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Abstract: In this study, we address the limitations of current deep learning models in road extraction
tasks from remote sensing imagery. We introduce MixerNet-SAGA, a novel deep learning model that
incorporates the strengths of U-Net, integrates a ConvMixer block for enhanced feature extraction,
and includes a Scaled Attention Gate (SAG) for augmented spatial attention. Experimental validation
on the Massachusetts road dataset and the DeepGlobe road dataset demonstrates that MixerNet-
SAGA achieves a 10% improvement in precision, 8% in recall, and 12% in IoU compared to leading
models such as U-Net, ResNet, and SDUNet. Furthermore, our model excels in computational
efficiency, being 20% faster, and has a smaller model size. Notably, MixerNet-SAGA shows exceptional
robustness against challenges such as same-spectrum–different-object and different-spectrum–same-
object phenomena. Ablation studies further reveal the critical roles of the ConvMixer block and
SAG. Despite its strengths, the model’s scalability to extremely large datasets remains an area for
future investigation. Collectively, MixerNet-SAGA offers an efficient and accurate solution for road
extraction in remote sensing imagery and presents significant potential for broader applications.

Keywords: high-resolution remote sensing imagery; road extraction; MixerNet-SAGA; ConvMixer
blocks; scaled attention mechanisms; deep learning architectures

1. Introduction

Extracting roads from high-resolution remote sensing imagery is pivotal for a myriad
of applications [1] encompassing traffic flow prediction [2], disaster response [3], and
urban planning [4]. Precise road identification can relay crucial information for these
utilities [5]. The task of road extraction in high-resolution imagery is central, not only due
to its extensive application in urban planning and traffic management but also because
of its inherent technical challenges [6]. The diverse morphologies and textures of roads,
ranging from straight paths and curves to intersections, compound this complexity [7].

Deep Learning Evolution: With the advent of deep learning, Convolutional Neural
Networks (CNNs) have achieved substantial success in classification, object detection, and
segmentation, displaying competence in remote sensing road extraction [8]. Neverthe-
less, due to road intricacies, traditional CNN architectures reveal limitations in such tasks.
Fully Convolutional Networks (FCNs) outshine traditional CNNs for pixel-level tasks such
as semantic segmentation [9]. By avoiding the use of fully connected layers inherent in
traditional CNNs, FCNs retain the spatial context of input images, leading to discernible
improvements in pixel-level road extraction tasks that demand precise pixel classification.
Although FCNs preserve spatial details, the spatial resolution of feature maps might de-
grade after repeated convolutions and pooling, impacting the segmentation accuracy of
smaller or intricate features. In 2015, Ronneberger et al. proposed U-Net, designed with
symmetric up-sampling and down-sampling pathways, facilitating the preservation of
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high-resolution feature maps [10]. This design aids in generating precise object boundaries
in segmentation results and showcases remarkable multi-scale feature fusion capabilities.
To tackle accuracy degradation with increased network depth, He et al. (2015) introduced
the ResNet structure [11]. ResNet, with its residual connections, permits the training of
profoundly deep neural networks, mitigating gradient vanishing issues and augmenting
model performance, rendering it suitable for various image tasks, including segmentation.
To synergize multi-scale information during training, Li et al. advanced the DeepLab series,
employing Deep Convolutional Nets for semantic image segmentation [12]. By incorpo-
rating Atrous Convolution and Conditional Random Field (CRF) techniques, DeepLab
not only enhances segmentation quality but also elevates accuracy by fusing multi-scale
convolutional feature maps with the global context. Building on the foundation of DeepLab
v1, Liang-Chieh Chen and team introduced the ASPP module, which augments segmenta-
tion outcomes [13]. However, challenges such as elevated computational complexity and
limited performance improvement persist. Prioritizing multi-scale information retention
for detailed task management, Jingdong Wang et al. proposed HRNet in 2019 [14].

Attention Mechanism in Road Extraction: In 2014, Bahdanau et al. pioneered the
incorporation of attention mechanisms in machine translation tasks, enabling models to
“focus” on various segments of input sequences by attributing distinct weights to different
positions [15]. Since then, this mechanism has seen extensive applications across various
deep learning tasks [16]. MHA-Net employed attention mechanisms in segmentation tasks
to manage multi-scale information, directing the model to efficiently capture key regional
features [17]. In 2020, Xin Wei and colleagues proposed EMANet, utilizing attention mecha-
nisms to integrate features across scales, thereby enhancing the model’s capacity to discern
semantic information at various scales. However, the efficacy of attention mechanisms
can be contingent on the quality of the input data, potentially underperforming with sub-
par images. In 2021, Lu and team introduced scale-independent self-attention (ScaNet),
gaining significant traction [18]. This innovation permits the network to autonomously
adjust feature weight mechanisms across spatial scales, hence better capturing long-range
relationships within images. In road extraction tasks, such scale-independent self-attention
facilitates the network in proficiently identifying road continuity and curvature, enhancing
extraction accuracy [19]. However, the attention mechanism also has the problem of large
computational resource requirements. Aiming at this problem, some recent works have
been improved. For example, RADANet proposed by Dai et al. uses a combination of
deformable convolution and an attention mechanism, which can better express multi-scale
features, and also designs a residual structure to reduce the amount of parameters [20].
SDUNet proposed by Yang et al. integrates the spatial attention module in U-Net to en-
hance the local details and reduce the calculation amount of the attention module [21].
Ghandorh et al. proposed a semantic segmentation framework using an adaptive channel
attention module to improve the recall of road extraction [22]. Wang et al. designed a dual-
decoder structure, and at the same time they used the attention mechanism to enhance the
expression of details and improve robustness in complex scenes [23]. In the current research
field, although the limitations of computing resources have been overcome to some extent,
there is still room for improvement in the modeling of complex scenes in high-resolution
remote sensing images [24]. Deep learning methods perform well in this task but still face
the challenge of capturing details and maintaining spatial continuity [25]. Especially in the
road extraction of high-resolution remote sensing images, it is often difficult for traditional
deep learning models to balance these two factors [25,26].

In order to deal with these challenges, we designed a SAG multi-scale attention module
based on multiple cutting-edge research studies and embedded it into the U-Net structure,
so that the model can more efficiently fuse global and local information. Further, we
propose MixerNet-SAGA, an innovative deep learning model that combines the powerful
spatial feature extraction capabilities of ConvMixer blocks with a multi-scale attention
mechanism. MixerNet-SAGA was originally designed to provide a more accurate and
efficient road extraction strategy for high-resolution remote sensing images.
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Our proposed MixerNet-SAGA offers several advantages:

1. Computational Efficiency: By amalgamating deep convolution with 1 x 1 convolution
in the ConvMixer block, MixerNet-SAGA maintains superior performance while
ensuring lower computational and parameter complexity.

2. Multi-Scale Feature Extraction: Its unique multi-scale attention mechanism allows
for the capturing of road information across micro to macro levels, aptly adapting to
remote sensing imagery of varied resolutions.

3. Enhanced Feature Representation: The combination of the ConvMixer block and
multi-scale attention mechanisms facilitates efficient extraction and integration of
spatial and channel information, augmenting feature expressivity.

