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Abstract: Laser-induced breakdown spectroscopy (LIBS) technology has the characteristics of small
sample demand, simple sample preparation, simultaneous measurement of multiple elements and
safety, which has great potential application in the rapid detection of coal quality. In this paper,
59 kinds of coal commonly used in Chinese power plants were tested by a lab-designed field-portable
laser-induced breakdown spectrometer. The data set division methods and the quantitative analysis
algorithm of ash content, volatile matter and calorific value of coal samples were carried out. The
accuracy and prediction accuracy of three kinds of dataset partitioning methods, random selection
(RS), Kennard–Stone (KS) and sample partitioning based on joint X-Y distances (SPXY), coupled
with three quantitative algorithms, partial least squares regression (PLS), support vector machine
regression (SVR) and random forest (RF), were compared and analyzed in this paper. The results
show that the model featuring SPXY combined with RF has the best prediction performance. The
R2 of ash content by the RF and SPXY method is 0.9843, the RMSEP of ash content is 1.3303 and
the mean relative error (MRE) is 7.47%. The R2 of volatile matter is 0.9801, RMSEP is 0.7843 and
MRE is 2.19%. The R2 of calorific value is 0.9844, RMSEP is 0.7324 and MRE is 2.27%. This study
demonstrates that the field-portable LIBS device combining appropriate chemometrics algorithms
has a wide application prospect in the rapid analysis of coal quality.

Keywords: laser-induced breakdown spectroscopy; portable device; coal quality analysis; data set
partitioning; PLSR; SVR; RF

1. Introduction

As one of the most widely used energy sources, coal has been known as “black gold”
and “industrial food” for a long time. Although the global environmental degradation
made the demand to reduce CO2 emissions from fossil fuel combustion more and more
urgent, coal still takes up a prominent role in global energy systems, and the switching from
a traditional energy system to a renewable one requires a long time and every government’s
effort in the world. At present, the practical way to reduce CO2 emission is improving
the combustion efficiency of boilers in power stations and other industrial plants. The
properties of coal, such as carbon content, ash content, volatile matter, and calorific value,
etc., have a close relationship with the safety and economy of boiler operation. Although
the traditional off-line analysis method has high analysis accuracy, it has the shortcomings
of tedious sample pretreatment, complex analysis procedure, long analysis time and the
poor timeliness of the detection results, which is not conducive to the real-time control and
optimization of the boiler combustion. Low combustion efficiency of the boiler leads to the
increase in cost of power generation and delayed guidance of the boiler unit, resulting in
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the energy waste. Therefore, the demand for the development of rapid detection technology
for on-site coal analysis is urgent to build an adaptation to the combustion instability and
parameter fluctuation caused by complex coal quality.

The routine coal quality analysis methods in a coal-fired power plant are based on
national standards of coal quality analysis, such as GB/T 213-2008 [1], GB/T 214-2007 [2]
and GB/T 30732-2014 [3], which require a long time and tedious procedure to obtain the
value of ash, volatile and calorific value for a single sample. The lag in test results makes
it impossible to guarantee real-time coal quality control and boiler efficiency adjustment.
Laser-induced breakdown spectroscopy (LIBS) [4] is a rapid spectral detection technology
developed rapidly in recent years, which has the advantages of small sample demand,
simple sample preparation, simultaneous measurement of multiple elements, and safety [5].
At present, it has been widely used in industrial analysis [6,7], environmental monitoring [8],
medical analysis [9], agriculture [10], etc., and its application potential in the rapid detection
of coal quality has been widely recognized. The working principle of LIBS follows: a high-
energy pulsed laser strikes the substance to be measured, causing high temperature and
high-density plasma formed on the sample surface. The laser plasma radiates photons of a
specific frequency that come from the characteristic spectral lines of elements that existed
in the coal constituent, whose frequency and intensity contain the information of element
type and concentration of the analyzed object. The spectral data coupled with a variety of
chemometrics algorithms can realize the qualitative and quantitative analysis of the sample.

