between two sentence vectors.

ρ = 1 − 6 ∑ d2
i

n(n2 − 1)
(3)

where di denotes the difference in ranks between the ith elements of X and Y, and n denotes
the length (i.e., the number of elements) of X and Y.

4.3. Datasets
4.3.1. Basic Introduction to Datasets

The experiments used five datasets: ATEC, BQ, LCQMC, PAWS-X, and Chinese STS-B,
which are briefly described here.

ATEC-Question Similarity Calculation is a competition question hosted by Ant Fi-
nancial Services that uses an algorithm to determine whether two given sentences have
the same semantic meaning, which can be applied in a customer service system, and all
its data comes from actual application scenarios of Ant Financial Brain. The dataset has
62,477 training samples, 20,000 samples in the development set, and 20,000 samples in the
public test set.

The Bank Question (BQ) dataset [16] is a large-scale domain-specific Chinese dataset
for Sentence Semantic Equivalence Recognition (SSEI). The BQ dataset contains
120,000 question pairs from the online banking customization service logs. It is divided
into three parts: 100,000 pairs for training, 10,000 pairs for validation, and 10,000 pairs for
testing.

LCQMC [17] is a large-scale Chinese question-matching corpus covering a large
number of question-pair data. The corpus contains 260,068 question pairs with manual
annotations and is divided into a training set, a development set, and a test set. The training
set contains a total of about 238,766 question pairs, the development set contains a total of
about 8802 questions, and the test set contains a total of about 12,500 questions.

PAWS-X [18] is a new dataset consisting of 23,659 human-translated PAWS evaluation
pairs in six different types of languages: French, Spanish, German, Chinese, Japanese, and
Korean. PAWS-X demonstrates the effectiveness of deep, multilingual pre-training while
leaving considerable scope to drive multilingual research that better captures structural
and contextual information. The number of training set samples in this dataset is 49,129,
with a positive and negative sample count of 27,445 and 21,684, respectively.
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STS-B [19] (Semantic Textual Similarity Benchmark) is a dataset for measuring textual
similarity. sts-b contains a set of sentence pairs about textual similarity, each with a score
that measures how similar the two sentences are semantically. The score is a real number
from 0 to 5, where 0 means that the two sentences are not related at all and 5 means that the
two sentences are identical or very similar. The Chinese STS-B dataset is mainly translated
from the original English STS-B dataset and is used for fine-grained Chinese text-matching
tasks or Chinese natural language inference tasks. The Chinese STS-B contains a total of
5231 training samples, 1458 validation samples, and 1361 test samples.

4.3.2. Training Sample Size Exploration

For the experiments in this paper, the training set parts from the five datasets ATEC,
BQ, LCQMC, PAWS-X, and Chinese STS-B were used for fairness in comparison, and only
sentences were used as the training corpus; no labels were involved. The data in the five
datasets were disrupted and integrated, and the duplicate sentences were removed to
obtain a corpus of size 438,650. This corpus will be used as the training set for this paper.
The trained model is evaluated by calculating the Spearman correlation coefficient on the
open test set in each dataset.

The experiments are trained using the whole corpus as the training set, and the Sim-
CSE approach is used as the base method for tuning the reference to “bert-base-chinese”,
“chinese-roberta-wwm-ext [20]”, “chinese-roberta-wwm-ext-large [21]” as the base models.
For convenience, the subsequent content in this paper will refer to the three models men-
tioned above as “bert-base”, “roberta-base”, and “roberta-large”, respectively. The same
goes for tables and images. In order not to damage the performance of the model itself, the
learning rate range was set to 1 × 10−6~5 × 10−5, the batch size range was set to 8~128,
and the Dropout range was 0.1~0.8. Hyperparameter search was performed using grid
search, and the best hyperparameter settings were obtained based on performance on the
test sets of the five datasets, as evaluated in Table 4.

Table 4. Training hyperparameter settings.

Model Learning
Rate Batch Size Drop Out

Rate
Weight
Decay

Learning Rate
Decay Strategy

base 3 × 10−5 32 0.1 0.01 Cosine decay
large 5 × 10−6 16 0.1 0.01 Cosine decay

The base in the table corresponds to the “bert-base” and “roberta-base” models, and
the large corresponds to the “roberta-large” model.

It was found that the loss value of the model had become zero after a certain number
of samples were trained in one epoch, so we continued to explore the appropriate number
of training samples. Due to the large randomness of sample extraction, the samples in
each dataset may not be drawn evenly, so during the experiments, the best performance
was taken as the result of each group of experiments after ten trials, and this criterion was
followed in subsequent experiments.