4. Flexibility and Adaptability: The design of MixerNet-SAGA allows for seamless
integration with other deep learning modules and techniques, ensuring adaptability
across diverse remote sensing image processing tasks.

5. Robustness: By integrating a myriad of feature extraction and enhancement tech-
niques, MixerNet-SAGA showcases commendable resilience in the face of intricate
urban landscapes and varied road conditions.

This paper is structured as follows:
The Introduction delves into the challenges of road extraction from high-resolution re-

mote sensing imagery and the limitations traditional deep learning models may encounter.
We then present our innovative solution, MixerNet-SAGA, which melds the ConvMixer
block with multi-scale attention mechanisms. In the Methods section, we elucidate the de-
sign and operation of MixerNet-SAGA, detailing core components such as the ConvMixer
block and multi-scale attention mechanisms. The Experiments and Results sections show-
case our model’s performance on two primary remote sensing datasets and benchmarks it
against other leading road extraction models. This section validates the practical efficacy
and superiority of MixerNet-SAGA. The Discussion section offers a deep dive into our
findings, dissecting the strengths and potential limitations of MixerNet-SAGA, juxtaposing
it against its peers. Finally, in the Conclusion, we encapsulate the central contributions and
insights of this paper, proposing potential future research trajectories and enhancements.

2. Methods
2.1. The Overall Architecture of MixerNet-SAGA

MixerNet-SAGA represents an advanced deep learning model building upon the
foundational strengths of the U-Net architecture and introducing pivotal modifications
tailored for high-resolution remote sensing image road extraction. The acclaim of U-Net
stems from its symmetrical encoder–decoder layout, facilitating comprehensive feature ex-
traction spanning from superficial to profound layers, while spatial information is retained
via skip connections. This inherent design underpins U-Net’s exemplary performance in
image segmentation tasks, especially when confronting remote sensing images imbued
with intricate backgrounds and minute details [27].

To further bolster its capabilities, we integrated the ConvMixer block during the
encoder phase. This block marries the advantages of deep convolution with 1 × 1 con-
volutions, enabling enhanced capture and amalgamation of multi-scalar features while
preserving computational efficiency. Such an amalgamation augments the model’s discrim-
inative prowess, which is particularly essential in high-resolution remote sensing images
where demarcations between roads and other elements—such as edifices, vegetation, or
water bodies—can be indistinct. Furthermore, we have innovatively incorporated the
SAG block within the skip connections—a cornerstone of U-Net—that merge superficial
detail-oriented information with deeper semantic content. By deploying the SAG block
within these junctions, there is a more agile fusion of diverse scalar features. Its multi-scale
attention mechanism apportions variegated weights to features across scales, ensuring a
harmonious equilibrium between global and local insights during data synthesis. This
strategic integration is pivotal in enhancing the model’s capacity to discern road intrica-
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cies and morphologies, especially in regions riddled with intricate intersections or areas
intersecting with other terrain elements.

In summary, MixerNet-SAGA, by capitalizing on U-Net’s merits and synergizing with
the prowess of ConvMixer and SAG blocks, achieves significant performance elevation in
road extraction tasks from high-resolution remote sensing imagery. These enhancements
not only augment model accuracy but also fortify its resilience in complex scenarios. The
architectural visualization of the network is depicted in Figure 1.
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2.2. Introduction to U-Net

U-Net, a landmark architecture in image segmentation, has displayed exceptional
prowess owing to its symmetric encoder–decoder framework coupled with distinct skip
connections [28], especially when addressing intricate backgrounds and irregular objec-
tives [29]. The core design philosophy of this network lies in concurrently harnessing deep
semantic insights and meticulous spatial details. However, when applied to remote sensing
image analyses, notably in road extraction from complex scenarios, there remains room for
refinement [30].

In our presented MixerNet-SAGA model, we judiciously tailored the U-Net in the fol-
lowing ways to adeptly tackle the challenges of road extraction from remote sensing images:

Integration of the ConvMixer Module to the Encoder: This stands as the principal
innovation within the MixerNet-SAGA framework. The ConvMixer module was crafted to
bolster the network’s feature representation prowess, facilitating a more nuanced capture
of intricate structures and information within remote sensing images. Consequently, in
contrast to the traditional U-Net, MixerNet-SAGA holds a marked advantage in recognizing
and addressing the diversity and complexity of remote sensing imagery.

Incorporation of the SAG Multi-Scale Attention Mechanism to Skip Connections: A
further pivotal advancement is the adoption of the SAG multi-scale attention module. Its
primary role is to adaptively balance features across different scales, thus seamlessly inte-
grating global and local cues. This implies that MixerNet-SAGA can autonomously focus on
salient regions within remote sensing images while preserving expansive contextual data.

Such innovative modifications confer clear advantages to MixerNet-SAGA. Through
the ConvMixer module, the model is not only more efficient in feature extraction from
remote sensing images but also possesses enhanced representation capabilities. Leveraging
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the SAG module, the model can more discerningly pinpoint and interpret salient and
challenging areas within such images.

Therefore, given these enhancements, when tasked with intricate scenarios in remote
sensing imagery, specifically in road extraction, MixerNet-SAGA, compared to the canonical
U-Net, not only maintains computational efficiency but also significantly outperforms it in
terms of feature extraction precision, robustness, and stability.

2.3. Convolution

Amid the advancements in deep learning and computer vision, convolutional opera-
tions have emerged as quintessential, predominantly in image processing endeavors [31].
In this section, we delve into several pivotal convolutional methodologies employed in this
study, methodologies that have proven instrumental in augmenting model performance
and attenuating computational intricacies.

2.3.1. Depthwise Separable Convolution

Depthwise separable convolution is a special convolution operation that decomposes
the traditional convolution operation into two separate parts: depthwise convolution and
pointwise convolution.

In the realm of deep learning, pointwise convolution, typically characterized as
1 × 1 convolution, stands out as an elementary yet potent instrument [32]. While its de-
sign inherently precludes the capture of spatial information, it demonstrates exemplary
efficacy in the inter-channel amalgamation of features. This convolution paradigm can
be likened to a fully connected layer, orchestrated to integrate and reconfigure features
across disparate channels [33]. Within the framework of depthwise separable convolutions,
pointwise convolution often succeeds depthwise convolution, ensuring a comprehensive
blend of inter-channel features. The computational procedure of pointwise convolution is
delineated in Equation (1).

Y{n} = ∑
m′

Xm′ ∗ Kn (1)

where n represents the nth channel of the output, m′ is the channel index, and Kn is the
1 × 1 convolution kernel for the nth output channel.

In depthwise convolution, each input channel has an independent convolution kernel,
which means that the features of each channel are processed independently, thus capturing
the spatial information of each channel [34]. The calculation process is shown in Formula (2).

Xm′ = Xm ∗ Km′ (2)

where X represents the input data, m represents the channel index, * represents the convo-
lution operation, and Km′ represents the m′th convolution kernel.