In industrial production, the ash content, the volatile matter, and the calorific value
of coal are directly related to the pricing of coal, the efficiency of power generation and
the slagging of boilers. Therefore, the rapid detection of these three indicators is the most
concerned issue in on-site detection. Coal ash content is mainly composed of minerals,
usually in the form of oxides, such as Al2O3, SiO2, Na2O, K2O, CaO, MgO and Fe2O3. The
volatile matter of coal is mainly from water, carbon, hydrogen oxides, hydrocarbons, and
some easily ionized mineral decomposition, like Si, Al, Ca, Fe, Mg, etc. Calorific value
is closely related to the concentration of elements releasing heat during coal combustion,
especially C, H, O, N and other elements. All in all, these three indicators are all related to
the elemental constituent of coal. Given the advantages of LIBS in elemental measurement,
many scholars have carried out the research on the application of LIBS technology in coal
quality analysis and have achieved certain results [11–14]. To improve the accuracy and
precision of the LIBS system in coal analysis, great efforts mainly focus on the experimental
apparatus setup [15,16] and calibration model improvement [17,18] to enhance the spectral
signal-to-noise ratio and obtain better analysis results [19].

In this study, 59 commonly used coal samples in China power plants were tested by a
lab-made field-portable LIBS instrument and the quantitative analysis of ash content, volatile
matter and calorific value was carried out by three chemometrics models [20,21]: partial least
square regression (PLSR) [22,23], supported vector regression (SVR) [24,25], and random forest
(RF) [14]. Necessary data pretreatment and data partitioning methods were also established.
The performances of the three calibration models were evaluated and further discussed.

2. Materials and Methods
2.1. Instrumentation

The field-portable laser-induced breakdown spectrometer used in this study was
design and assembled in our lab. It mainly includes the following: (1) an 8-channel optical
fiber spectrometer: Avantes-Mini2048CL spectrometer (200~1100 nm) with the spectral
resolution better than 0.1 nm; (2) compact Nd: YAG pulse laser (1064 nm, pulse width
≤8 ns, maximum pulse energy 80 mJ); (3) power supply system: 24 V 20 Ah lithium battery
and 220 V AC switchable to meet the needs of field testing; (4) optical coupling device;
(5) the sample holder with a 32 mm circular groove is used to carry a 30 mm pulverized
coal tablet, and the sample table can be rotated along the designated diameter according to
a preset speed to achieve multiple tests of the same sample. The whole system weighs less
than 10 kg and is easy to carry for field tests.
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2.2. Coal Samples

Fifty-nine coal samples commonly used in power plants were selected as test samples,
with ash content ranging from 5.36% to 55.54%, volatile content ranging from 16.96% to
39.12%, and calorific value ranging from 12.34 to 27.95 MJ/kg. The coal samples were
ground into pulverized coal with a particle size of 200 µm. Then, 3 g of pulverized coal
was put into an aluminum mold with a diameter of 30 mm and pressed into a pellet under
pressure of 30 MPa. For each coal sample, 60 spectra were recorded which were averaged
as the original spectral data of the sample shown in Figure 1.
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Figure 1. The laser-induced breakdown spectrum of coal sample.

2.3. Spectral Line Selection

Coal ash is the residue left after the high temperature burning of coal, which is mainly
composed of minerals, usually in the form of metal oxides and a small amount of sulfo-
compound, such as Al2O3, SiO2, Na2O, K2O, CaO, MgO, Fe2O3, etc. The volatile content of
coal is mainly composed of carbon, water, hydrocarbons, and Si, Al, Ca, Fe, Mg and other
easily ionized metals. The calorific value is closely related to the content of elements that
releases heat during coal combustion, especially C, H, O, and inorganic substances and
major elements in ash also have a certain impact on the prediction of calorific value. So, the
spectral line intensity of C, H, O, Si, Al, Fe, Na, Mg, K, Ca, Ti and Li elements is selected
for the quantitative analysis of the ash content, volatile matter and calorific value of coal
samples. Table 1 lists the main characteristic spectral lines of the elements in coal selected in
this study, using data from the NIST atomic spectrum database [26].