Table 5 shows the results of the training sample part of the search for bert-base. It
can be seen that as the number of training samples decreases from the full data set to
10,000 data points, the performance on the test set generally shows an increase, and below
10,000 it shows a decrease.

Table 6 shows the results of the roberta-base training sample exploration experiments.
It can be seen that the model performance of the training sample generally decreases from
using the full amount of data to using 10% of the full amount of data, and the model
performance is more volatile when the number of samples is taken from 30,000 to 10,000,
and the best performance is achieved at 10,000; it still shows volatility when 8000 to 3000,
and the model still has good performance when 3000 samples are taken for training.
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Table 5. Bert-base training sample size exploration.

Sample Size ATEC BQ LCQMC PAWS-X STS-B AVG

438,650 25.49 40.15 43.51 11.31 28.21 29.73
394,785 (90%) 25.15 43.72 46.18 11.13 30.49 31.33
350,920 (80%) 24.83 40.86 46.73 11.14 29.12 30.53
307,055 (70%) 25.05 40.97 45.67 12.61 27.81 30.42
263,190 (60%) 27.91 44.06 50.87 8.83 29.61 32.25
219,325 (50%) 25.67 44.2 50.35 10.27 28.77 31.85
17,544 (40%) 26.89 44.32 50.8 11.85 27.51 32.27
131,595 (30%) 27.94 45.97 52.95 10.43 26.78 32.81
87,730 (20%) 28.77 46.93 56.58 13.67 28.53 34.89
43,865 (10%) 30.59 48.26 58.97 10.67 25.7 34.83

30,000 30.33 47.85 58.95 10.92 27.41 35.09
25,000 31.62 48.79 58.72 9.9 26.92 35.19
20,000 31.81 49.04 61.77 11.43 24.97 35.80
15,000 32.09 48.25 60.37 11.31 24.51 35.30
10,000 32.43 48.54 63.3 10.01 25.07 35.87
8000 31.65 47.88 60.03 10.48 25.3 35.06
5000 30.99 47.23 61.44 10.2 24.85 34.94
3000 29.85 45.74 64.9 10.39 24.45 35.06

Table 6. Roberta-base training sample size exploration.

Sample Size ATEC BQ LCQMC PAWS-X STS-B AVG

438,650 28.52 45.57 58.21 7.3 30.37 33.99
394,785 (90%) 28.65 45.65 58.73 7.53 30.55 34.22
350,920 (80%) 29.31 46.29 58.06 7.61 30.33 34.32
307,055 (70%) 28.42 45.98 58.17 7.38 30.08 34.00
263,190 (60%) 28.54 46.08 56.95 7.82 29.91 33.86
219,325 (50%) 28.26 45.54 57.81 7.81 30.79 34.04
17,544 (40%) 29.38 47.06 58.55 8.46 30.62 34.81
131,595 (30%) 29.93 46.57 58.36 8.99 29.8 34.73
87,730 (20%) 30.71 48.25 58.39 8.28 30.23 35.17
43,865 (10%) 31.16 49.99 59.38 9.97 29.39 35.97

30,000 32.27 49.18 64.42 9.72 29.92 37.10
25,000 30.33 48.39 62.68 9.69 29.39 36.09
20,000 30.53 46.84 60.43 9.53 29.37 35.34
15,000 32.9 49.92 66.17 10.41 29.52 37.78
10,000 34.11 50.18 65.39 10.27 29.54 37.89
8000 32.86 50.02 64.82 10.15 29.77 37.52
5000 31.99 47.23 62.44 10.2 28.85 36.142
3000 32.85 49.74 64.9 10.39 28.45 37.266

As can be seen from Table 7, the performance of the roberta-large model varies with
sample size in a similar way to the first two models, with the difference that the model
performs worse than the first two models if the sample size is less than 10,000. The model
still performs best at a training sample size of 10,000.

Table 7. Roberta-large training sample size exploration.

Sample Size ATEC BQ LCQMC PAWS-X STS-B AVG

438,650 30.34 46.05 63.37 8.02 30.42 35.64
394,785 (90%) 30.65 46.80 64.07 8.72 30.67 36.18
350,920 (80%) 30.88 47.07 64.57 8.72 30.48 36.28
307,055 (70%) 30.96 46.91 64.93 8.43 30.21 36.28
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Table 7. Cont.