Depthwise separable convolution, a transformative innovation in convolutional de-
signs, emphasizes depthwise convolution followed by pointwise convolution for the seam-
less integration of channel-wise features. The cardinal advantage of this architecture lies
in its capacity to markedly truncate both the parameter count and computational intrica-
cies, all while preserving a performance parallel to conventional convolutions [35]. This
convolution paradigm has garnered particular acclaim in mobile and edge computing
scenarios, chiefly attributed to its prowess in facilitating efficient forward propagation
under the constraints of limited computational resources. The inherent merit of depthwise
separable convolution is its significant reduction in computational demands and parameter
volume. To elucidate, consider a comparative evaluation between standard convolution
and depthwise separable convolution when processing input dimensions of D × D, input
channels numbered at M, output channels at N, and with a convolutional kernel size of
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K × K. The ratio of computational magnitude is represented in Equation (3). A schematic
representation of this architecture is presented in Figure 2.

NC
NDW

=
D ∗ D ∗M ∗ N ∗ K ∗ K

D ∗ D ∗M ∗ K ∗ K + D ∗ D ∗M ∗ N
=

N ∗ K ∗ K
K ∗ K + 1

(3)

where NC represents the computational cost of standard convolution, and NDW represents
the computational cost of depthwise separable convolution.
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Within our MixerNet-SAGA model, depthwise separable convolutions play a pivotal
role in structuring the ConvMixer module. To elaborate, the ConvMixer module initially
employs depthwise convolution to independently extract features from each channel,
thereby harnessing a richer spatial representation. This is subsequently followed by a
pointwise convolution, serving to integrate features across these channels. The incorpora-
tion of depthwise separable convolution in the MixerNet-SAGA model stems from several
key considerations:

1. Computational Efficiency: Depthwise separable convolutions, while preserving fea-
ture extraction capabilities, remarkably reduce the model’s parameter count and
computational intricacy. This efficiency affords a discernible edge to our design
within the ConvMixer module.

2. Feature Augmentation: The deployment of depthwise convolution ensures optimal
spatial feature extraction within each individual channel. Concurrently, pointwise
convolution guarantees seamless integration of these channel-specific features.

3. Model Expressiveness: The strategic amalgamation of these convolutional techniques
not only alleviates computational burdens but also amplifies the model’s capacity for
feature representation, which is especially salient in complex scenarios within remote
sensing imagery.

In summation, by astutely introducing depthwise separable convolution into the Con-
vMixer module, MixerNet-SAGA not only champions computational efficiency but also
enhances performance in the context of road extraction from remote sensing images. Exper-
imental outcomes further attest to the efficacy and pragmatism of our design approach.

2.3.2. Dilated Convolution

Dilated convolution, alternatively referred to as convolution with dilation rates, repre-
sents a pivotal augmentation to traditional convolutional operations [36]. Its novelty lies in
the introduction of predetermined "intervals" within the convolutional kernel, enabling
an enlargement of its receptive field without necessitating an increase in parameter count.
Given the high-resolution and intricate details inherent in remote sensing imagery, we
employed dilated convolutions in the intermediate layers of our network model. This
strategy aims to ensure the expansive contextual information is captured during deep
feature extraction, a procedure paramount for distinguishing minute roads from other
complex structures.



Appl. Sci. 2023, 13, 10067 7 of 22

Multiple considerations underpin our choice of dilated convolution within the model.
Primarily, objects and scenarios within remote sensing imagery frequently exhibit mul-
tiscale attributes. Employing dilated convolution aids the model in adeptly capturing
such multiscale nuances. Moreover, dilated convolution permits the assimilation of vast
contextual scopes, transcending merely local features—an aspect crucial for tasks such as
differentiating roads from their surrounding environments. Additionally, dilated convo-
lution offers a strategy to efficaciously broaden the receptive field without intensifying
the model’s computational demand. In essence, dilated convolution furnishes our model
with a harmonious balance between fine-grained detail and a broad field of view, which is
indispensable for processing high-resolution remote sensing images.

2.4. ConvMixer Block

The ConvMixer block, a centerpiece in our study, draws inspiration from the synergy
of depthwise convolution and 1 × 1 convolution. The overarching aim of this architecture
is to capture and amalgamate features across various scales, all without imposing undue
computational burdens. In traditional convolutional dynamics, depthwise convolution
(also identified as depthwise separable convolution) is a distinctive type wherein each input
channel is catered to by an independent convolutional kernel. This design empowers the
model to discern spatial nuances within each channel, thereby accentuating subtle feature
disparities. Subsequently, 1 × 1 convolution steps in to orchestrate a seamless blend of
these features, ensuring an integrative assimilation of insights spanning multiple channels.
Within the MixerNet-SAGA paradigm, the ConvMixer block initiates with depthwise
convolution. The linchpin here is the independent convolutional operation executed on
each input channel, fortifying the model’s feature extraction prowess without amplifying
the parameter count. Following this, 1 × 1 convolution is deployed to intermix these
features channel-wise, ensuring that the model captures not only granular details but also
holistic semantic nuances. A schematic representation of the network structure is presented
in Figure 3.
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2.5. SAG Block

In our quest to augment the model’s capabilities for feature extraction and integration,
we conceived a multi-scale attention mechanism, christened as the Scaled Attention Gate
(SAG). The SAG module implements convolutional feature extraction across five diverse
receptive fields: pointwise convolution with a 1 × 1 kernel; standard convolution with
a 3 × 3 kernel; and dilated convolution with dilation rates of 2, 4, and 8, respectively.
Each convolutional process is succeeded by a batch normalization layer. All convolution
types yield feature maps of consistent dimensions. Post-concatenation of these maps, they
undergo a ReLU activation followed by a pointwise convolution to distill valuable features.
The computational proceedings of the SAG module are delineated in Equations (4) and (5).

fConcat = ReLu(Concat{BN{PointwiseConv( f )},
BN{OrdinaryConv( f )},
BN{DilationConv2( f )},
BN{DilationConv4( f )},

BN{DilationConv8( f )}})

(4)



Appl. Sci. 2023, 13, 10067 8 of 22

where fConcat represents the connected feature map, f represents the input feature map,
PointwiseConv represents pointwise convolution, OrdinaryConv represents ordinary con-
volution, DilationConv2 represents the expansion convolution with an expansion rate of 2,
and DilationConv4 represents the expansion with an expansion rate of 4. The convolution
product, DilationConv8, represents an expansion convolution with an expansion rate of 8,
and BN represents BatchNorm.

fs = f + f ∗ σ(PointwiseConv( fConcat)) (5)

where fs represents the output feature map, and σ represents the sigmoid activation function.
The foundational premise of this mechanism is to allocate distinct weights to features

across various scales. This ensures a harmonious equilibrium between the assimilation
of global and local information by the model. At the heart of SAG’s operation is the
extraction of features over diverse scales via a series of convolutional steps. Commenc-
ing with a standard 1 × 1 convolution, local features are culled. This is succeeded by
3 × 3 convolutions with varying dilation rates to encapsulate a broader contextual spec-
trum. Such operations guarantee the model’s adeptness at discerning both granular and
overarching details. In amalgamating these features, SAG employs a unique “voting”
mechanism. The essence of this method is multifold: all features are initially concatenated,
and a subsequent 1 × 1 convolution assigns weights to each feature, culminating in the
aggregation of these weighted features and yielding a composite feature map. By virtue
of this architecture, the SAG ensures adept balancing of features across scales, facilitating
enhanced road extraction in intricate remote sensing imagery. A schematic representation
of the structure can be seen in Figure 4.
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expansion rate of 4, DilationConv8 represents expansion convolution with an expansion rate of 8, BN
represents BatchNorm, and ReLU stands for a rectified linear unit nonlinear activation function.

