
Citation: Amin, A.; Jahanshahi, M.;

Meybodi, M.R. Improved

Learning-Automata-Based Clustering

Method for Controlled Placement

Problem in SDN. Appl. Sci. 2023, 13,

10073. https://doi.org/10.3390/

app131810073

Academic Editors: Konstantinos

E. Psannis and Sotirios K. Goudos

Received: 1 April 2023

Revised: 7 June 2023

Accepted: 18 June 2023

Published: 7 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Improved Learning-Automata-Based Clustering Method for
Controlled Placement Problem in SDN
Azam Amin 1, Mohsen Jahanshahi 1,* and Mohammad Reza Meybodi 2

1 Department of Computer Engineering, Central Tehran Branch, Islamic Azad University,
Tehran 1477893855, Iran

2 Department of Computer Engineering and IT, Amirkabir University of Technology, Tehran 1591634311, Iran;
mmeybodi@aut.ac.ir

* Correspondence: mjahanshahi@iauctb.ac.ir

Abstract: Clustering, an unsupervised machine learning technique, plays a crucial role in partitioning
unlabeled data into meaningful groups. K-means, known for its simplicity, has gained popularity
as a clustering method. However, both K-means and the LAC algorithm, which utilize learning
automata, are sensitive to the selection of initial points. To overcome this limitation, we propose an
enhanced LAC algorithm based on the K-Harmonic means approach. We evaluate its performance
on seven datasets and demonstrate its superiority over other representative algorithms. Moreover,
we tailor this algorithm to address the controller placement problem in software-defined networks,
a critical field in this context. To optimize relevant parameters such as switch–controller delay,
intercontroller delay, and load balancing, we leverage learning automata. In our comparative analysis
conducted in Python, we benchmark our algorithm against spectral, K-means, and LAC algorithms
on four different network topologies. The results unequivocally show that our proposed algorithm
outperforms the others, achieving a significant improvement ranging from 3 to 11 percent. This
research contributes to the advancement of clustering techniques and their practical application in
software-defined networks.

Keywords: clustering method; learning automata (LA); k-Harmonic means (KHM); controller
placement problem (CPP); software-defined network (SDN)

1. Introduction

Clustering is a technique used for analyzing statistical data [1]. The process involves
partitioning the data into clusters, so that data within the same cluster have the highest
similarity, while data in different clusters have less similarity. Various clustering approaches,
such as hierarchical, distance-based, density-based, and graph-based, have been proposed
so far. Figure 1 depicts a diagram illustrating different clustering approaches.

Appl. Sci. 2023, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/applsci

Article

Improved Learning-Automata-based Clustering Method for

Controlled Placement Problem in SDN

Azam Amin 1, Mohsen Jahanshahi 1,* and Mohammad Reza Meybodi 2

1 Department of Computer Engineering, Central Tehran Branch, Islamic Azad University,

Tehran 1477893855, Iran; a.aminabshouri@iauctb.ac.ir
2 Department of Computer Engineering and IT, Amirkabir University of Technology,

Tehran 15875-4413, Iran; mmeybodi@aut.ac.ir

* Correspondence: mjahanshahi@iauctb.ac.ir

Abstract: Clustering, an unsupervised machine learning technique, plays a crucial role in partition-

ing unlabeled data into meaningful groups. K-means, known for its simplicity, has gained popular-

ity as a clustering method. However, both K-means and the LAC algorithm, which utilize learning

automata, are sensitive to the selection of initial points. To overcome this limitation, we propose an

enhanced LAC algorithm based on the K-Harmonic means approach. We evaluate its performance

on seven datasets and demonstrate its superiority over other representative algorithms. Moreover,

we tailor this algorithm to address the controller placement problem in software-defined networks,

a critical field in this context. To optimize relevant parameters such as switch–controller delay, in-

tercontroller delay, and load balancing, we leverage learning automata. In our comparative analysis

conducted in Python, we benchmark our algorithm against spectral, K-means, and LAC algorithms

on four different network topologies. The results unequivocally show that our proposed algorithm

outperforms the others, achieving a significant improvement ranging from 3 to 11 percent. This re-

search contributes to the advancement of clustering techniques and their practical application in

software-defined networks.

Keywords: clustering method; learning automata (LA); k-Harmonic means (KHM); controller

placement problem (CPP); software-defined network (SDN)

1. Introduction

Clustering is a technique used for analyzing statistical data [1]. The process involves

partitioning the data into clusters, so that data within the same cluster have the highest

similarity, while data in different clusters have less similarity. Various clustering ap-

proaches, such as hierarchical, distance-based, density-based, and graph-based, have

been proposed so far. Figure 1 depicts a diagram illustrating different clustering ap-

proaches.

Figure 1. Diagram illustrating different clustering techniques.

clustering
Algorithms

Partitioning

Error
minimization

K-means

Graph-theoritic

Spectral

Hierarical

Agglomerative Divisive

Density

DBSCAN

Distribution

Gaussian
Mixture Model

Citation: Amin, A.; Jahanshahi, M.;

Meybodi, M.R. Improved Learning-

Automata-Based

Clustering Method for Controlled

Placement Problem in SDN.

Appl. Sci. 2023, 13, x.

https://doi.org/10.3390/xxxxx

Academic Editors: Konstantinos E.

Psannis and Sotirios K. Goudos

Received: 1 April 2023

Revised: 7 June 2023

Accepted: 18 June 2023

Published: 21 June 2023

Copyright: © 2023 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Figure 1. Diagram illustrating different clustering techniques.

Appl. Sci. 2023, 13, 10073. https://doi.org/10.3390/app131810073 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810073
https://doi.org/10.3390/app131810073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app131810073
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810073?type=check_update&version=1

Appl. Sci. 2023, 13, 10073 2 of 16

The clustering technique has various applications in medical science [2], architec-
ture [3], drug discovery [4], image processing [5], computer networks [6], and commu-
nication [7], among others. It is also an important tool for solving controller placement
problems (CPPs) [8] in software-defined networks (SDNs) [9]. In CPPs, the goal is to deter-
mine the optimal number and location of controllers in a network, with the key objectives
being the delay between controllers and switches, the delay between controllers, and load
balancing [10].

A learning automaton (LA) is one type of machine learning algorithm with a finite
number of actions and different probabilities assigned to each action [11]. In each round,
the LA takes an action and evaluates the reinforcement signal from its surrounding envi-
ronment. Then, the LA updates its action probability vector according to the reinforcement
signal until a satisfactory solution is achieved. The LA has been used in various com-
puter network applications to enhance existing solutions. The LA has also been applied
to improve the k-means clustering method in [12]. In the proposed clustering algorithm,
LAC, each LA is assigned to a data point, and the LAs determine the clusters to which
their associated data points belong. LAC has been shown to outperform other clustering
algorithms such as k-clusters, k-means, k-medians, k-means++, and k-medoids in UCI
datasets. However, LAC, like k-means, is sensitive to the selection of initial points.

To address this issue, we propose an optimization method of LAC using k-Harmonic
means (KHM) in this paper. Our approach, LAC-KHM, yields better results than LAC on
various datasets. In addition to considering the distance between data points and their
corresponding cluster centers, we also take into account the distance between individual
cluster centers and load balancing for solving CPPs.

The rest of this paper is organized as follows: In Section 2, we present related works.
Section 3 provides a thorough explanation of the preliminaries. In Sections 4 and 5, we
present the proposed algorithms, LACKHM and CLAC-KHM, respectively. Section 6
evaluates the performance of the algorithms, starting with LACKHM in the presence of
seven datasets from the California Irvine (UCI) clustering benchmarks and then discussing
CLAC-KHM performance on four topologies. Finally, Section 7 concludes the paper.

2. Related Works

In this section, we will first discuss different types of clustering methods and then
describe their application in solving CPPs.

2.1. Types of Clustering Methods

Data clustering is an important issue in data mining [13] that can be divided into
two groups: soft and hard [14]. Soft clustering means overlapping clustering, such as
fuzzy clustering, where any data point may belong to more than one cluster with different
membership grades. The other clustering, hard clustering, is exclusive clustering in which
each data point exists in just one cluster [15].