Table 1. Characteristic spectral lines selected for coal industry index analysis.

Element Wavelength/nm

C 247.8561
H 434.0462; 656.2819; 656.2852
O 407.5862; 441.4905; 777.1944; 777.5388
Si 288.1577
Al 308.2153; 309.2710; 394.4006; 396.1520
Mg 279.5528; 280.2704; 285.2127
Ca 315.8869; 317.9332; 393.3661; 396.8467; 422.6727
Fe 259.9396; 404.5813; 438.35449
K 766.4899; 769.8965
Ti 334.9405; 336.1227; 337.2798; 338.3769
Na 588.9950; 589.5924
Li 460.2898; 670.7775
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2.4. Data Partitioning Method

In quantitative analysis, the data set division of training set and testing set influences
model performance to some extent. Three partitioning methods, random selection (RS), KS
(Kennard–Stone) [27,28] and SPXY (sample partitioning based on joint X-Y distances) [29]
were utilized in this paper to compare the performance of the regression model.

The random selection method simply selects a certain number of samples as training
sets and the rest as the test set without considering the actual spectral values and physical
and chemical values. The key point of this method is to make the selected training samples
have overall representativeness. However, if the data set is unevenly distributed and the
sample size is small, the selected samples cannot represent the whole sample, which will
lead to poor performance of the trained model.

The KS method was proposed by R. W. Kennard and L. A. Tone, which calculates the
Euclidean distance between the samples, and samples with large spectral differences are
classified as the training set. The KS method ensures the uniformity of spatial distance
distribution between selected samples. The samples selected by KS method have good
uniformity in spatial distance distribution, which can guarantee the performance of the
model. The Euclidean distance dxy(p, q) between dx(p, q) and dy(p, q) is formulated as
shown in Equation (1),

dxy(p, q) =
√(

xp − xq
)2
+
(
yp − yq

)2 (1)

The SPXY method was first proposed by Galvao et al. and is developed on the basis
of the KS method, which considers both the spectral and physicochemical values when
calculating the Euclidean distance between samples. dx(p, q) and dy(p, q) are divided by
the maximum values of the data set maxp,q∈[1,N] in which they are located to ensure that
the samples have the same weight in x and y space. Then, the standardized xy distance
formula is as shown in Equation (2).

dxy(p, q) =

√(
xp − xq

)2

maxp,q∈[1,N]dx(p, q)
+

√(
yp − yq

)2

maxp,q∈[1,N]dy(p, q)
(2)

The advantage of the SPXY method lies in the ability to effectively cover the multidi-
mensional vector space, thus improving the predictive ability of the trained model.

In general, the number of training samples and testing samples should be appropriate
to both guarantee enough training without either overtraining or undertraining and good
prediction performance and the reliability of the model. From an empirical point of view,
the overall 59 samples were divided into a training set and testing set according to the ratio
of 7:3: namely, 41 samples are selected as the training set and the remaining 18 samples are
used as the testing set. In this paper, the influence of three partitioning methods, RS, KS
and SPXY, on the performance of the quantitative mode was studied.

2.5. Quantitative Algorithms

In this paper, partial least squares regression (PLSR), support vector machine regres-
sion (SVR) and random forest (RF) modeling algorithms are mainly used to establish the
corresponding quantitative model. The linear model PLSR is the most commonly used
modeling method in quantitative analysis of LIBS, while nonlinear models such as SVR
and RF usually have better performance in data mining. It can be seen from the existing
work of relevant researchers that the models established by these algorithms have good
performance. Therefore, this paper chooses these three methods to model and compares
the advantages and disadvantages of each model, so as to choose a better model.