Sample Size ATEC BQ LCQMC PAWS-X STS-B AVG

263,190 (60%) 30.37 46.29 63.16 8.79 30.51 35.82
219,325 (50%) 30.38 47.09 63.10 9.36 30.30 36.04
17,544 (40%) 30.42 47.10 64.13 9.20 30.33 36.23
131,595 (30%) 31.67 47.75 65.21 9.72 30.06 36.88
87,730 (20%) 31.93 48.00 65.70 9.56 30.30 37.09
43,865 (10%) 32.17 48.72 67.14 10.78 30.66 37.89

30,000 31.20 48.66 66.94 11.20 30.20 37.64
25,000 33.19 49.47 66.95 10.83 30.16 38.12
20,000 31.73 48.27 67.11 11.46 29.57 37.62
15,000 32.42 49.06 66.61 11.31 29.93 37.86
10,000 31.42 49.09 68.15 11.67 29.75 38.00
8000 31.77 48.03 66.56 11.60 29.31 37.45
5000 22.64 39.79 66.65 11.64 29.25 33.99
3000 20.89 35.33 64.88 11.61 29.82 32.50

In summary, 10,000 randomly selected samples were chosen as the training set in this
paper. The number of training samples for the three models in the other experiments in the
later sequence is based on this criterion.

5. Experiments and Analysis of Results
5.1. Basic Experiment

Table 8 presents the experimental results of the SimCSE algorithm and the EdaCSE
algorithm. The models named after the algorithm itself represent the experimental results
of combining the model with the SimCSE algorithm, serving as the baseline experiments.

Table 8. Comparison of the effects of various methods.

Model ATEC BQ LCQMC PAWS-X STS-B Mean

bert-base 32.43 48.54 63.3 10.01 25.07 35.87
roberta-base 34.11 50.18 65.39 10.27 29.54 37.89
roberta-large 31.42 49.04 68.15 11.67 29.75 38.00

bert-base + EdaCSE 34.23 50.67 64.9 10.15 27.76 37.54
roberta-base + EdaCSE 33.9 51.52 67.76 10.92 29.56 38.73
roberta-large + EdaCSE 33.42 51.14 69.15 11.77 29.95 39.08

From Table 8, it can be observed that using the EdaCSE algorithm, there is an im-
provement of 1.67 and 0.89 for the “bert-base” and “roberta-base” models, respectively,
and 1.08 for the “bert-large” model. This suggests that the use of the EdaCSE algorithm is
also effective in improving the generalisation ability of the model. Generally speaking, for
models such as BERT, adding and deleting characters is a sensitive transformation that is
easy to damage the model performance, and EdaCSE has a favourable impact on the model
performance, and in a way, the algorithm improves the robustness of such models. Next,
around the EdaCSE method, experimental analyses are carried out on Chinese punctuation,
English punctuation, types of punctuation, and the number of punctuation insertions.

5.2. Exploring the Number of Inserted Punctuation Marks

First insert 1 to 3 punctuation marks, using the English punctuation marks “.”, “,”, “!”,
“?” “,”, “!”, “?”, “;”, “:” as a benchmark to explore the number of symbols inserted. Taking
the performance of “bert-base” as an example, the effect of the number of symbols on the
model performance is shown in Table 9.
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Table 9. Effect of the number of insertion symbols on the bert-base model.

Number of
Symbols ATEC BQ LCQMC PAWS-X STS-B Mean

1~1 33.38 50.51 62.00 9.46 27.29 36.52
1~2 32.41 51.11 64.46 11.14 26.72 37.16
1~3 34.23 50.67 64.9 10.15 27.76 37.54
1~4 32.68 50.17 61.98 9.27 25.98 36.01
1~5 33.43 50.75 63.12 10.4 24.92 36.52
1~6 32.99 49.54 63.7 10.12 26.94 36.65
1~7 32.95 50.1 65.44 9.78 25.8 36.8

As can be observed from Table 9, the best results are achieved when 1 to 3 punctuation
marks are inserted. While the insertion of only one punctuation mark also has a positive
effect on the model, the insertion of more punctuation marks (>3) does not lead to the best
performance of the model but does not have a significant impact on the original semantics
of the utterance, and the model still outperforms the original SimCSE method.

As can be seen from Table 10, when only one symbol is inserted, the effect on the
“roberta-base” of the model is negligible; when more symbols are inserted, the model is
susceptible to poor robustness; when 1–4 symbols are inserted, the effect is weaker than
the original model; when more symbols are inserted (6 or 7), the model tends to perform
the same as the original model; when 1–2 symbols are inserted, the model has the best
performance.

Table 10. Effect of the number of insertion symbols on the roberta-base model.