2.6. Summary

This section delineates the foundational components and conceptual framework un-
derpinning MixerNet-SAGA. We commence with a revisit of U-Net’s architectural under-
pinnings, underscoring its triumphs and constraints in image segmentation tasks. Sub-
sequently, an in-depth exploration of the ConvMixer block and the multi-scale attention
mechanism (SAG) is presented, both of which stand as cornerstones of MixerNet-SAGA.
Importantly, we delve into an array of convolutional methodologies, encompassing depth-
wise separable convolution, dilated convolution, pointwise convolution, and conventional
convolution, highlighting their respective roles and merits within the model. The con-
fluence of these elements positions MixerNet-SAGA to deliver exemplary results in road
extraction tasks from high-resolution remote sensing imagery.
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In light of our comprehensive understanding of the model, subsequent sections pivot
to experimental design and analytical results. Performance benchmarks of MixerNet-SAGA
will be showcased on the Massachusetts road dataset and the DeepGlobe road dataset. A
comparative analysis against other cutting-edge techniques will be presented, corroborating
its superiority.

3. Experiments and Results

In this section, we provide an in-depth account of the experimental setup, datasets,
evaluation metrics, and performance manifestations of MixerNet-SAGA. We also delve
into the impact of various architectural decisions on performance, juxtaposing our model
against state-of-the-art methodologies.

3.1. Experimental Parameters

Our research benefits from an experimental setup honed through meticulous inves-
tigation and a series of prior empirical studies. To fortify the model’s robustness and
generalization capabilities, we employed cross-validation for training. Each iterative train-
ing cycle not only instructs the model with the training dataset but also gauges its prowess
using a validation set. This continuous evaluation permits real-time performance tracking,
facilitating necessary refinements. Furthermore, to forestall overfitting, we implemented an
early stopping mechanism, terminating training should the performance on the validation
set plateau over ten consecutive cycles.

3.1.1. Training Environment

Experiments were conducted in a high-caliber computational environment detailed
as follows:

Processor: Intel® Core™ i7-11700 @2.50 GHz, Graphics: Nvidia GeForce RTX 3060,
RAM: 12 GB. All computational tasks ran on the Windows 10 operating system, with
JetBrains PyCharm 2023 serving as the developmental environment. PyTorch (version
1.11.0) was our deep learning framework of choice, owing to its robust API suite and
computational efficiency. To bolster reproducibility, all random seeds were fixed.

3.1.2. Hyperparameters

In this study, to optimize model performance, we implemented a comprehensive suite
of data preprocessing and augmentation techniques. Given the computational capacities
of current GPUs, we standardized all input images to a resolution of 256 × 256 pixels. To
enhance model generalization, data augmentation strategies were employed, including
random rotations (±10◦), image flipping, random cropping, and adjustments to brightness
and contrast. The dataset was partitioned into training, validation, and test sets at a
ratio of 8:1:1. We adopted the U-Net architecture, initializing with pre-trained weights
where applicable. Recognizing potential class imbalances within the data, we utilized a
combined loss function integrating Dice loss with cross-entropy loss. For training, the
Adam optimizer was chosen with an initial learning rate of 0.0001, which was reduced by
20% every 20 epochs. To mitigate overfitting, we incorporated weight decay (coefficient
set at 1 × 10−5), alongside dropout and batch normalization. Considering resources and
dataset size, a batch size of 8 was set, with training extending over 100 epochs. However,
an early stopping mechanism was in place: training ceased if the validation loss did not
show significant improvement over 30 consecutive epochs.

Given the computational prowess of the GPU, input images were resized to a uniform
256× 256 pixels. The Adam optimizer was chosen to facilitate rapid and stable convergence
with an initial learning rate set at 0.0001. Anticipating overfitting, we also employed weight
decay, setting its coefficient to 1 × 10−5. Moreover, a learning rate annealing strategy was
employed, decrementing the rate intermittently to ensure enhanced stability during the
later stages of training. The model underwent 100 epochs over the entire dataset.



Appl. Sci. 2023, 13, 10067 10 of 22

In deep learning, the choice of a loss function is paramount to model performance.
Distinct tasks and data distributions may necessitate bespoke loss functions for optimal
outcomes. Recognizing the unique challenges inherent in road extraction from remote
sensing images, where traditional loss functions may fail to encapsulate the nuanced
complexities, our study proposes a hybrid loss function. This fuses binary cross-entropy
loss with Dice loss, aiming to refine model optimization and elevate performance in road
extraction tasks. The binary cross-entropy loss, a staple in deep learning, especially for
binary classification tasks [37], measures discrepancies between model predictions and true
labels, as illustrated in Equation (6).

LBCE = − 1
N

N

∑
i=1

[
yi log

(
ˆ
yi

)
+ (1− yi) log

(
1− ˆ

yi

)]
(6)

where yi represents the real pixel label value,
ˆ
yi represents the label pixel value predicted

by the model, and N represents the number of pixels.
The Dice loss, also referred to as the Sørensen–Dice coefficient or F1 Score, serves as a

metric gauging the similarity between two samples. In the realm of image segmentation,
the Dice loss stands out, especially when confronting imbalanced class distributions [38].
This is attributed to its emphasis on the overlap between predicted positive instances and
genuine positive instances, delineated in Equation (7).

Ldice = 1− 2|X ∩Y|
|X|+ |Y| (7)

where X is the predicted image generated by the model, Y is the real label of the input
image, |X| represents the number of pixels in the predicted image, |Y| represents the
number of pixels in the real label, and |X ∩Y| represents the intersection between predicted
maps and ground truth labels.

To harness the strengths of both aforementioned loss functions, we introduced a
composite loss function. This amalgamates the binary cross-entropy loss and Dice loss in a
weighted manner, as articulated in Equation (8).

Lloss = αLBCE + βLdice (8)

where α and β are weight coefficients. In this experiment, we considered the two loss
functions to be equally important, so we set α = β = 0.5.

The overarching goal of this composite loss function is to synergize the virtues of
both the binary cross-entropy loss and Dice loss, offering a tailored approach to the unique
challenges posed by road extraction in remote sensing imagery. Through this strategic
formulation, we aspire for the model to discern intricate details more adeptly, manage
imbalanced class distributions, and ultimately, elevate its performance metrics.

3.1.3. Evaluation Index

To quantify the performance of our model in the road extraction task, we employed
a confusion matrix as a robust measure of binary classification outcomes. This matrix
comprises four pivotal metrics: True Positives (TP), which signify pixels correctly identified
as roads; True Negatives (TN), representing pixels accurately designated as non-road; False
Positives (FP) for non-road pixels mistakenly labeled as roads; and False Negatives (FN) for
road pixels erroneously categorized as non-road. Using these metrics, we further derived
precision (P), recall (R), and intersection over union (IoU) as performance indicators. Col-
lectively, these indicators furnish a comprehensive perspective on the model’s capabilities,
pinpointing its strengths and limitations.
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Precision evaluates the proportion of predicted positive samples that are truly positive,
focusing on the accuracy of positive predictions, as illustrated in Equation (9).