The following parameters are used to evaluate the performance of each model: (1) fit-
ting degree (R2), (2) root mean square error of calibration (RMSEC), (3) root mean square
error of prediction (RMSEP), (4) mean absolute error (MAE), and (5) mean relative error
(MRE). R2 represents the linear relationship between the reference value of the index and
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the predicted value of the model. The closer R2 is to 1, the higher the correlation between
the spectral signal and the index content, and the more significant the regression effect.
R2 > 0.7 indicates that the data are reliably represented; R2 > 0.9, indicating a good fitting
effect. RMSEC and RMSEP are used to measure the deviation between the index reference
value and the predicted value of the model, which is to evaluate the performance of the
model from the perspective of collation. MAE and MRE represent the mean value of abso-
lute error and the mean value of relative error between the predicted value of the model
and the reference value, respectively, which are used to evaluate the accuracy of model
prediction from a single measurement. The smaller the four values above, the better the
prediction performance of the model.

The above evaluation indexes are defined as

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (3)

RMSEC =

√
∑n

i=1(yi − ŷi)
2

n
(4)

RMSEP =

√
∑nP

i=1(yi − ŷi)
2

nP
(5)

MAE =
1
n∑n

i=1|yi − ŷi| (6)

MRE =
1
n∑n

i=1
|yi − ŷi|

yi
(7)

where yi is the true value, ŷi is the predicted value, yi is the mean of the sample true value,
n is the number of training samples, and nP is the number of testing samples.

3. Results and Discussion
3.1. Predicted Results of PLSR

The principle of PLSR is to build a linear regression model between the input and
output data by injecting the input data into a new space, which takes advantage of the
multiple linear regression analysis, principal component analysis, and typical correlation
analysis. Generally, full spectrum data or partial spectral band data can be used as the
input variables of the PLSR model. Full spectrum data contain a great mass of information,
but there are also a lot of noise data, leading to the increased iteration time. In order to
reduce the interference of irrelevant information and improve the iteration efficiency, the
band spectral data containing the main characteristic spectral lines of the index-related
elements are chosen as the input variables of the PLSR model shown in Table 2.

Table 2. Input variables of PLSR.

Industrial Index Elements Input Variables

Ash content
Si, Al, Mg, K,
Ti, Fe, Na, Ca,
Li

287.917~288.505; 308.055~308.615; 308.845~309.827; 394.060~394.714;
395.448~396.508; 279.268~279.683; 765.247~766.938; 768.723~770.204;
335.712~336.326; 438.056~438.580; 588.252~590.309; 392.915~393.815;
396.508~397.483; 422.186~423.116; 669.629~671.148

Volatile matter C, CN, H, O,
Al, Mg, Ca, Fe

247.332~248.302; 380.918~390.123; 648.881~661.868; 773.839~779.961;
394.060~394.714; 395.448~396.508; 279.268~279.683; 392.915~393.815;
396.508~397.483; 438.056~438.580

Calorific value
C, C2, CN, H,
O, Al, Mg, Ca,
Fe, Si

247.332~248.302; 470.238~473.889; 380.918~390.123; 432.243~432.850;
648.881~661.868; 406.911~408.268; 441.046~441.939; 773.839~779.961;
394.060~394.714; 395.448~396.508; 279.268~279.683; 392.915~393.815;
396.508~397.483; 422.186~423.116; 438.056~438.580; 287.917~288.505
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The number of principal components of the PLSR model was determined by the
remaining one cross-validation. The fitting prediction results of the ash content model are
shown in Figure 2 and Table 3.
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based on (a1–a3) RS; (b1–b3) KS; (c1–c3) SPXY.

Table 3. The prediction results of PLSR model with different partitioning methods.