Number of
Symbols ATEC BQ LCQMC PAWS-X STS-B Mean

0 34.11 50.18 65.39 10.27 29.54 37.89
1~1 32.78 50.83 65.83 10.04 29.78 37.78
1~2 33.90 51.52 67.76 10.92 29.56 38.73
1~3 32.89 50.41 66.36 10.45 30.00 38.02
1~4 31.20 50.79 66.55 9.83 29.91 37.65
1~5 31.74 50.54 67.92 10.42 30.11 38.14
1~6 32.40 50.58 66.26 10.61 29.73 37.91
1~7 33.68 50.85 66.02 9.20 30.19 37.98

As can be seen from Table 11, for the ‘roberta-large’ model, the performance of the
model increases as the maximum number of symbols inserted increases from 1 to 5, with
the best performance achieved when 1 to 5 symbols are inserted. There is no negative
impact on the model when more symbols are inserted, and the model still outperforms the
baseline (SimCSE).

Table 11. Effect of the number of insertion symbols on the roberta-large model.

Number of
Symbols ATEC BQ LCQMC PAWS-X STS-B Mean

0 31.42 49.04 68.15 11.67 29.75 38.00
1~1 31.88 49.03 68.32 11.11 29.70 38.00
1~2 32.78 49.98 68.82 10.94 29.86 38.47
1~3 33.03 50.17 68.16 10.88 30.01 38.45
1~4 33.09 50.37 68.39 11.48 30.82 38.83
1~5 33.42 51.14 69.15 11.77 29.95 39.08
1~6 32.33 50.12 68.64 11.05 30.74 38.57
1~7 32.26 49.88 68.07 10.94 29.99 38.22

In summary, the bert-base model achieves the best performance when 1–3 punctua-
tion symbols are inserted; the roberta-large model achieves the best performance when
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1–5 symbols are inserted, and the insertion of more symbols does not negatively affect
both models, and the model performance is still better than the baseline (SimCSE). The
roberta-base model has the best performance when 1–2 symbols are inserted, and the model
performance when more symbols are inserted is comparable to the baseline (SimCSE) effect.

5.3. Chinese and English Punctuation and Choice of Symbol Types

This section explored whether replacing English symbols with Chinese symbols would
have an effect on the model. Furthermore, as question marks and exclamation marks may
affect the tone or emotion of the sentence, the experiment also tried to remove these symbols.
Then the effect of expanding the choice of more symbols (e.g., adding “[“, “]”, “~”, “|”,
etc.) on the model. For the number of symbols inserted into the input text, the optimal
number of symbols to be inserted for each model as experimented with in 5.2 was used.

In Table 12, for the “bert-base” model, the effect is weaker than that of English punctu-
ation when the symbols are replaced with Chinese punctuation, indicating that Chinese
punctuation has a greater influence on the semantics of sentences than English punctuation.
However, if only Chinese punctuation is used, it still has a positive effect on the model. In
addition, English exclamation marks and English question marks, which have a strong tone,
do not have a significant impact on the semantics of Chinese sentences, and the addition of
other special punctuation marks does not effectively improve the model performance.

Table 12. An exploration of Chinese and English punctuation-related issues based on the bert-base
model.

Operation ATEC BQ LCQMC PAWS-X STS-B Mean

no-operation 33.38 50.51 62.00 9.46 27.29 36.52
EdaCSE 34.23 50.67 64.9 10.15 27.76 37.54

Change it to Chinese symbols 33.07 51.02 63.86 8.63 27.48 36.81
The Chinese symbol is removed from the “!”, “?” 33.28 50.74 63.91 9.45 26.53 36.78

The English symbol to remove the “!”, “?” 32.93 50.29 63.04 9.3 27.37 36.58
Add additional English symbols 33.1 51.15 62.53 9.49 26.37 36.52

In Table 13, for the “roberta-base” model, the performance of the model is weaker
than that of the English punctuation model when the symbols inserted in the input of
the model become Chinese symbols. The insertion of both Chinese punctuation and the
strong semantic symbols in Chinese punctuation seems to have a negative impact on the
semantic understanding of the sentence, making the insertion weaker than the original
model. In contrast, strong punctuation in English does not negatively affect the model,
but the positive effect on the model does not continue to grow when the choice of English
symbols inserted is expanded.

Table 13. An exploration of Chinese and English punctuation-related issues based on the roberta-base
model.