From a different point of view, hierarchical and partitioning methods are the two main
categories of clustering methods that were introduced in [16]. A hierarchical clustering
method works by grouping data into a tree of clusters. In hierarchical clustering, the aim
is to produce a hierarchical series of nested clusters. A diagram represents this hierarchy,
which is an inverted tree that describes the order in which factors are merged (bottom-up
view) or clusters are broken up (top-down view). On the other hand, the partitioning
method was described in [13], which starts from an initial clustering and then moves data
points from one cluster to another with a relocation method iteratively. There are two
types of algorithms in this approach: error minimization algorithms and graph-theoretic
clustering. The basic idea in error minimization algorithms is to determine clusters by
minimizing a specified error criterion. The most famous algorithm in this area is k-means,
which employs the sum of squared error (SSE) as an error criterion. The SSE measures the
total squared Euclidean distance of instances to their representative values. However, k-
means has some problems such as limiting to numeric attributes or being sensitive to initial

Appl. Sci. 2023, 13, 10073 3 of 16

centers of clusters. Therefore, some algorithms based on k-means such as k-prototype [17]
or KHM [18] were proposed to overcome these problems. In addition, the k-medoids
method was proposed, which is more robust than the k-means algorithm [19]. Graph-
theoretic methods produce clusters via graphs. The famous algorithm in this method is
based on the minimal spanning tree (MST) [20]. Another algorithm was proposed based on
limited neighborhood sets [21].

From another perspective, clustering methods are divided into three main cate-
gories [13]: grid-based methods, density-based methods, and model-based clustering.
The grid-based clustering methods use a multiresolution grid data structure to quantize
object areas into a finite number of cells that form a grid structure, on which all the opera-
tions for clustering are implemented. Grid-based clustering uses dense grid cells to form
clusters. [22]. Density-based clustering: The data points in the region separated by two
clusters of low point density are considered as noise. DBSCAN is one of the most famous
methods in this approach. The environment with a radius ε of a given object is known
as the ε neighborhood of the object. If the ε neighborhood of the object includes at least
a minimum number, MinPts, of objects, then it is called a core object [23].Model-based
clustering (or distribution models): This method assumes a data model and applies an EM
algorithm to find the most likely model components and the number of clusters [24].

2.2. Clustering APPLICATION in CPPs

Among the available clustering methods, k-means, spectral, and DBSCAN have been
investigated more than others for solving CPPs. Therefore, we consider the proposed
algorithms based on these methods.

Several solutions have been proposed based on the DBSCAN clustering method to
appropriately locate the SDN controllers, as described in [25–29]. Since the method suggests
the proper number of clusters, all of the proposed algorithms recommend a number of
clusters, such as in [25], where the appropriate number of controllers is determined using
silhouette analysis and gap statistics. However, one of the main disadvantages of the
algorithm is that the value of the minimum number of objects should be defined in advance,
which limits its ability to cluster datasets with high-density differences. Additionally, the
neighborhood radius may not be suitable for all clusters, and this algorithm suffers from a
high computational overhead.

In [26], the density-based controller placement (DBCP) method partitioned the given
network using a density-based clustering method. This research considered CPPs with and
without the capacity of controllers.

Clustering by fast search and find of density peaks (CFSFDP) proposed in [30] has
been used in [27,28] to deal with the CPP. CFSFDP is a density-based clustering algorithm
that requires fewer initial parameters and has more execution speed. However, it suffers
from the need to experimentally preset the number of clusters.

The authors in [27] used a comprehensive consideration value according to [30],
γ, which was calculated as the product of local density (ρ) and minimum distance (δ).
However, two problems are identified with this definition. Firstly, the values of ρ and δ may
have different orders of magnitude, so they were normalized to ensure equal treatment.
Secondly, nodes at different densities may have the same δ value, making it challenging
to select the initial clustering center. To address this, the weight of δ was increased in
low-density areas. The modified calculation equation for γ was presented as γi = ρi.δî

(3
4
)
.

A higher γ value indicates a higher likelihood of being a clustering center. The authors
proposed a method to automatically determine the inflection point of γ, which corresponds
to the transition from nonclustering centers to clustering centers. By analyzing the curve of
γ values and finding the vertex of a folded line, the inflection point was identified. The
optimal number of controllers was determined by counting the number of points with
values greater than the inflection point γ value, and the locations of these points represented
the deployment of clustering centers. The algorithm provided a step-by-step process for
the selection of clustering centers.

Appl. Sci. 2023, 13, 10073 4 of 16

The researchers in [28] utilized the idea of information entropy and a firefly algorithm
for determining the local density and considered a point with the high density of switches
as the cluster center. In the algorithm, the number and location of the controllers are
discovered based on the jumping point in the decision graph.

The authors in [29] presented an improved density-based controller placement al-
gorithm (DCPA) that enhances the efficiency of controller placement in a network. This
algorithm achieves the required number of controllers by exploring candidate values of the
radius and dividing the entire network into multiple subnetworks. Within each subnetwork,
the controllers are deployed with the dual objective of minimizing the average propagation
latency and the worst-case propagation latency between controllers and switches.

The spectral clustering method was used in [31–35] for CPP clustering. It is worth
mentioning that the load-balancing parameter was considered in [31,32,35], and only [32,35]
introduced algorithms for estimating the proper number of controllers. The authors in [32]
utilized the structure of eigenvectors for the objective. In [33], first, the controllers were
mapped into the row vector classification using spectral clustering, and then, using K-
medoids algorithm, which is based on simulated annealing, the vectors were classified to
achieve a flexible distribution of the controllers. The results in [34] demonstrated that the
spectral algorithm outperforms K-median and K-center in terms of intercontroller latency.
The problem was formulated for minimizing the controller cost, main costs, delays of
switch–controller and intercontrollers, and main power cost in [35].

K-means was applied in [36–38] for solving a CPP in a SDN by paying attention
to the delay between switches and controllers and load balancing. Only [38] among
them considered intercontroller delay. It should be noted that the researchers in [37] also
employed hierarchical clustering.

The authors in [39] mathematically formulated the placement of controllers as an
optimization problem. The objectives of this problem were considered to minimize the
controller response time, which refers to the delay between the SDN controller and as-
signed switches, as well as the control load (CL), intracluster delay (ICD), and intracluster
throughput (ICT). To address this, they introduced a computationally efficient heuristic
called deep-Q-network-based dynamic clustering and placement (DDCP). This heuristic
utilized reinforcement and deep learning techniques to solve the optimization problem.

3. Basic Concepts

In this section, the basic concepts that will be used in this research are further explained.

3.1. K-Means Clustering

K-means clustering is a fast and commonly used technique due to its low iteration
rates and ease of implementation. The k-means algorithm works by attempting to find the
cluster centers (C1, C2, . . . , CK) in a way that minimizes the total squared sum of distances
between each data point “Xi” and its closest cluster center (Cj). However, the performance
of k-means heavily depends on the initialization of the centers, which is a key issue with
this algorithm. The algorithm establishes strong connections between data points and their
closest cluster centers, resulting in cluster centers that do not leave the local range of data
density. As the LAC algorithm is implemented via k-means, it still suffers from the issue of
the random initialization of the centers. Thus, in this research, we optimized the algorithm
by using KHM.

3.2. K-Harmonic Means

K-Harmonic means (KHM) was proposed by the authors in [18] as a new clustering
method based on k-means. In this algorithm, the harmonic means are used instead of the
Euclidean distance to solve the initialization problem of the KM algorithm.

The objective function of the KHM algorithm is named KHM, and it calculates the har-
monic mean of the distance from each point to all centers. KHM investigates two functions,
soft membership and weight. The weight function assigns a higher weight to data points

Appl. Sci. 2023, 13, 10073 5 of 16

that are far away from every center, defining the impact of each data point on computing
new components of the cluster center. Parameter “ρ” is a user-defined input parame-
ter in KHM, typically equal to or greater than 2. It influences the fuzziness of cluster
assignments. A higher value of “ρ” results in smoother membership distributions and
allows data points to have more evenly distributed memberships across multiple clus-
ters. Conversely, a lower value of “ρ” leads to sharper cluster boundaries and more
distinct memberships.

The algorithm continues until a predefined number of iterations is reached, or until
the output of the KHM objective function does not change significantly.