Index Partitioning
Method R2 RMSEC RMSEP MAE MRE

Ash
content

RS 0.9877 1.4037 4.4775 3.3863 0.1652
KS 0.9986 0.5169 3.8138 2.9159 0.1512

SPXY 0.9763 2.0126 2.5834 2.1780 0.1295

Volatile
matter

RS 0.9923 0.4046 2.3024 2.0693 0.0712
KS 0.9990 0.1657 1.4518 1.0799 0.0390

SPXY 0.9664 0.9170 1.6006 1.3498 0.0468

Calorific
value

RS 0.9942 0.2768 1.6967 1.3245 0.0598
KS 0.9904 0.3828 0.9514 0.8578 0.0377

SPXY 0.9946 0.2728 1.1139 0.8344 0.0350

It can be seen from Figure 3 and Table 3 that the prediction results of the PLSR model
with KS and SPXY partitioning methods are better than that with the RS method. It is easy
to understand that the data set samples selected by the random method make it difficult
to have a good overall representation, while the KS method and the SPXY method select
the samples with large spectral differences as the training set based on Euclidean distance
and leave the samples with small spectral differences as the test set, which is in essence to
perform like cluster analysis. In addition, the KS method is better than the SPXY method
in terms of volatile matter and calorific value prediction. The R2 of PLSR based on the KS
data set partitioning method of volatile matter is 0.9990, the RMSEP of the volatile matter
is 1.4518, the MRE is 3.90%, the R2 for calorific value regression is 0.9904, the RMSEP of the
heating value is 0.9514, and the MRE is 3.77%. However, for the ash content, the model
performs relatively poorly: the R2 is 0.9763, RMSEP is 2.5834 and MRE is 12.95%.
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3.2. Prediction Results of SVR

The ξ—SVR model using a Gaussian radial basis function (RBF) kernel was estab-
lished in this paper with parameters of penalty factor C, kernel function parameter g, and
parameter ξ controlling the number of support vectors. C and g greatly affect the accuracy
of the SVR model for coal quantitative analysis. The size of C represents the degree of
punishment to the sample when exceeding the empirical error. The larger the value C is,
the higher the degree of punishment will be. However, if the value of C is too large, the
overfitting state will occur. Whereas the too small value of C will lead to the underfitting
state. The size of g determines the feature space of kernel function and can be used to
characterize the complexity of the subspace distribution of sample data. If the value of g is
too small, the model will be relatively complex, and the generalization ability cannot be
guaranteed. If g is too large, the accuracy of the model is low.

Among the optimization algorithms of C and g, the particle swarm optimization
algorithm (PSO) does not need any derivative operation on the solution function and
can overcome the non-convergence problem of the traditional optimization algorithms
due to the ill condition or singular gradient matrix. Compared with other algorithms, a
particle swarm optimization algorithm retains the global search strategy for population,
and its unique memory enables it to dynamically track the current search situation and
adjust its search strategy. Since the velocity-displacement model adopted by the particle
swarm optimization algorithm is simple to operate, it is used in this paper to optimize
the parameters of the SVR model [30,31]. The initial parameters of the particle swarm
optimization algorithm were set as c1 = 1.5, c2 = 1.7, particle population as 20 and iteration
time as 100. Based on the input variables and the optimal model parameters sought by the
particle swarm optimization algorithm, the quantitative SVR model of ash content, volatile
matter and calorific value under different data set partitioning methods was established.
The results are shown in Figure 3 and Table 4.
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Table 4. The prediction results of the SVR model under different partitioning methods.

Index Partitioning
Method R2 RMSE RMSEP MAE MRE

Ash
content

RS 0.9998 0.1608 4.6499 3.9341 0.2465
KS 0.9981 0.6321 4.1393 3.2033 0.1655

SPXY 0.9955 0.8824 2.1142 1.8288 0.0982

Volatile
matter

RS 0.9999 0.0400 2.0314 1.3686 0.0577
KS 0.9999 0.0399 1.2928 0.9098 0.0321

SPXY 0.9999 0.0400 1.0895 0.8785 0.0327

Calorific
value

RS 0.9970 0.2029 1.5195 1.2466 0.0554
KS 0.9999 0.0400 1.1252 0.8818 0.0387

SPXY 0.9999 0.0397 1.2458 0.9676 0.0450

It can be seen from Figure 3 and Table 4 that the prediction results of the SVR model
with KS and SPXY partitioning methods are better than those with the RS method. The R2

of the SVR model based on the SPXY partitioning method of ash content is 0.9955, RMSEP
is 2.1142, and MRE is 9.82%. The R2 of the volatile matter is 0.9999, RMSEP is 1.0895 and
MRE is 2.19%, The R2 of the calorific value is 0.9999, RMSEP is 1.1252 and MRE is 3.87%.