Operation ATEC BQ LCQMC PAWS-X STS-B Mean

no-operation 34.11 50.18 65.39 10.27 29.54 37.89
EdaCSE 33.90 51.52 67.76 10.92 29.56 38.73

Change it to Chinese symbols 32.74 51.42 66.72 8.63 29.48 37.79
The Chinese symbol is removed from the “!”, “?” 31.49 51 67.23 9.98 29.33 37.80

The English symbol to remove the “!”, “?” 33.93 51.29 65.04 10.3 29.37 37.98
Add additional English symbols 33.23 51.15 66.53 10.49 28.99 38.07

As shown in Table 14, the effect of adding Chinese punctuation to the input on the
performance of the ‘roberta-large’ model is almost negligible, but it also indicates that the
addition of Chinese punctuation does not have a beneficial effect on the model, and the
strong tone symbols in Chinese do not seem to have much effect on the sentence meaning.
Similar to the experimental results in the previous two models, the inclusion of strong tone
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symbols in English punctuation has a positive effect on the model without affecting the
semantics of the sentences, while the choice of too many English symbols still does not
provide any additional benefit to the model.

Table 14. An exploration of Chinese and English punctuation-related issues based on the roberta-large
model.

Operation ATEC BQ LCQMC PAWS-X STS-B Mean

no-operation 31.42 49.04 68.15 11.67 29.75 38.00
EdaCSE 33.42 51.14 69.15 11.77 29.95 39.08

Change it to Chinese symbols 31.74 51.42 66.72 10.63 29.48 37.99
The Chinese symbol is removed from the “!”, “?” 31.49 51 67.23 10.98 29.33 38.00

The English symbol to remove the “!”, “?” 33.93 51.29 66.04 11.3 29.37 38.38
Add additional English symbols 33.23 50.15 68.53 11.49 29.99 38.67

In summary, the introduction of Chinese punctuation does not improve the model
performance as much as English punctuation and may even cause trouble for the model to
understand the semantics of sentences, such as in the roberta-base model, while English
punctuation such as exclamation marks and question marks, which have a strong tone of
voice, does not have a negative impact on the model.

5.4. Optimal Hyperparameter Experiments

Experiments are carried out here on the values of the hyperparameter λ in Equation (2),
i.e., to explore the optimal ratio that each model needs to introduce for the information
generated by the EdaCSE algorithm.

Table 15 shows that for the “bert-base” model, when a small proportion (less than
0.4) of the EdaCSE method is introduced, it does not have a positive impact on the model,
while when the proportion is greater than or equal to 0.4, the performance of the model is
significantly improved, and 0.6 is the optimal introduction proportion. For the “roberta-
base” model, the best results were obtained by introducing the EdaCSE method at a scale
of only 0.3, and for any value of the introduced scale, the model’s results were improved
compared with the original model (37.89). For the “roberta-large” model, it can be seen that
the best results are obtained when we introduce the EdaCSE method at a large scale (0.6) to
the model. As in the case of the “roberta-base” model, the introduction of the method at
any scale has a positive effect on the original model to varying degrees.

Table 15. Selection of the value of the hyperparameter λ.

Model 0.1 0.2 0.3 0.4 0.6 0.8 1.0

bert-base 36.30 36.39 36.48 36.71 37.54 36.79 36.60
roberta-base 38.23 38.38 38.73 38.42 38.14 38.39 38.21
roberta-large 38.36 38.29 38.48 38.59 39.08 38.52 38.20

6. Conclusions

In this paper, we address the problem that the positive sample construction pro-
cess in SimCSE may introduce a length bias to the model and propose an Easy Data
Augmentation-Based Contrastive Learning of Sentence Embeddings (EdaCSE), which ap-
plies a perturbation to the length of the sentence by adding English punctuation to the
original sentence, so that the model is no longer inclined to recognise sentences of similar
length as similar sentences. Experiments demonstrate that the average performance of the
three models on the five datasets is improved by 1.67, 0.84, and 1.08, respectively, after
using the EdaCSE method compared with the original model.

The experiments also explored the number of punctuation symbols inserted and found
that the bert-base model can achieve the best performance when inserting 1–3 punctu-
ation symbols, the roberta-large model achieves the best performance when inserting
1–5 symbols, and the roberta-base model can have the best performance when inserting
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1–2 symbols, with varying degrees of improvement in performance over the baseline model
(SimCSE). In addition, through the experimental analysis of Chinese and English punctua-
tion and symbol selection, it was found that the introduction of English punctuation can
improve the performance of the bert-base, roberta-base, and roberta-large models, and the
symbols with a strong tone, such as the English exclamation mark and the English question
mark, do not have a great impact on the semantics of the Chinese sentences, whereas the
model’s performance is weaker with the introduction of Chinese punctuation than that
of the introduction of English punctuation. Finally, based on the optimal hyperparameter
experiments, it was found that introducing the information generated by the EdaCSE
algorithm in any proportion will positively affect the original model to varying degrees
and enhance the model’s performance.

Therefore, the EdaCSE algorithm proposed in this paper can effectively improve the
quality of the model-generated sentence representations, which provides a reference for
the research of sentence representation algorithms.
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