3.3. Learning Automata

Learning automata [11] are probabilistic decision-making tools that iteratively adapt
to the environment and learn the optimal action. A widespread type of learning automata is
variable structure learning automata, which are defined by a quadruple [α, β, P, T], where:

• α = α1, α2, . . . , αr is the set of actions where r is the number of actions.
• β is the reinforcement signals where, in a P-model environment, β ∈ [0, 1}.
• P = {p1, p2, . . . , pr}} is the set of actions’ probability, P ∈{ 0, 1}.
• T is the learning algorithm where, in the nth step, p(n + 1) = T[p(n), α(n), β(n)] is linear,

if p(n + 1) is a linear function of p(n), or nonlinear if p(n + 1) is a nonlinear function
of p(n).

In the nth step of a linear learning algorithm, if the ith selected action αi(n) receives
the reward reinforcement signal β(n) = 0, the corresponding probability vector of learning
automaton, p(n + 1), is updated using 1. If it receives the penalty reinforcement signal
β(n) = 1, the corresponding probability vector of learning automaton p(n + 1) is updated
using 2 [40]:

pj(n− 1) =
{

pj(n) + a
(
1− pj(n)

)
j = i

pj(n)(1− a) ∀j
∣∣ j 6= i

(1)

pj(n− 1) =

{
pj(n)− (1− b) j = i

b
(r−1) + (1− b)pj(n) ∀j

∣∣∣ j 6= i
(2)

where in Equations (1) and (2), a and b are learning parameters (reward and penalty
parameters), and different values for a and b create different learning algorithms:

• If a = b, the learning algorithm will be of the linear reward penalty (LRP) type.
• If b = 0, the learning algorithm will be of the linear reward inaction (LRI) type.
• If a >> b (a is much larger than b), the learning algorithm will be of the reward epsilon

penalty (LREP) type.

3.4. Learning-Automata-Based Clustering

In this form of clustering, each data point is equipped with the third type of learning
automaton (LREP), and then, the learning automaton (LA) defines the membership status of
the data point. The membership status of a data point in relation to a cluster is determined
via “K-Means.” Therefore, this learning approach is based on the Euclidean distance
between the data point and other data points within the cluster. The number of selectable
actions for each learning automaton is equal to the number of clusters. After each selection,
if the data point is assigned to the correct cluster, the selection is rewarded, and if not, it
is penalized.

There are two reasons why the process of learning each data point was conducted
using learning automata in this work:

1. The input size: The input size is a function of the number of members and their
attributes. It is necessary to mention that in the learning process of LA, the entirety of
the given data are considered. It depends on the datasets.

Appl. Sci. 2023, 13, 10073 6 of 16

2. The cluster count: LA assign each datum to each cluster in during the learning process.
The actions of the automata show the selection of a cluster for that particular member.

3.5. Software-Defined Networks and CPPs

Software-defined networks (SDNs) are a new network technology that is controlled
centrally and intelligently. In this type of network, the management and tracing of packets
are entirely the responsibility of the controlling part of it. The main issue of the network’s
controlling plane occurs when the network size is large, as in this case, just one controller
will not be able to cover the entire network. Therefore, the main challenge in this scenario
is finding the right amount and location for the controllers. Clustering is one of the most
reasonable viewpoints that can succeed in the complicated management process of large
networks and can guarantee load balancing. Using the concept of clustering, a large
network is divided into multiple subnetworks in a manner that there will be a controller for
each subnetwork. Some matters such as the delay between controllers, load balancing, and
reliability are also important considerations in addition to decreasing the delay between
the switch and the controller.

4. LAC-KHM: The Proposed Algorithm

LAC-KHM is based on the LAC algorithm, in which each data point is equipped with
a learning automaton (LA). The number of actions of each LA equals the number of clusters,
and during the learning process, the LA specifies to which cluster its associated data point
belongs. The action of each LA is chosen based on the action probability vector (APV). The
LA’s decision is compared with the output of the k-means algorithm as a reinforcement
signal. However, like k-means, LAC is sensitive to the proper selection of initial points.
Therefore, in this research, LAC is improved through KHM, and the distance between
data points and cluster centers is calculated with regard to the harmonic distance. The
proposed algorithm, LAC-KHM, is formed based on three functions: select cluster, update
probability, and calculate accuracy. The LAC-KHM algorithm is shown in Algorithm 1. It is
noted that the cluster centers themselves are also updated based on the harmonic distance.

Algorithm 1: LAC-KHM algorithm

This algorithm has three functions with input and output parameters, and operations that follow:

Select Cluster: in fact, during rounds this function specifies to which cluster the data point
belongs. It is noted that initially all actions in APV have the same probability.
Input parameters: Membership_cluster, probability, num_cluster, num_data
Output parameter: Membership_cluster
Membership_cluster = Function Select_cluster (membership_cluster, probability,
num_cluster, num_data)

Update probability: This function updates the APV using learning rule LRP based on the received
reinforcement signal. In fact, with each execution, the probability of the selected action is either
decreased or increased based on the harmonic distance between data points and cluster centers.
Input parameters: membership_cluster, probability, num_cluster, position _of_data, signal, alpha,
beta
Output parameter: Probability
Probability = Function Update_probability (membership_cluster, probability, num_cluster,
position _of_data, signal, alpha, beta)
Calculate accuracy: This function evaluates the accuracy of the algorithm, demonstrating how
closely it matches the expected results.
Input parameters: obtained_result, expected_result, num_cluste
Output parameter: Accuracy

Appl. Sci. 2023, 13, 10073 7 of 16

Accuracy = Function Calculate accuracy (obtained_result, expected_result, num_cluster)
After initializing parameters, the algorithm keeps on running until output of KHM objective
function changes significantly.

Initialize parameters (x, y, until, n, k, d, numaction, probability, a, mask, signal, random centers)
Membership_cluster = Function Select_cluster (membership_cluster, probability,
num_cluster, num_data)

while (KHM changes significantly), do
for all data points, do

Call select-action Function (action= actionselection((action, probability,
numactions, n))

end for
for all data points do

Calculate Membership of data (m function in KHM)
Calculate Weights of data (w function in KHM)
Calculate new_centers according to their Membership and Weights

end for
Calculate KHM

Compute reinforcement signal
for all data points do

if actioni==clusteri :
signali=0

else
signali=1

for all data points do
Membership_cluster = Function Select_cluster

(membership_cluster, probability, num_cluster, num_data)
Compute result (feedback of environment)

end for
Update probability vector

for all data points do
Call Probability (probability = probabilityupdate(action, probability,

numactions, n, signal, alpha, beta))
end for

end while

5. CLAC-KHM: Customized LAC-KHM for CCP

Clustering algorithms have been applied in various scenarios, including solving the
CPP. To solve the CPP, switches are mapped to data points and controllers to cluster centers.
In most studies, the similarity criterion in clustering is the delay between the controller and
the switch, which is essentially the distance between data points and centers in each cluster.
It is also worth mentioning that the most practical algorithm is the one that considers other
parameters, such as load balancing and intercontroller delay. Therefore, to solve the CPP,
the LAC-KHM algorithm is customized to also consider load balancing and intercontroller
distance, in addition to the distance between data points and centers. This means that
the LA resident on each data point is rewarded not only when it reduces the distance
between the data and cluster center, but also when it improves intercentral cluster and load
balancing. As mentioned before, switches and controllers are placed in data points and
cluster centers, respectively, and the network is partitioned based on this foundation.

Problem Formulation

SDN is a typical network comprising of controllers, switches, and links, which can
be modeled as an undirected graph G = (V, E), where V represents a set of switches and
E represents a set of links between the switches. In addition, n denotes the number of
nodes in a given graph of switches, k denotes the number of controllers in the SDN, and
C = {c1,c2,..,ck} is a set of controllers. This algorithm divides the network into several

Appl. Sci. 2023, 13, 10073 8 of 16

subnetworks, with each cluster having a controller. Clustering the network is defined using
SDNi(Vi, Ei) as follows:

k⋃
i=1

vi = V;
k⋃

i=1

Ei = E (3)

SDNi ∩ SDN j = ∅, ∀i 6= j, i, j ∈ k (4)

S(SDNi) = TRUE ∀i ∈ K (5)

S
(
SDNi ∩ SDN j) = FALSE, ∀i 6= j, i, jεk (6)

SDNi is a connected region ∀i ∈ k (7)

Formula (3) implies that the network is covered with all formed subnetworks. Formula (4)
demonstrates that there is no overlapping between subnetworks, and as mentioned, k denotes
the number of controllers in the SDN. Formula (5) indicates that the highest similarity can be
found between the members of the same cluster. Therefore, all of the switches can be assigned to
one controller, and the lowest similarity is between the members of two different and separate
clusters, which is demonstrated in Formula (6). Formula (7) indicates that all members of a
subnetwork are connected with links. In this research, the similarities are intercontroller delay,
controller/switch, and load balancing.