3.3. Predicted Results of RF

Using the input variables listed in Table 3 and default parameters, the RF quantitative
models of ash content, volatile matter and calorific value under different data set partition-
ing methods were established. The predicted results of the RF model are shown in Figure 4
and Table 5.

Table 5. The prediction results of the RF model under different partitioning methods.

Index Partitioning
Method R2 RMSE RMSEP MAE MRE

Ash
content

RS 0.9861 1.7693 3.2348 2.4389 0.1348
KS 0.9886 1.6545 4.1274 3.1410 0.1585

SPXY 0.9843 1.9235 1.3303 1.1760 0.0747

Volatile
matter

RS 0.9818 0.8324 1.9561 1.4596 0.0515
KS 0.9813 0.8541 1.3220 0.9841 0.0354

SPXY 0.9801 0.9540 0.7843 0.6001 0.0219

Calorific
value

RS 0.9815 0.5646 1.8893 1.5568 0.0790
KS 0.9849 0.6379 1.0612 0.7843 0.0354

SPXY 0.9844 0.6381 0.7324 0.4941 0.0227

It can be seen from Figure 4 and Table 5 that the prediction result of the RF model
with the SPXY partitioning method is the best. The R2 of ash content is 0.9843, the RMSEP
is 1.3303 and the mean relative error (MRE) is 7.47%. The R2 of volatile matter is 0.9801,
RMSEP is 0.7843 and MRE is 2.19%; the R2 of calorific value is 0.9844, RMSEP is 0.7324 and
MRE is 2.27%.
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4. Conclusions

The rapid detection and quantitative analysis of coal quality can guide the adjustment
of boiler combustion conditions in real time, which is of great significance to promote
the clean and efficient utilization of coal and the energy conservation and CO2 emission
reduction in the thermal power industry. Laser-induced breakdown spectroscopy (LIBS)
technology has the characteristics of small sample demand, simple sample preparation, and
simultaneous measurement of multiple elements, which has great application potential in
the rapid analysis of coal quality. In this paper, the filed-portable laser-induced breakdown
spectrometer coupled with three chemometrics methods are used to quantitatively analyze
the ash content, volatile content and calorific value of coal commonly used in China power
plants. The LIBS data set partitioning methods, random selection (RS), Kennard–Stone (KS),
and sample partitioning based on joint X-Y distances (SPXY), and the quantitative models,
partial least square regression (PLSR), support vector regression (SVR) and random forest
(RF), were combined in this paper to establish the appropriate quantitative model for coal
industrial indicator prediction. The model performance and the prediction accuracy of the
methods are systematically analyzed and compared. The results show that SPXY data set
partitioning combined with the RF model has better prediction performance than that of
the PLSR and SVR models coupled with RS and KS methods. The R2 of ash content by the
RF and SPXY method is 0.9843, the RMSEP of ash content is 1.3303 and the mean relative
error is 7.47%. The R2 of volatile matter is 0.9801, RMSEP is 0.7843 and MRE is 2.19%. The
R2 of calorific value is 0.9844, RMSEP is 0.7324 and MRE is 2.27%. The study demonstrates
that laser breakdown spectroscopy (LIBS) coupled with the sample partitioning method
based on joint X-Y distances (SPXY) and random forest (RF) model could be a prosperous
way to attain the on-site quick analysis of the ash content, volatile and calorific value.
The field-portable laser-induced breakdown spectrometer used in this study coupled with
the chemometrics method can rapidly and simultaneously analyze the ash, volatile and
calorific value using a single instrument. The key point of the application of this method is
the effective data preprocessing and quantitative algorithm optimization which requires a
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large amount of sample testing and training. And the consistency of the sample surface
also influences the predicting result, which makes it necessary to keep the surface smooth
and consistent for all samples during testing. On this basis, this technology can be used
as a real-time and rapid detection method for coal for a variety of occasions, such as coal
mines, coal transportation, coal enterprises, etc.
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