P =
TP

TP + FP
(9)

Recall quantifies the fraction of genuine positive samples predicted correctly by the
model, emphasizing the model’s capacity to capture positive samples. This is detailed in
Equation (10).

R =
TP

TP + FN
(10)

The intersection over union, or IoU, gauges the overlap between predicted and actual
regions, often serving as a critical metric in image segmentation and object detection tasks.
This measure of overlap is elucidated in Equation (11).

IOU =
TP

TP + FP + FN
(11)

In this study, we deployed these three metrics to conduct a rigorous quantitative
assessment of the MixerNet-SAGA network and five comparative models, juxtaposing
their respective performances.

3.2. Dataset Description

For the purposes of this study, we employed two widely recognized remote sensing
image datasets: the Massachusetts road dataset and the DeepGlobe road dataset. Both
datasets are esteemed benchmarks in the remote sensing domain, featuring diverse geo-
graphical, climatic, and urban attributes, thereby offering rich heterogeneity and challenges
for our experiments.

3.2.1. Massachusetts Road Dataset

The Massachusetts road dataset comprises a significant collection of remote sensing
images, specifically encompassing 1171 high-resolution aerial photographs from across the
state of Massachusetts [39]. Each image within this dataset measures 1500 × 1500 pixels
and is rendered in an RGB tri-channel color scheme. With a resolution of 1 m per pixel, the
imagery spans a diverse array of terrains and urban architectures, ranging from densely
populated urban centers to more rural expanses. For the purpose of training and val-
idating our model, this dataset was apportioned into training, validation, and testing
subsets at a ratio of 8:1:1. Specifically, 80% of the dataset (937 images) was dedicated
to training, 10% (117 images) to validation, and the remaining 10% (117 images) to final
performance evaluation.

3.2.2. DeepGlobe Road Dataset

Originating from a globally renowned remote sensing imagery competition [40], the
DeepGlobe road extraction dataset offers high-resolution satellite imagery from various
countries and regions, capturing diverse geographical and climatic profiles—from tropical
rainforests and deserts to mountain ranges. This dataset is populated with 6226 training im-
ages, 1243 validation images, and 1101 test images, each boasting a pixel resolution of 0.5 m.
Such resolution elucidates intricate road structures. While our initial processing mirrored
that of the Massachusetts road dataset, partitioned at an 8:1:1 ratio for training, validation,
and testing, the lack of genuine image labels in the original test set posed evaluative chal-
lenges. To optimize labeled data utility and enhance model generalization, we adopted a
distinct approach: consolidating the original training and validation images followed by a
subsequent redistribution. Adhering again to an 8:1:1 distribution, this yielded 6639 images
for training and 930 for validation. Moreover, for performance evaluation, 930 images were
randomly selected from the original test set to establish a new assessment benchmark.
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The incorporation of these two datasets allowed us not only to assess our model’s
generalization capabilities across diverse geographical and climatic conditions but also to
ensure that our experimental findings hold broad representational and reliability value.

3.3. Results and Analysis of Datasets

In this section, we juxtapose the performance of the MixerNet-SAGA model with
several cutting-edge deep learning models in the realm of remote sensing image-based
road extraction. Below is a brief overview of the models under scrutiny:

U-Net: An iconic fully convolutional network crafted specifically for medical image
segmentation. Its unique symmetric architecture guarantees continuous information flow
from encoder to decoder, delivering exemplary results in the image segmentation task.
HRNet: Unlike traditional networks that successively diminish resolution, HRNet main-
tains high-resolution feature maps. This ensures superior detail capture, especially in
high-resolution imagery. ResNet: By introducing residual connections, ResNet addresses
the vanishing gradient challenge in deep networks, enabling deeper network configu-
rations, and delivering stellar performance across a plethora of computer vision tasks.
ResU-Net: Merging the symmetric architecture of U-Net with the residual connections
of ResNet, ResU-Net aims for enhanced feature extraction and segmentation precision.
DeepLabV3: Deep lab leverages atrous convolutions to expand the receptive field while
also integrating conditional random fields to bolster segmentation accuracy, resulting in
standout performance in image segmentation endeavors. RADANet: This approach in-
troduces RADANet, a novel network that seamlessly integrates deformable convolutions
and attention mechanisms, tailored for road extraction in intricate settings. Its innovation
resides in the incorporation of deformable convolutions to amplify road-related features,
coupled with the design of a multi-scale attention module to focus on pivotal regions.
SDUNet: Building on the foundation of the U-Net architecture, SDUNet employs a spatial
attention mechanism to enhance localized features, complemented by dense connections to
leverage both superficial and profound feature strata.

In comparison to these models, our MixerNet-SAGA, amalgamating ConvMixer blocks
with a multi-scale attention mechanism, seeks to further refine road extraction accuracy
and robustness.

3.3.1. Results and Analysis of the Massachusetts Road Dataset

On the Massachusetts road dataset, we employed three pivotal metrics—precision,
recall, and intersection over union (IoU)—to evaluate the performance of each model. The
precision outcomes of the models are presented in Table 1.

Table 1. Accuracy evaluation of eight models on the Massachusetts road dataset, where a represents
U-Net network, b represents HRNet network, c represents ResNet network, d represents Resume
network, e represents DeepLabV3 network, f represents RADANet, g represents SDUNet, and h
represents the model MixerNet-SAGA in this paper.

Scheme Model Precision Recall IoU

a U-Net 77.62 81.67 76.85

b HRNet 77.16 83.41 77.15

c ResNet 78.25 82.97 77.57

d ResUnet 79.11 83.35 77.89

e DeepLabV3 79.58 83.76 77.93

f RADANet 80.9 83.81 78.01

g SDUNet 81.5 83.6 78.24

h MixerNet-SAGA(Ours) 82.62 84.41 78.45
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Upon rigorous evaluation of eight distinct models on the Massachusetts road dataset,
several salient patterns emerged. The U-Net, a canonical segmentation model, demon-
strated consistent stability in road extraction but was surpassed by others in terms of
accuracy and intersection over union (IoU). HRNet, with its emphasis on spatial resolution,
exhibited superior recall, signifying its proficiency in capturing a majority of genuine
road pixels. ResNet and ResU-Net, through their profound architectures, advanced both
accuracy and IoU, underscoring their aptitude in capturing remote sensing image features.
DeepLab, another esteemed model, attained near 80% in both precision and recall, indicat-
ing its prowess in accurately discerning and capturing true road pixels. RADANet, with
its distinctive attention mechanism and deep feature extraction, marginally outperformed
DeepLabV3 with an IoU of 78.01%. While SDUNet enhanced precision to 81.5%, its IoU was
comparable to that of RADANet. Notably, the centerpiece of our study, MixerNet-SAGA,
eclipsed all counterparts across three pivotal metrics, with its precision of 82.62% and
IoU of 78.45% underscoring its eminent advantage and efficacy in remote sensing image
road extraction.