In this research, the objective function (OF) is defined as the following:

Objective Function = α ∗ l−b− β ∗ dS−C − γ ∗ dC−C (8)

where l−b is denoted the load-balancing parameter. To calculate this parameter, we need to
compute N_C, where the ideal range for the number of members in each cluster is defined
as follows:

N_C =
n
k
± n

2k
(9)

where n and k are the total number of switches and clusters, respectively. Consequently, if
the number of members in a cluster is in the range of N_C, they are determined as True and
if not, they are considered False.

Finally, l_b is the sum of clusters with the “True” tag, divided by k. The average
delay between each switch and its related controller [41] and its normalized formula is
demonstrated in (10) and (11).

πavg(s−c) =
1
n
∗∑v∈V min d(v, c) (10)

ds−c(normalized) =
πavg(s−c) −min(πavg(s−c))

max(πavg(s−c))−min(πavg(s−c))
(11)

πavg(c−c) =
1
k
∗ ∑

ci ,cj∈C
mind

(
Ci, Cj

)
(12)

dc−c(normalized) =
πavg(C−C) −min

(
πavg(C−C)

)
max

(
πavg(C−C)

)
−min

(
πavg(C−C)

) (13)

Similarly, the intercontroller delay, which is calculated using “Dijkstra”, and its nor-
malized format are illustrated in (12) and (13), respectively:

The coefficients α, β, and γ are still assumed to be in the range of [0, 1]. The values
of l_b, dS-C, and dC-C depend on the specific context and units of measurement. These

Appl. Sci. 2023, 13, 10073 9 of 16

coefficients can be adjusted at any given time. The CLAC-KHM algorithm is demonstrated
in Algorithm 2.

Algorithm 2: CLAC-KHM algorithm

Initialize parameters (x, y, n, k, d, k, numaction, probability, a, mask, signal, random centers)
while (KHM changes significantly) do
for all switches do

Call select-action Function
end for
for all switches do

Calculate Membership of data (m function in KHM)
Calculate Weights of data (w function in KHM)
Calculate new_centers according to their Membership and Weights
Calculate distance between controllers
for all clusters: do

Calculate objective function
end for
end for

Calculate KHM
for all of switches do

Compute result (feedback of environment)
end for
for all of LAs do
Call Probability
end for

end while

6. Experimental Results

In this section, we evaluate LAC-KHM initially with seven datasets and then, the
CLAC-KHM is compared with the three aforementioned algorithms on four topologies.

6.1. Performance Evaluation of LAC-KHM

In what follows, LAC-KHM’s efficiency is evaluated via comparisons with k-medians,
k-medoids, k-means++, k-means, and standard LAC on seven different datasets, the
features of which are displayed in Table 1. In addition, the input parameters of the functions
in the LAC-KHM algorithm are also explained. Details of the dataset features and their
initial values can be seen in this table as well. Additionally, the parameters of the LA are
set according to those of [12].

Table 1. The details of the datasets used in this research.

Dataset Instances Dimensions Clusters Membership_Cluster LA Initial Prob

BCW 683 10 2 2 1/2
Sonar 208 60 2 2 1/2
CMC 1473 9 3 3 1/3
Hayes-Roth 132 5 3 3 1/3
Ionosphere 531 34 2 2 1/2
Sonar 208 60 2 2 1/2
Pima 768 8 2 2 1/2

Similarly, the results of checking the accuracy of the given algorithm compared to the
rest are shown in Table 2. As can be seen in this table, LAC-KHM achieves the best results.

Appl. Sci. 2023, 13, 10073 10 of 16

Table 2. Accuracies of the algorithms.

Dataset K-Means K-Means++ K-Medoid LAC LAC-KHM

BCW 0.50 ± 0.00 0.54 ± 0.00 0.50 ± 0.00 0.45 ± 0.00 0.50 ± 0.01
Sonar 0.49 ± 0.06 0.49 ± 0.06 0.49 ± 0.06 0.51 ± 0.04 0.54 ± 0.01
CMC 0.33 ± 0.04 0.32± 0.00 0.32 ± 0.00 0.34 ± 0.02 0.35 ± 0.01
Hayes-Roth 0.36 ± 0.03 0.41 ± 0.02 0.41 ± 0.02 0.42 ± 0.02 0.42 ± 0.02
Ionosphere 0.46 ± 0.03 0.48 ± 0.00 0.48 ± 0.00 0.48 ± 0.00 0.48 ± 0.01
Sonar 0.58 ± 0.21 0.78 ± 0.16 0.78 ± 0.16 0.90 ± 0.01 0.92 ± 0.11
Pima 0.49 ± 0.00 0.51 ± 0.00 0.51 ± 0.00 0.50 ± 0.00 0.52 ± 0.01

6.2. Performance Evaluation of CLAC-KHM

In this section, CLAC-KHM is first compared to k-means, spectral, and LAC, and
afterwards, they are all analyzed in a similar condition on four real internet zoo topologies
on different scales. The initial values of the objective function in this study are shown in
Equation (16):

α = 1, β =
1
2

,γ =
1
2

(14)

Due to the fact that KHM is based on reducing the distance between the center and the
points, and load balancing is another factor that relatively guarantees fault tolerance, α is
set to 2. Table 3 shows the details of the topologies used in this research. In [42], it is noted
that some nodes have no complete information about latitudes and longitudes. Hence,
we ignore these nodes throughout our simulations. Table 3 demonstrates the symbols of
the paper.

Table 3. Symbols of the paper.

Parameter_Symbol Explanation

α(LA) Actions
β(LA) Reinforcement signal
P Action’s probability
T The learning algorithm
a Reward parameter
b Penalty parameter
V Set of switches
E Set of links
L_B Load-balancing coefficient
d(v, c) Delay between switches and controller
d(c, c) Delay between controllers
α(OF) Coefficient of load balancing
β(OF) Coefficient of delay between switches and their related controller
γ(OF) Coefficient of delay between controllers
n Number of the switches
k Number of the controllers
N_C Number of members in each cluster
πavg(s−c) The average delay between each switch and its related controller
πavg(c−c) The average delay between controllers
ds−c Normalization of πavg(s−c)

dc−c Normalization of πavg(c−c)

In this research, we calculated the harmonic distance by replacing the Euclidean
distance with the haversine distance, which is more appropriate for real-life topologies.
The haversine distance is the distance between two data points on a sphere using their
latitude and longitude. Therefore, we consider the minimum-delay path between all data
points using the haversine distance [43]. The haversine formula uses the central angle θ

Appl. Sci. 2023, 13, 10073 11 of 16

between every two data points on a sphere as shown in Equation (17), where d and r are
the distance and the sphere radius, respectively.

θ =
d
r

(15)

The haversine distance is calculated via the haversine function which equals
hav(θ) = sin2(θ), in which we are given a direct calculation of the longitude and latitude of
the two points, as elaborated below:

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 16

b Penalty parameter

V Set of switches

E Set of links

L_B Load-balancing coefficient

𝑑(𝑣, 𝑐) Delay between switches and controller

𝑑(𝑐, 𝑐) Delay between controllers

α(OF) Coefficient of load balancing

β(OF)
Coefficient of delay between switches and their related

controller

γ(OF) Coefficient of delay between controllers

n Number of the switches

k Number of the controllers

𝑁_𝐶 Number of members in each cluster

𝜋𝑎𝑣𝑔(𝑠−𝑐)
The average delay between each switch and its related

controller

𝜋𝑎𝑣𝑔(𝑐−𝑐) The average delay between controllers

𝑑𝑠−𝑐 Normalization of 𝜋𝑎𝑣𝑔(𝑠−𝑐)

𝑑𝑐−𝑐 Normalization of 𝜋𝑎𝑣𝑔(𝑐−𝑐)

In this research, we calculated the harmonic distance by replacing the Euclidean dis-

tance with the haversine distance, which is more appropriate for real-life topologies. The

haversine distance is the distance between two data points on a sphere using their latitude

and longitude. Therefore, we consider the minimum-delay path between all data points

using the haversine distance [43]. The haversine formula uses the central angle Ɵ between

every two data points on a sphere as shown in Equation (17), where d and r are the dis-

tance and the sphere radius, respectively.