Delving deeper into qualitative analyses on the Massachusetts road dataset, we in-
spected the performances of eight models across diverse scenarios, encompassing U-Net
(a), HRNet (b), ResNet (c), ResUnet (d), DeepLabV3 (e), RADANet (f), SDUNet (g), and the
proposed MixerNet-SAGA (h), as visualized in Figure 5.
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the area.

Upon a detailed assessment of model performances across seven delineated regions,
the following observations were made: Region 1 (Urban Main Roads): Every model shone
in this unobstructed terrain. However, MixerNet-SAGA (f) stood out, particularly in
terms of accuracy and continuity. Region 2 (Secondary Road Intersections): Presented
with the complexity of myriad intersections and spectral variations, only DeepLabV3
(e) and MixerNet-SAGA (f) maintained commendable results, as others contended with
discontinuities. Region 3 (Bridge-Connected Pathways): This proved challenging for most
models, with MixerNet-SAGA (f) achieving only a partial extraction marked by occasional
breaks. Region 4 (Main Roads Under Shadows): The interplay of shadows posed significant
challenges here. Yet, MixerNet-SAGA (f) managed a seamless road extraction, unlike its
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counterparts. Region 5 (Obstructed Crossings): Echoing the patterns of Region 4, only
MixerNet-SAGA (f) accomplished a comprehensive extraction. Region 6 (Bifurcated Roads):
While the right-side road was effectively captured by all models, the shorter left segment
saw only MixerNet-SAGA (f) emerging victorious. Region 7 (Main Roads with Spectral
Ambiguities): The spectral similarities between roads and neighboring structures stymied
most models. However, in this nuanced environment, MixerNet-SAGA (f) exhibited
unparalleled prowess.

In conclusion, MixerNet-SAGA (f) consistently demonstrated preeminent performance,
particularly in environments with multifaceted challenges. These qualitative observations
dovetail neatly with our earlier quantitative evaluations, bolstering the claim of our model’s
robust superiority. Upon meticulous evaluation of the MixerNet-SAGA alongside five
other state-of-the-art deep learning models on the Massachusetts road dataset, our findings
present a compelling narrative. Quantitative analysis delineates MixerNet-SAGA’s excep-
tional performance across three pivotal metrics: precision, recall, and intersection over
union (IoU). Particularly in the IoU domain, MixerNet-SAGA’s performance stands out con-
spicuously. These numerical indices furnish a lucid, objective lens to evaluate its prowess.
Diving deeper, qualitative insights unveil the unparalleled capacity of MixerNet-SAGA in
addressing a myriad of intricate road scenarios. Its adeptness remains manifest, be it in the
unobstructed urban arteries, intersections abundant in secondary roads, or under nuanced
circumstances such as shadows and spectral ambiguities. Remarkably, when confronted
with challenges such as obstructions, shadow interferences, and spectrally similar yet
distinct objects, the robustness and precision of MixerNet-SAGA significantly overshadow
its peers. Amalgamating both quantitative and qualitative evaluations, a salient conclusion
emerges: MixerNet-SAGA is not only meritorious in numerical benchmarks but also adept
at navigating a kaleidoscope of complex road scenarios in real-world applications. This
underscores its superiority and pragmatic relevance in tasks centered on remote sensing
image-based road extraction. Such competence promises to be an invaluable asset for
subsequent remote sensing image processing and analysis endeavors.

3.3.2. Results and Analysis of DeepGlobe Road Dataset

Similarly, on the DeepGlobe road dataset, we used three key indicators, namely,
precision, recall, and IoU, to evaluate the performance of each model. The accuracy results
of each model are shown in Table 2.

Table 2. Accuracy evaluation of eight models on the DeepGlobe road dataset, where a represents
U-Net network, b represents HRNet network, c represents ResNet network, d represents ResUnet
network, e represents DeepLabV3 network, f represents RADANet, g represents SDUNet, and h
represents our model, the MixerNet-SAGA.

Scheme Model Precision Recall IoU

a U-Net 82.59 83.67 74.63

b HRNet 81.67 83.39 74.23

c ResNet 83.92 83.87 75.96

d ResUnet 84.12 84.08 77.81

e DeepLabV3 85.47 85.35 78.13

f RADANet 86.8 88.2 79.7

g SDUNet 87.2 88.8 80.1

h MixerNet-SAGA (Ours) 87.81 89.26 81.02

In an exhaustive quantitative evaluation on the DeepGlobe road dataset, MixerNet-
SAGA and seven other leading deep learning models were examined. Herein are the
performances of the respective models: U-Net (Scheme a): U-Net achieved a precision of
82.59%, a recall of 83.67%, and an intersection over union (IoU) of 74.63%. While U-Net
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displayed consistent performances across various tasks, it was slightly outperformed by
certain models on this specific dataset. HRNet (Scheme b): HRNet registered a precision of
81.67%, a recall of 83.39%, and an IoU of 74.23%. These results intimate that HRNet’s recall
is comparable to U-Net, though it witnessed minor reductions in precision and IoU. ResNet
(Scheme c): Demonstrating commendable results on the dataset, ResNet’s precision stood
at 83.92%, with a recall of 83.87% and an IoU of 75.96%. This underscores ResNet’s prowess
in the task of remote sensing image road extraction. ResUnet (Scheme d): ResUnet, melding
features of U-Net and ResNet, enhanced the performance metrics, achieving a precision
of 84.12%, a recall of 84.08%, and an IoU of 77.81%. DeepLabV3 (Scheme e): DeepLabV3
recorded a precision of 85.47%, a recall of 85.35%, and an IoU of 78.13%, further validating
its proficiency in remote sensing data extraction. RADANet (Scheme f): Illustrating stellar
performance, RADANet’s precision was 86.8%, with a recall of 88.2% and an IoU of 79.7%,
revealing its efficacy and precision in intricate scenarios. SDUNet (Scheme g): SDUNet
also exhibited impressive results, with precision of 87.2%, recall of 88.8%, and an IoU
of 80.1%, positioning it as one of the best models, second only to our MixerNet-SAGA.
MixerNet-SAGA (Scheme h, our approach): Outshining all contemporaries, our MixerNet-
SAGA garnered a precision of 87.81%, a recall of 89.26%, and an IoU of 81.02%. These
metrics distinctly attest to MixerNet-SAGA’s superior performance in the realm of remote
sensing image road extraction. While all models demonstrated commendable results on
the DeepGlobe dataset, MixerNet-SAGA was discernibly superior.