𝜃 =
𝑑

𝑟
 (15)

The haversine distance is calculated via the haversine function which equals hav(Ɵ)

= sin2(Ɵ), in which we are given a direct calculation of the longitude and latitude of the

two points, as elaborated below:

ℎ𝑎v(Ɵ) = ℎ𝑎𝑣(ɸ2 − ɸ1) + 𝑐𝑜𝑠(ɸ1)𝑐𝑜𝑠(ɸ2)ℎ𝑎𝑣(𝜆2 − 𝜆1) (16)

To solve for the distance d, we apply the archaversine (inverse haversine) to h =

hav(θ) or use the arcsine (inverse sine) function:

 𝑑 = 𝑟 ∗ 𝑎𝑟𝑐ℎ𝑎𝑣(ℎ) = 2 ∗ 𝑟 ∗ 𝑎𝑟𝑒𝑠𝑖𝑛(√ℎ) = (17)

2 ∗ 𝑟 ∗a𝑟𝑐𝑠𝑖𝑛√ℎ𝑎𝑣(∅2 − ∅1) + cos(∅2) cos(∅1)ℎ𝑎𝑣(𝜆2 − 𝜆1) =

 2 ∗ 𝑟 ∗ arcsin (√𝑠𝑖𝑛2(
𝜙2 − 𝜙1

2
) + cos(𝜙1) cos (𝜙2)𝑠𝑖𝑛2(

𝜆2 − 𝜆1

2
))

The ɸ1 and ɸ2 are the latitudes and λ1 and λ2 are the longitudes of data_point1 and

data_point2 in our function, respectively.

Since LAC is based on k-means, the CLAC-KHM algorithm is evaluated with stand-

ard k-means in addition to LAC. Spectral clustering is a method with roots in graph the-

ory, whereas k-means, k-medoids, and k-median are methods based on the distance be-

tween the centers and data points. Therefore, they are different from spectral. That is why

we also compared CLAC-KHM with the spectral algorithm on four topologies (Dialtecom,

Intellifiber, Iris, and Aarnet) with four different sizes. Table 4 shows the topologies’ details

studied throughout our evaluations [42].

av(Φ) =

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 16

b Penalty parameter

V Set of switches

E Set of links

L_B Load-balancing coefficient

𝑑(𝑣, 𝑐) Delay between switches and controller

𝑑(𝑐, 𝑐) Delay between controllers

α(OF) Coefficient of load balancing

β(OF)
Coefficient of delay between switches and their related

controller

γ(OF) Coefficient of delay between controllers

n Number of the switches

k Number of the controllers

𝑁_𝐶 Number of members in each cluster

𝜋𝑎𝑣𝑔(𝑠−𝑐)
The average delay between each switch and its related

controller

𝜋𝑎𝑣𝑔(𝑐−𝑐) The average delay between controllers

𝑑𝑠−𝑐 Normalization of 𝜋𝑎𝑣𝑔(𝑠−𝑐)

𝑑𝑐−𝑐 Normalization of 𝜋𝑎𝑣𝑔(𝑐−𝑐)

In this research, we calculated the harmonic distance by replacing the Euclidean dis-

tance with the haversine distance, which is more appropriate for real-life topologies. The

haversine distance is the distance between two data points on a sphere using their latitude

and longitude. Therefore, we consider the minimum-delay path between all data points

using the haversine distance [43]. The haversine formula uses the central angle Ɵ between

every two data points on a sphere as shown in Equation (17), where d and r are the dis-

tance and the sphere radius, respectively.

𝜃 =
𝑑

𝑟
 (15)

The haversine distance is calculated via the haversine function which equals hav(Ɵ)

= sin2(Ɵ), in which we are given a direct calculation of the longitude and latitude of the

two points, as elaborated below:

ℎ𝑎v(Ɵ) = ℎ𝑎𝑣(ɸ2 − ɸ1) + 𝑐𝑜𝑠(ɸ1)𝑐𝑜𝑠(ɸ2)ℎ𝑎𝑣(𝜆2 − 𝜆1) (16)

To solve for the distance d, we apply the archaversine (inverse haversine) to h =

hav(θ) or use the arcsine (inverse sine) function:

 𝑑 = 𝑟 ∗ 𝑎𝑟𝑐ℎ𝑎𝑣(ℎ) = 2 ∗ 𝑟 ∗ 𝑎𝑟𝑒𝑠𝑖𝑛(√ℎ) = (17)

2 ∗ 𝑟 ∗a𝑟𝑐𝑠𝑖𝑛√ℎ𝑎𝑣(∅2 − ∅1) + cos(∅2) cos(∅1)ℎ𝑎𝑣(𝜆2 − 𝜆1) =

 2 ∗ 𝑟 ∗ arcsin (√𝑠𝑖𝑛2(
𝜙2 − 𝜙1

2
) + cos(𝜙1) cos (𝜙2)𝑠𝑖𝑛2(

𝜆2 − 𝜆1

2
))

The ɸ1 and ɸ2 are the latitudes and λ1 and λ2 are the longitudes of data_point1 and

data_point2 in our function, respectively.

Since LAC is based on k-means, the CLAC-KHM algorithm is evaluated with stand-

ard k-means in addition to LAC. Spectral clustering is a method with roots in graph the-

ory, whereas k-means, k-medoids, and k-median are methods based on the distance be-

tween the centers and data points. Therefore, they are different from spectral. That is why

we also compared CLAC-KHM with the spectral algorithm on four topologies (Dialtecom,

Intellifiber, Iris, and Aarnet) with four different sizes. Table 4 shows the topologies’ details

studied throughout our evaluations [42].

aν(Φ2 − Φ1) + cos(Φ1)cos(Φ2)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 16

b Penalty parameter

V Set of switches

E Set of links

L_B Load-balancing coefficient

𝑑(𝑣, 𝑐) Delay between switches and controller

𝑑(𝑐, 𝑐) Delay between controllers

α(OF) Coefficient of load balancing

β(OF)
Coefficient of delay between switches and their related

controller

γ(OF) Coefficient of delay between controllers

n Number of the switches

k Number of the controllers

𝑁_𝐶 Number of members in each cluster

𝜋𝑎𝑣𝑔(𝑠−𝑐)
The average delay between each switch and its related

controller

𝜋𝑎𝑣𝑔(𝑐−𝑐) The average delay between controllers

𝑑𝑠−𝑐 Normalization of 𝜋𝑎𝑣𝑔(𝑠−𝑐)

𝑑𝑐−𝑐 Normalization of 𝜋𝑎𝑣𝑔(𝑐−𝑐)

In this research, we calculated the harmonic distance by replacing the Euclidean dis-

tance with the haversine distance, which is more appropriate for real-life topologies. The

haversine distance is the distance between two data points on a sphere using their latitude

and longitude. Therefore, we consider the minimum-delay path between all data points

using the haversine distance [43]. The haversine formula uses the central angle Ɵ between

every two data points on a sphere as shown in Equation (17), where d and r are the dis-

tance and the sphere radius, respectively.

𝜃 =
𝑑

𝑟
 (15)

The haversine distance is calculated via the haversine function which equals hav(Ɵ)

= sin2(Ɵ), in which we are given a direct calculation of the longitude and latitude of the

two points, as elaborated below:

ℎ𝑎v(Ɵ) = ℎ𝑎𝑣(ɸ2 − ɸ1) + 𝑐𝑜𝑠(ɸ1)𝑐𝑜𝑠(ɸ2)ℎ𝑎𝑣(𝜆2 − 𝜆1) (16)

To solve for the distance d, we apply the archaversine (inverse haversine) to h =

hav(θ) or use the arcsine (inverse sine) function:

 𝑑 = 𝑟 ∗ 𝑎𝑟𝑐ℎ𝑎𝑣(ℎ) = 2 ∗ 𝑟 ∗ 𝑎𝑟𝑒𝑠𝑖𝑛(√ℎ) = (17)

2 ∗ 𝑟 ∗a𝑟𝑐𝑠𝑖𝑛√ℎ𝑎𝑣(∅2 − ∅1) + cos(∅2) cos(∅1)ℎ𝑎𝑣(𝜆2 − 𝜆1) =

 2 ∗ 𝑟 ∗ arcsin (√𝑠𝑖𝑛2(
𝜙2 − 𝜙1

2
) + cos(𝜙1) cos (𝜙2)𝑠𝑖𝑛2(

𝜆2 − 𝜆1

2
))

The ɸ1 and ɸ2 are the latitudes and λ1 and λ2 are the longitudes of data_point1 and

data_point2 in our function, respectively.

Since LAC is based on k-means, the CLAC-KHM algorithm is evaluated with stand-

ard k-means in addition to LAC. Spectral clustering is a method with roots in graph the-

ory, whereas k-means, k-medoids, and k-median are methods based on the distance be-

tween the centers and data points. Therefore, they are different from spectral. That is why

we also compared CLAC-KHM with the spectral algorithm on four topologies (Dialtecom,

Intellifiber, Iris, and Aarnet) with four different sizes. Table 4 shows the topologies’ details

studied throughout our evaluations [42].

aν(λ2 − λ1) (16)

To solve for the distance d, we apply the archaversine (inverse haversine) to h = hav(θ)
or use the arcsine (inverse sine) function:

d = r ∗ archav(h) = 2 ∗ r ∗ aresin
(√

h
)
= (17)

2 ∗ r ∗ arcsin
√

hav(∅2 −∅1) + cos(∅2)cos (∅1)hav(λ2 − λ1) =

2 ∗ r ∗ arcsin(

√
sin2(

φ2 − φ1

2
) + cos(φ1)cos(φ2)sin2(

λ2 − λ1

2
))

The Φ1 and Φ2 are the latitudes and λ1 and λ2 are the longitudes of data_point1 and
data_point2 in our function, respectively.

Since LAC is based on k-means, the CLAC-KHM algorithm is evaluated with standard
k-means in addition to LAC. Spectral clustering is a method with roots in graph theory,
whereas k-means, k-medoids, and k-median are methods based on the distance between
the centers and data points. Therefore, they are different from spectral. That is why we
also compared CLAC-KHM with the spectral algorithm on four topologies (Dialtecom,
Intellifiber, Iris, and Aarnet) with four different sizes. Table 4 shows the topologies’ details
studied throughout our evaluations [42].

Table 5 presents the results. As mentioned previously, the Aarnet topology comprises
19 nodes, and for accommodating this topology, the number of controllers was examined
within the range of 3 to 10. Consequently, in the table, you will observe a shaded area
representing the number of controllers exceeding 10 for this particular topology.

The given values demonstrate that the delay between switches and controllers in
k-means is less compared to that of spectral. However, the values of OF are not higher
than spectral in all topologies with any number of controllers. These results determine that
the CLAC-KHM achieves better results than the other algorithms as well. For the sake of
a better explanation, the OF values are depicted for all algorithms in Figures 1–3 for the
four topologies.

In this study, it was observed that Dial_telecom is the largest topology, and the spectral
algorithm achieved better results compared to k-means. However, as shown in Figure 2,
LAC performed as well as the spectral algorithm. Nevertheless, it is noteworthy that
CLAC-KHM achieved the best performance in this topology.

Table 4. Features of the topologies.

Number of Nodes Number of Switches Number of Edges Geographical Area Geographical Location

Dial telecom 193 151 country Czech Republic
Aarnet 19 24 country Australia

Intellifiber 73 97 country USA
Iris 51 64 region Tennessee, USA

Appl. Sci. 2023, 13, 10073 12 of 16

Table 5. Results of CLAC-KHM with 4 topologies.

Dial Telecom Intellifiber Iris Aarnet

NOC S-C C-C OF S-C C-C OF S-C C-C OF S-C C-C OF

K
-m

eans

3 18.77 0.96 0.51 21.94 3.37 0.52 7.22 1.67 -0.08 19.77 13.08 -0.2

6 6.38 0.53 0.71 7.59 1.86 0.42 2.21 0.84 0.36 13.08 6.67 0.29

8 3.9 0.45 0.72 4.78 1.64 0.47 1.35 0.67 0.51 1.65 5.48 0.27

10 2.75 0.42 0.68 3.32 1.4 0.71 0.91 0.58 62 0.64 4.22 0.63
15 1.48 0.32 0.65 1.65 1.18 0.45 0.41 0.44 0.65
20 0.92 0.28 0.66 0.98 0.93 0.54 0.24 0.35 0.53

Spectral

3 20.57 1.09 0.27 22.35 3.41 0.58 7.78 1.25 0.59 23.57 9.47 0.42

6 6.31 0.54 0.75 8.44 1.69 0.71 2.32 0.8 0.69 7.88 6.79 0.02

8 3.95 0.46 0.75 5.28 1.41 0.7 1.4 0.61 0.73 3.76 3.59 -0.21

10 2.87 0.41 86 3.35 1.34 0.59 0.96 0.53 0.59 3.7 3.29 0.6
15 1.87 0.29 0.67 2.11 1.03 0.3 0.65 0.37 0.56
20 1 0.25 0.7 1.41 0.9 0.37 0.54 0.27 0.01

LA
C

3 17.78 0.95 0.58 20.14 3.01 0.53 6.72 1.37 0.21 17.77 12.08 0.1

6 6.03 0.43 0.79 6.12 1.44 0.52 1.08 0.75 0.65 9.14 5.43 0.38

8 3.54 0.4 0.8 4.78 1.64 0.58 0.64 0.57 0.71 1.65 5.46 0.34

10 2.21 0.31 0.86 2.76 1.22 0.77 0.77 0.52 0.74 0.61 3.22 0.66
15 1.23 0.26 0.61 1.43 1.02 0.6 0.38 0.38 0.78
20 0.92 0.28 0.67 0.87 0.75 0.68 0.21 0.22 0.65

LA
C

-K
H

M

3 16.77 0.89 0.59 18.65 2.34 0.65 6.45 1.14 0.45 15.55 5.32 0.43

6 6.13 0.39 0.8 5.24 1.12 0.74 0.99 0.68 0.69 7.23 5.88 0.47

8 3.32 0.36 0.88 4.12 1.34 0.77 0.61 0.52 0.75 1.04 4.43 0.39

10 1.97 0.29 0.91 2.06 1.01 0.81 0.74 0.5 0.79 0.54 3.12 0.71
15 1.12 0.26 0.69 1.06 0.78 0.65 0.32 0.35 0.82
20 0.88 0.21 0.7 0.66 0.63 0.75 0.17 0.18 0.75

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 16

2, LAC performed as well as the spectral algorithm. Nevertheless, it is noteworthy that

CLAC-KHM achieved the best performance in this topology.

Figure 2. Objective functions for all algorithms on Dial_Telecom.

Figure 3 indicates the fact that the CLAC-KHM is the most efficient rather than the

other representative algorithms. Meanwhile, it depicts that when there are a small number

of controllers, the spectral clustering outperforms k-means in terms of OF, and contrarily,

with increasing controller numbers, k-means has better results. It is worth bringing up the

fact that they have no predictable behaviors in Intellifber.

Figure 3. Objective functions for all algorithms on Intellifber.

As we can recognize in Figure 4A,B, the behavior of CLAC-KHM is similar to LAC

and k-means while enjoying better performance on the Iris topology and Aarnet topology.

In contrast, spectral clustering does not have a rather normal behavior.

Figure 2. Objective functions for all algorithms on Dial_Telecom.

Appl. Sci. 2023, 13, 10073 13 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 16

2, LAC performed as well as the spectral algorithm. Nevertheless, it is noteworthy that

CLAC-KHM achieved the best performance in this topology.

Figure 2. Objective functions for all algorithms on Dial_Telecom.

Figure 3 indicates the fact that the CLAC-KHM is the most efficient rather than the

other representative algorithms. Meanwhile, it depicts that when there are a small number

of controllers, the spectral clustering outperforms k-means in terms of OF, and contrarily,

with increasing controller numbers, k-means has better results. It is worth bringing up the

fact that they have no predictable behaviors in Intellifber.

Figure 3. Objective functions for all algorithms on Intellifber.

As we can recognize in Figure 4A,B, the behavior of CLAC-KHM is similar to LAC

and k-means while enjoying better performance on the Iris topology and Aarnet topology.

In contrast, spectral clustering does not have a rather normal behavior.