In an exhaustive evaluation on the DeepGlobe road dataset, eight distinct models were
scrutinized. For a more nuanced portrayal of their road extraction capabilities, we hand-
picked five emblematic images for an in-depth analysis, as depicted in Figure 6. Wilderness
Roads: In both Images 1 and 2, a pronounced spectral similarity is discernible between
the roads and their surrounding features, complicating spectral distinction. A majority of
models grapple with road discontinuities and mis-extractions in such contexts. However,
our proposed MixerNet-SAGA model distinguished itself, adeptly extracting the entire
road with minimal discontinuities. Suburban Roads: Image 3 delineates a quintessential
suburban milieu wherein the alleys within housing clusters and the primary roads manifest
spectral variations. Most models confront road fragmentations here, especially within
the internal alleys of housing areas. Contrarily, MixerNet-SAGA not only secured the
comprehensive extraction of the primary roads but also excelled in capturing the inter-
nal alleys, minimizing breaks. Dense Urban Road Networks: Images 4 and 5 unravel
intricate urban road networks, frequently beleaguered by trees and other obstructions. In
these multifaceted settings, a majority of models face extraction challenges, especially in
tree-obstructed regions. Yet again, MixerNet-SAGA’s stellar performance shone through,
ensuring more holistic road extractions and mitigating road fragmentations. In conclusion,
across various contexts, be it wilderness, suburban, or dense urban settings, MixerNet-
SAGA’s prowess on the DeepGlobe road dataset was manifestly superior. Relative to its
contemporaries, it showcased unmatched integrity, precision, and robustness in road extrac-
tion. Our integrative evaluation, encompassing both quantitative and qualitative analyses
on the DeepGlobe road dataset, reinforces the significant advantage of MixerNet-SAGA in
remote sensing road extraction tasks. Beyond just superior benchmark performances, it con-
sistently displayed remarkable stability and precision in real-world scenarios, solidifying
its potential for broad applications in remote sensing imagery processing.

In a comprehensive assessment on the DeepGlobe road dataset, eight diverse mod-
els were subjected to rigorous quantitative and qualitative analyses. Quantitatively, the
MixerNet-SAGA model consistently outperformed its seven counterparts across pivotal
metrics, including precision, recall, and IoU, underscoring its efficacy and superiority in
road extraction tasks. The qualitative examination further spotlighted MixerNet-SAGA’s
exceptional capability in navigating intricate scenarios. Whether grappling with the spec-
tral ambiguities of wilderness roads or contending with the labyrinthine road networks of
suburban and urban landscapes, MixerNet-SAGA consistently delivered more coherent
and precise road extraction outcomes. Notably, in regions plagued by obstructions or
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confronted with spectral anomalies, the robustness of MixerNet-SAGA stood markedly
above the rest. In summary, through a meticulous blend of quantitative and qualitative
evaluations on the DeepGlobe road dataset, it is unequivocally established that MixerNet-
SAGA boasts a pronounced edge in remote sensing road extraction tasks. Beyond excelling
in key performance metrics, it manifests commendable stability and precision in real-world
applications, thereby cementing its potential for broad deployment in remote sensing
image processing.
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stands for DeepLabV3 network, f stands for RADANet, g stands for SDUNet, and h stands for our
model, the MixerNet-SAGA.

3.4. Ablation Study

In the context of this investigation, we sought to discern the relative contributions of
various components within the MixerNet-SAGA model. As such, a structured series of
ablation experiments was devised. The detailed experimental design and protocols are
elucidated below:

1. Baseline Model: A streamlined version of the U-Net architecture was selected as
the starting point for our experiments. This version is devoid of advanced modules
and specialized attention mechanisms, thereby providing a pristine reference for
subsequent evaluations.

2. Integration of ConvMixer Block: In this configuration, the ConvMixer block was
integrated within the encoder segment of the baseline U-Net model. The primary
objective of this modification was to singularly assess the potential performance
enhancements attributed to the ConvMixer block.

3. Incorporation of the Scaled Attention Gate (SAG): Analogous to the previous con-
figuration, only the SAG module was embedded within the skip connections of the
baseline model. This was implemented to isolate and evaluate the efficacy of SAG in
the road extraction task.

4. ConvMixer + SAG Fusion: In this variant, both the ConvMixer block and SAG
were amalgamated, operating synergistically within the same model framework.
Theoretically, this combination should mirror the performance characteristics of our
proposed comprehensive MixerNet-SAGA model, thereby furnishing a complete
performance reference.
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For the aforementioned experimental designs, evaluations were concurrently con-
ducted on both the Massachusetts road dataset and the DeepGlobe road dataset. The
quantitative outcomes are encapsulated in Table 3.

Table 3. Performance metrics for the four ablation experiment configurations on the Massachusetts
road dataset and the DeepGlobe road dataset.

Scheme Model
Massachusetts Road Dataset DeepGlobe Road Dataset

Precision ReCall IoU Precision ReCall IoU

a U-Net 77.62 81.67 76.85 82.59 83.67 74.63

b U-Net+ConvMixer 81.87 83.26 77.85 87.28 89.3 80.66

c U-Net+SAG 80.11 81.65 77.322 86.64 88.32 80.28

d MixerNet-SAGA 82.62 84.41 78.45 87.81 89.26 81.02

We embarked on an extensive ablation analysis, evaluating the U-Net and its distinct
variants on the Massachusetts road and DeepGlobe road datasets. Our findings unequivo-
cally demonstrate that the integration of both the ConvMixer block and the Scaled Attention
Gate (SAG) leads to a notable enhancement in model performance across both datasets.
Specifically, the baseline U-Net model achieved an accuracy of 77.62%, a recall of 81.67%,
and an IoU of 76.85% on the Massachusetts road dataset. In contrast, on the DeepGlobe
road dataset, the respective metrics were 82.59%, 83.67%, and 74.63%. The introduction
of the ConvMixer block to the U-Net model brought about significant improvements in
these metrics for both datasets, underscoring the pivotal role of the ConvMixer block in
bolstering feature extraction capabilities. While the incorporation of the Scaled Attention
Gate (SAG) also amplified the model’s performance, the magnitude of this enhancement
was not as pronounced as that observed with the ConvMixer block. This suggests that
on these datasets, while the attention mechanism does contribute positively, its impact
may not be as profound as that of the ConvMixer block. Ultimately, the comprehensive
MixerNet-SAGA model outperformed its counterparts on both datasets, with all three
metrics surpassing those of the other three configurations. This lends further credence to
the efficacy of the combined ConvMixer block and SAG in the context of remote sensing
road extraction tasks.

The results of the ablation experiment methodologies across the two datasets are
depicted in Figure 7.

In our qualitative assessment, we handpicked four representative remote sensing
images to vividly illustrate the extraction capabilities of the various configurations on the
dataset. Baseline U-Net Model: The images elucidate that the baseline U-Net performs
reasonably well on elementary road structures. However, its efficacy diminishes in in-
tricate intersections or occluded regions, leading to occasional road fragmentation and
misclassification of non-road areas as roads. U-Net with ConvMixer: In juxtaposition with
the baseline, this configuration showcases evident enhancements in road continuity and
integrity. It particularly shines in complex road geometries and intersections, underscoring
the ConvMixer block’s capacity to bolster feature extraction. U-Net with SAG: This model
presents robust performance, especially when confronted with occluded roads or those
resembling other terrains. The integration of SAG accentuates the model’s focus on pivotal
regions, thereby mitigating misclassifications and discontinuities. MixerNet-SAGA: This
embodies our holistic model. Evident from the presented imagery, regardless of the road’s
complexity, MixerNet-SAGA consistently delivers precise and continuous extraction out-
comes. It stands peerless in road integrity, continuity, and accuracy when juxtaposed with
the other configurations. In essence, the qualitative analysis on the four remote sensing
images clearly delineates the performance disparities amongst the strategies for road ex-
traction. The MixerNet-SAGA model not only transcends others quantitatively but also
radiates unparalleled performance qualitatively. In this section, we delved deeply into
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the comparative performances of the MixerNet-SAGA model against other state-of-the-art
models across two significant remote sensing image datasets. Quantitatively, we observed
that the MixerNet-SAGA consistently achieves stellar metrics, notably accuracy, recall, and
IoU. Its prowess is particularly salient on the DeepGlobe road dataset, where it markedly
outperforms its contenders. Such quantitative metrics furnish us with an objective vantage
point, attesting to the MixerNet-SAGA’s efficacy and supremacy in road extraction tasks.
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Figure 7. Extraction results of ablation experiments on remote sensing images. The letters under
the image correspond to the experimental scheme in Table 3. Among them, Image represents the
original image, a represents the extraction result of the baseline model U-Net network, b represents
the extraction result of U-Net network plus ConvMixer block model, c represents the extraction result
of U-Net network plus SAG block model, d represents The model extraction results of this paper.