Figure 3. Objective functions for all algorithms on Intellifber.

Figure 3 indicates the fact that the CLAC-KHM is the most efficient rather than the
other representative algorithms. Meanwhile, it depicts that when there are a small number
of controllers, the spectral clustering outperforms k-means in terms of OF, and contrarily,
with increasing controller numbers, k-means has better results. It is worth bringing up the
fact that they have no predictable behaviors in Intellifber.

As we can recognize in Figure 4A,B, the behavior of CLAC-KHM is similar to LAC
and k-means while enjoying better performance on the Iris topology and Aarnet topology.
In contrast, spectral clustering does not have a rather normal behavior.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 16

(A) Iris Topology (B) Aarnet Topolgy

Figure 4. Objective functions for all algorithms on Iris and Aarnet topologies.

From the attained results, it is concluded that the CLAC-KHM leads to better effi-

ciency thanks to utilizing learning automata and KHM.

7. Conclusion and Future Works

In summary, the paper proposed two algorithms, LAC-KHM and CLAC-KHM, for

solving the CPP in an SDN. LAC-KHM improved the LAC algorithm by incorporating the

KHM method to avoid the sensitivity to the initialization of the algorithm. CLAC-KHM

customized LAC-KHM for solving the CPP by considering the three main metrics, which

were the distance between the controllers, the distance between controllers and switches,

and load balancing. The proposed algorithms were evaluated on four different topologies,

and the results showed that they outperformed k-means, spectral, and LAC algorithms.

However, the proposed algorithms suffered from high computational complexity. This

limitation arose due to the CLAC algorithm relying on the KHM algorithm, which en-

tailed calculating the harmonic mean of distances between each data point and all centers

for membership and weight functions. Consequently, this approach incurred a substantial

computational burden. On the other hand, the CLA algorithm leveraged the k-means al-

gorithm, which assigns data points to clusters based solely on their proximity to the as-

signed cluster, significantly reducing the computational complexity by avoiding calcula-

tions involving all clusters, which needs to be investigated in future works.

Author Contributions: Conceptualization, A.A., M. J., and M.R.M.; software, A.A.; validation, A.A.

and M.J.; formal analysis, A.A.; investigation, A.A.; resources, A.A.; data curation, A.A.; writing—

original draft preparation, A.A.; writing—review and editing, A.A., and M.J.; visualization, A.A.;

supervision, M.J.; project administration, M.J and M.R.M. All authors have read and agreed to the

published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study is available upon request. Researchers

interested in accessing the data can contact Azam Amin (a.aminabshouri@gmail.com). We are com-

mitted to promoting transparency and facilitating the reproducibility of our research findings."

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SDN Software-defined network

Figure 4. Objective functions for all algorithms on Iris and Aarnet topologies.

From the attained results, it is concluded that the CLAC-KHM leads to better efficiency
thanks to utilizing learning automata and KHM.

7. Conclusions and Future Works

In summary, the paper proposed two algorithms, LAC-KHM and CLAC-KHM, for
solving the CPP in an SDN. LAC-KHM improved the LAC algorithm by incorporating the
KHM method to avoid the sensitivity to the initialization of the algorithm. CLAC-KHM
customized LAC-KHM for solving the CPP by considering the three main metrics, which
were the distance between the controllers, the distance between controllers and switches,

Appl. Sci. 2023, 13, 10073 14 of 16

and load balancing. The proposed algorithms were evaluated on four different topologies,
and the results showed that they outperformed k-means, spectral, and LAC algorithms.
However, the proposed algorithms suffered from high computational complexity. This
limitation arose due to the CLAC algorithm relying on the KHM algorithm, which entailed
calculating the harmonic mean of distances between each data point and all centers for
membership and weight functions. Consequently, this approach incurred a substantial com-
putational burden. On the other hand, the CLA algorithm leveraged the k-means algorithm,
which assigns data points to clusters based solely on their proximity to the assigned cluster,
significantly reducing the computational complexity by avoiding calculations involving all
clusters, which needs to be investigated in future works.

Author Contributions: Conceptualization, A.A., M.J. and M.R.M.; software, A.A.; validation, A.A.
and M.J.; formal analysis, A.A.; investigation, A.A.; resources, A.A.; data curation, A.A.; writing—
original draft preparation, A.A.; writing—review and editing, A.A. and M.J.; visualization, A.A.;
supervision, M.J.; project administration, M.J. and M.R.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study is available upon request. Researchers
interested in accessing the data can contact Azam Amin (a.aminabshouri@gmail.com). We are
committed to promoting transparency and facilitating the reproducibility of our research findings.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
SDN Software-defined network
CPP Controller placement problem
LA Learning automata
KHM K-Harmonics mean
DBCP Density-based controller placement

References
1. Anil, K.; Jain, A.K.; Dubes, R.C. Algorithms for Clustering Data; Prentice-Hall: Upper Saddle River, NJ, USA, 1988.
2. Liu, Q.; Kang, B.; Hua, Q.; Wen, Z.; Li, H. Visual Attention and Motion Estimation-Based Video Retargeting for Medical Data

Security. Secur. Commun. Netw. 2022, 2022, 1343766. [CrossRef]
3. Arora, N.; Singh, A.; Al-Dabagh, M.Z.N.; Maitra, S.K. A Novel Architecture for Diabetes Patients’ Prediction Using K-Means

Clustering and SVM. Math. Probl. Eng. 2022, 2022, 4815521. [CrossRef]
4. Granda Morales, L.F.; Valdiviezo-Diaz, P.; Reátegui, R.; Barba-Guaman, L. Drug Recommendation System for Diabetes Using

a Collaborative Filtering and Clustering Approach: Development and Performance Evaluation. J. Med. Internet Res. 2022, 24,
e37233. [CrossRef] [PubMed]

5. Septiarini, A.; Hamdani, H.; Sari, S.U.; Hatta, H.R.; Puspitasari, N.; Hadikurniawati, W. Image Processing Techniques for Tomato
Segmentation Applying K-Means Clustering and Edge Detection Approach. In Proceedings of the 2021 International Seminar on
Machine Learning, Optimization, and Data Science (ISMODE), Jakarta, Indonesia, 29–30 January 2022; IEEE: Piscataway, NJ,
USA, 2022; pp. 92–96.

6. Avilov, M.; Shichkina, Y.; Kupriyanov, M. Using Clustering Methods of Anomalies and Neural Networks to Conduct Addi-
tional Diagnostics of a Computer Network. In Intelligent Distributed Computing XIV; Springer International Publishing: Cham,
Switzerland, 2022; pp. 193–202.

7. Yuan, L.; Chen, H.; Gong, J. Interactive Communication with Clustering Collaboration for Wireless Powered Communication
Networks. Int. J. Distrib. Sens. Netw. 2022, 18, 15501477211069910. [CrossRef]

8. Kumari, A.; Sairam, A.S. Controller Placement Problem in Software-Defined Networking: A Survey. Networks 2021, 78, 195–223.
[CrossRef]

9. Heller, B.; Sherwood, R.; McKeown, N. The Controller Placement Problem. ACM SIGCOMM Comput. Commun. Rev. 2012, 42,
473–478. [CrossRef]

https://doi.org/10.1155/2022/1343766
https://doi.org/10.1155/2022/4815521
https://doi.org/10.2196/37233
https://www.ncbi.nlm.nih.gov/pubmed/35838763
https://doi.org/10.1177/15501477211069910
https://doi.org/10.1002/net.22016
https://doi.org/10.1145/2377677.2377767

Appl. Sci. 2023, 13, 10073 15 of 16

10. Ul Huque, M.T.I.; Si, W.; Jourjon, G.; Gramoli, V. Large-Scale Dynamic Controller Placement. IEEE Trans. Netw. Serv. Manag. 2017,
14, 63–76. [CrossRef]

11. Narendra, K.S.; Thathachar, M.A. Learning Automata—A Survey. IEEE Trans. Syst. Man Cybern. 1974, 4, 323–334. [CrossRef]
12. Hasanzadeh-Mofrad, M.; Rezvanian, A. Learning Automata Clustering. J. Comput. Sci. 2018, 24, 379–388. [CrossRef]
13. Rokach, L.; Maimon, O. Clustering Methods. In Encyclopedia of Data Warehousing and Mining, 2nd ed.; Wang, J., Ed.; IGI Global:

Hershey, PA, USA, 2009; pp. 254–258.
14. Grover, N. A Study of Various Fuzzy Clustering Algorithms. Int. J. Eng. Res. 2014, 2, 177–181. [CrossRef]
15. Bora, D.J.; Gupta, D.; Kumar, A. A Comparative Study between Fuzzy Clustering Algorithm and Hard Clustering Algorithm.

arXiv 2014, arXiv:1404.6059.
16. Reynolds, A.P.; Richards, G.; de la Iglesia, B.; Rayward-Smith, V.J. Clustering Rules: A Comparison of Partitioning and Hierarchical

Clustering Algorithms. J. Math. Model. Algorithms 2006, 5, 475–504. [CrossRef]
17. Huang, Z. Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values. Data Min. Knowl. Discov.