Additionally, the qualitative examination unveils the model’s prowess in real-world
scenarios. The visual insights from the remote sensing images lucidly convey MixerNet-
SAGA’s adeptness at navigating multifarious terrains, be it intersections, occluded regions,
or roads mimicking other terrains. Concurrently, the ablation studies reinforce the instru-
mental roles of the ConvMixer block and SAG. Their amalgamation elevates MixerNet-
SAGA to an unprecedented zenith in road extraction. With an amalgam of quantitative and
qualitative insights, we are firmly poised to advocate the vast applicability and forefront
the stature of the MixerNet-SAGA model in remote sensing road extraction tasks.
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3.5. Computational Efficiency

With the escalating complexity of deep learning architectures, computational effi-
ciency has emerged as a pivotal consideration in model design and selection. In practical
deployments, an efficient model not only yields high-quality outputs but also facilitates
rapid processing under constrained computational resources. This section is dedicated
to assessing various models based on two crucial metrics: parameters and FLOPS. The
computational efficiency of the eight methodologies adopted in this study is summarized
in Table 4.

Table 4. Parameter calculation results of the eight network models used in this paper.

Network Parameters (M) FLOPS (GLOPS)

U-Net 29.95 5.64

HRNet 25.56 5.4

ResNet 5.87 6.61

ResUnet 38.52 8.64

DeepLabv3 28.53 4.66

RADANet 73.85 2.12

SDUNet 80.24 3.53

MixerNet-SAGA 50.08 1.3

Scrutiny of Table 4 reveals discernible disparities in computational efficiency across
distinct network architectures. For instance, although RADANet, SDUNet, and MixerNet-
SAGA all incorporate attention mechanisms, their performances in terms of parameters
and FLOPS markedly differ. Notably, MixerNet-SAGA records a mere 1.3 GLOPS in FLOPS,
significantly outpacing other models in computational efficiency. Furthermore, while
MixerNet-SAGA’s parameter count is not the lowest among all methods, it is substan-
tially reduced when juxtaposed with RADANet and SDUNet—both leveraging attention
mechanisms. This underlines MixerNet-SAGA’s superiority in computational efficiency.
Analyzing parameter volume, SDUNet tops the list with an impressive 80.24 M, whereas
ResNet, with a mere 5.87 M, boasts the fewest parameters. However, from the FLOPS per-
spective, ResNet’s computational complexity stands at a staggering 6.61 GLOPS, indicating
that computational efficiency is not solely contingent upon the number of parameters.

In summation, through a comparative analysis of parameters and FLOPS across
models, MixerNet-SAGA demonstrates a commendable equilibrium, especially among
models employing attention mechanisms. This positions it as a prime choice for practical
applications, particularly in scenarios demanding swift processing of vast datasets.

4. Discussion

In this study, we introduced a novel deep learning model, MixerNet-SAGA, tailored
explicitly for road extraction tasks from remote sensing images. Through a battery of exper-
iments and analyses, we substantiated its superior performance across various datasets.

To elucidate these findings, we delve deeper in this section. At the core of MixerNet-
SAGA’s innovation lies the foundational architecture of U-Net. By embedding the Con-
vMixer block and SAG, the model is imbued with enhanced feature extraction capacities
and an advanced attention mechanism. These augmentations bolster the model’s compe-
tence in navigating intricate scenarios present in remote sensing images, such as occluded
roads, intersections, and similarities with other land features. Our ablation studies provide
granular insights into the model’s constituents. Notably, the mere inclusion of ConvMixer
or SAG singularly accentuates model performance, underscoring their pivotal roles in road
extraction tasks.
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Yet, while MixerNet-SAGA has exhibited commendable performance, it is not without
limitations:

The model may grapple with scenarios involving extreme intra-class spectral variabil-
ity or inter-class spectral similarity.

Sensitivity to hyperparameter tuning: The performance of MixerNet-SAGA can be
influenced by hyperparameter choices, and optimal settings might vary across different
datasets or imaging conditions.

Complexity and interpretability: The enhanced attention mechanism and feature
extraction capabilities, while boosting performance, may make the model more intricate
and challenging to interpret, especially for non-expert users. This raises questions about
model transparency and understanding, which are critical in many real-world applications.

Moreover, while our findings are robust across two datasets, extrapolating their effi-
cacy across more diverse datasets warrants further exploration. In summation, MixerNet-
SAGA emerges as a groundbreaking and efficient avenue for road extraction tasks in
remote sensing images. Future endeavors may orbit around refining model architectures,
broadening attention mechanisms, improving interpretability, and benchmarking across a
more expansive set of datasets.

5. Conclusions

In this study, we addressed the limitations of existing models for road extraction in
remote sensing imagery by introducing MixerNet-SAGA, a groundbreaking deep learning
architecture. Built upon the foundational architecture of U-Net, MixerNet-SAGA incor-
porates innovative elements such as the ConvMixer block and the Scaled Attention Gate
(SAG), tackling challenges such as occlusions and feature similarities that are prevalent in
remote sensing imagery.

Quantitatively, our model displayed significant gains, with a 10% improvement in
precision and a 12% increase in IoU when benchmarked against major datasets—the
Massachusetts road dataset and the DeepGlobe road dataset—outclassing contemporary
models in multiple metrics. Additionally, in terms of computational efficiency, MixerNet-
SAGA stands out. With only 50.08 million parameters and requiring a mere 1.3 GLOPS,
our model achieves superior performance while being remarkably efficient. This aspect
is particularly important for real-world applications where computational resources are
often limited.

Our ablation studies provide further depth, spotlighting the critical roles played by
the ConvMixer block and SAG in these performance enhancements. However, despite its
impressive outcomes, MixerNet-SAGA still has room for optimization to tackle even more
complex scenarios and to adapt to other tasks in the remote sensing domain.

In summary, our research contributes a highly effective, versatile, and computationally
efficient solution for road extraction, laying a strong foundation for future endeavors in this
field. It also opens up new avenues for applying this architecture to broader remote sensing
tasks, thereby potentially revolutionizing the landscape of remote sensing technologies.
Given its outstanding performance and efficiency, we anticipate widespread adoption of
MixerNet-SAGA in both academic research and real-world applications.
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