1998, 2, 283–304. [CrossRef]
18. Zhang, B.; Hsu, M.; Dayal, U. K-Harmonic Means-A Data Clustering Algorithm. Hewlett-Packard Labs Technical Report HPL-99-

124. 1999. Available online: http://shiftleft.com/mirrors/www.hpl.hp.com/techreports/1999/HPL-1999-124.pdf (accessed on
20 June 2022).

19. Kaufman, L.; Rousseeuw, P.J. Clustering by Means of Medoids. In Statistical Data Analysis Based on the L1-Norm and Related
Methods; Dodge, Y., Ed.; North-Holland: Amsterdam, The Netherlands, 1987; pp. 405–416.

20. Dussert, C.; Rasigni, G.; Rasigni, M.; Palmari, J.; Llebaria, A. Minimal Spanning Tree: A New Approach for Studying Order and
Disorder. Phys. Rev. B 1986, 33, 3528–3531. [CrossRef] [PubMed]

21. Urquhart, R. Graph Theoretical Clustering Based on Limited Neighbourhood Sets. Pattern Recognit. 1982, 15, 173–187. [CrossRef]
22. Cheng, W.; Wang, W.; Batista, S. Grid-Based Clustering. Data 2018, 3, 25.
23. Kriegel, H.P.; Kröger, P.; Sander, J.; Zimek, A. Density-Based Clustering. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1,

231–240. [CrossRef]
24. McNicholas, P.D. Model-Based Clustering. J. Classif. 2016, 33, 331–373. [CrossRef]
25. Honarpazhooh, S. Controller Placement in Software-Defined Networking Using Silhouette Analysis and Gap Statistic. Turk. J.

Comput. Math. Educ. 2021, 13, 4848–4863.
26. Liao, J.; Sun, H.; Wang, J.; Qi, Q.; Li, K.; Li, T. Density Cluster Based Approach for Controller Placement Problem in Large-Scale

Software Defined Networkings. Comput. Netw. 2017, 112, 24–35. [CrossRef]
27. Xiaolan, H.; Muqing, W.; Weiyao, X. A Controller Placement Algorithm Based on Density Clustering in SDN. In Proceedings

of the 2018 IEEE/CIC International Conference on Communications in China (ICCC), Beijing, China, 16–18 August 2018; pp.
184–189.

28. Yujie, R.; Muqing, W.; Yiming, C. An Effective Controller Placement Algorithm Based on Clustering in SDN. In Proceedings of the
2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11 December 2020; pp.
2294–2299.

29. Chen, J.; Xiong, Y.; He, D. A Density-based Controller Placement Algorithm for Software Defined Networks. In Proceedings of the
2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom)
and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics
(Cybermatics), Espoo, Finland, 22–25 August 2022; pp. 287–291.

30. Rodriguez, A.; Laio, A. Clustering by Fast Search and Find of Density Peaks. Science 2014, 344, 1492–1496. [CrossRef]
31. Xiao, P.; Qu, W.; Qi, H.; Li, Z.; Xu, Y. The SDN Controller Placement Problem for WAN. In Proceedings of the 2014 IEEE/CIC

International Conference on Communications in China (ICCC), Shanghai, China, 13–15 October 2014; pp. 220–224.
32. Xiao, P.; Li, Z.Y.; Guo, S.; Qi, H.; Qu, W.Y.; Yu, H.S. AK Self-Adaptive SDN Controller Placement for Wide Area Networks. Front.

Inf. Technol. Electron. Eng. 2016, 17, 620–633. [CrossRef]
33. Lu, J.; Zhen, Z.; Hu, T. Spectral Clustering Based Approach for Controller Placement Problem in Software Defined Networking.

J. Phys. Conf. Ser. 2018, 1087, 042073. [CrossRef]
34. Sahoo, K.S.; Sahoo, B.; Dash, R.; Tiwary, M. Solving Multi-Controller Placement Problem in Software Defined Network. In

Proceedings of the 2016 International Conference on Information Technology (ICIT), Bhubaneswar, India, 21–24 December 2016;
pp. 188–192.

35. Zhao, Z.; Wu, B. Scalable SDN Architecture with Distributed Placement of Controllers for WAN. Concurr. Comput. Pract. Exp.
2017, 29, e4030. [CrossRef]

36. Wang, G.; Zhao, Y.; Huang, J.; Duan, Q.; Li, J. A K-means-based network partition algorithm for controller placement in software
defined network. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia,
22–27 May 2016; pp. 1–6.

37. Kuang, H.; Qiu, Y.; Li, R.; Liu, X. A Hierarchical K-Means Algorithm for Controller Placement in SDN-Based WAN Architecture.
Proceedings 2018, 2, 78.

38. Zhu, L.; Chai, R.; Chen, Q. Control Plane Delay Minimization Based SDN Controller Placement Scheme. Proceedings 2017, 1, 536.
39. Bouzidi, E.H.; Outtagarts, A.; Langar, R.; Boutaba, R. Dynamic clustering of software defined network switches and controller

placement using deep reinforcement learning. Comput. Netw. 2022, 207, 108852. [CrossRef]

https://doi.org/10.1109/TNSM.2017.2651107
https://doi.org/10.1109/TSMC.1974.5408453
https://doi.org/10.1016/j.jocs.2017.09.008
https://doi.org/10.17950/ijer/v3s3/310
https://doi.org/10.1007/s10852-005-9022-1
https://doi.org/10.1023/A:1009769707641
http://shiftleft.com/mirrors/www.hpl.hp.com/techreports/1999/HPL-1999-124.pdf
https://doi.org/10.1103/PhysRevB.34.3528
https://www.ncbi.nlm.nih.gov/pubmed/9940109
https://doi.org/10.1016/0031-3203(82)90069-3
https://doi.org/10.1002/widm.30
https://doi.org/10.1007/s00357-016-9211-9
https://doi.org/10.1016/j.comnet.2016.10.014
https://doi.org/10.1126/science.1242072
https://doi.org/10.1631/FITEE.1500350
https://doi.org/10.1088/1742-6596/1087/4/042073
https://doi.org/10.1002/cpe.4030
https://doi.org/10.1016/j.comnet.2022.108852

Appl. Sci. 2023, 13, 10073 16 of 16

40. Narendra, K.S.; Thathachar, M.A. Learning Automata: An Introduction. Entropy 2012, 14, 1415–1463.
41. Torkamani-Azar, S.; Jahanshahi, M. A New GSO Based Method for SDN Controller Placement. Comput. Commun. 2020, 163,

91–108. [CrossRef]
42. The Internet Topology Zoo. Available online: http://www.topology-zoo.org/ (accessed on 1 April 2023).
43. Sminesh, C.N.; Kanaga, E.G.M.; Sreejish, A.G. A Multi-Controller Placement Strategy in Software Defined Networks Using

Affinity Propagation. Int. J. Internet Technol. Secur. Trans. 2020, 10, 229–253. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.comcom.2020.09.004
http://www.topology-zoo.org/
https://doi.org/10.1504/IJITST.2020.104581

	Introduction
	Related Works
	Types of Clustering Methods
	Clustering APPLICATION in CPPs

	Basic Concepts
	K-Means Clustering
	K-Harmonic Means
	Learning Automata
	Learning-Automata-Based Clustering
	Software-Defined Networks and CPPs

	LAC-KHM: The Proposed Algorithm
	CLAC-KHM: Customized LAC-KHM for CCP
	Experimental Results
	Performance Evaluation of LAC-KHM
	Performance Evaluation of CLAC-KHM

	Conclusions and Future Works
	References

