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Abstract: The development of optical sensors, especially with regard to the improved resolution
of cameras, has made optical techniques more applicable in medicine and live animal research.
Research efforts focus on image signal acquisition, scattering de-blur for acquired images, and the
development of image reconstruction algorithms. Rapidly evolving artificial intelligence has enabled
the development of techniques for de-blurring and estimating the depth of light-absorbing structures
in biological tissues. Although the feasibility of applying deep learning to overcome these problems
has been demonstrated in previous studies, limitations still exist in terms of de-blurring capabilities
on complex structures and the heterogeneity of turbid medium, as well as the limit of accurate
estimation of the depth of absorptive structures in biological tissues (shallower than 15.0 mm). These
problems are related to the absorption structure’s complexity, the biological tissue’s heterogeneity, the
training data, and the neural network model itself. This study thoroughly explores how to generate
training and testing datasets on different deep learning models to find the model with the best
performance. The results of the de-blurred image show that the Attention Res-UNet model has the
best de-blurring ability, with a correlation of more than 89% between the de-blurred image and the
original structure image. This result comes from adding the Attention gate and the Residual block to
the common U-net model structure. The results of the depth estimation show that the DenseNet169
model shows the ability to estimate depth with high accuracy beyond the limit of 20.0 mm. The
results of this study once again confirm the feasibility of applying deep learning in transmission
image processing to reconstruct clear images and obtain information on the absorbing structure inside
biological tissue. This allows the development of subsequent transillumination imaging studies in
biological tissues with greater heterogeneity and structural complexity.

Keywords: point spread function (PSF); de-blurring; scattering suppression; depth estimation;
Attention Res-Unet; DenseNet169; absorbing structure; turbid medium

1. Introduction

Optical imaging is crucial in biomedical research and diagnostics, bridging pre-clinical
and clinical applications. The potential of light, especially near-infrared light, for imaging
blood vessels on the skin surface and abnormal breast detection has been recognized in
studies focusing on bio-metric and medical applications [1–4]. The prospects for developing
non-invasive imaging devices based on near-infrared light are promising, offering advan-
tages such as the absence of ionizing radiation, cost-effectiveness compared to existing
methods, and suitability for further studies. However, transillumination images face strong
scattering challenges. Previous research focused on the suppression of scattering and the
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restoration of clear images from blurred images [5–12]. Optical computed tomography
(OCT) utilizing near-infrared light has been proposed and has shown satisfactory results
in small animal imaging [7]. Deep learning (CNN) and stacking methods were proposed
that were used to estimate the depth and de-blurring transillumination images of a turbid
medium [8–12]. The effectiveness of previous studies is limited to a depth of absorbing
structure shallower than 15.0 mm [10,12].

This study’s models are based on novel machine learning mechanisms that combine
different types of neural networks and sparse coding techniques to achieve high-quality
image super-resolution [13]. The proposed models are also capable of handling multimodal
and cross-domain image processing tasks, such as enhancing images from different sources
or modalities, transferring styles or attributes between images, or generating realistic im-
ages from sketches or text descriptions [14]. The proposed models are inspired by some
of the recent advances in machine learning algorithms and mechanisms for image pro-
cessing, as well as some of the applications of image processing techniques for machine
learning [15]. This study proposes new deep learning models to improve absorbing struc-
tures’ de-blurring and depth estimation. The following sections of this paper will provide
detailed information about the training dataset, the model employed for the de-blurring
and depth estimation of absorbing structures, the performance parameters of the training
process, and results and discussions concerning the de-blurring and depth estimation of
absorbing structures.

2. Materials and Methods
2.1. Data Preparation

The deep learning model requires numerous training pairs for optimal accuracy and
performance. The de-blurring process involved working with a carefully curated dataset
of blurred and original clear images. The corresponding depth labels associated with the
blurry images were used to train the depth estimation model. However, data collection
presented practical challenges in acquiring significant training pairs. The depth-dependent
point spread function (PSF), which characterizes light scattering in biological tissue at
different depths, was implemented to convolve the original clear images, generating the
desired blurred images to overcome this limitation.

Figure 1 shows the difference between fluorescent and transillumination images with
the assumption that the light diffused well in the absorbing object plan. In fluorescent imag-
ing, the light point source is placed inside the scattering medium, as shown in Figure 1a,
and the light distribution on the observing surface (dashed orange line) can be mathemati-
cally represented by Equation (1) [6]:

PSF(d, ρ) = C

(
µ′s + µa +

[
κd +

1√
ρ2 + d2

]
d√

ρ2 + d2

)(
exp[−κd

√
ρ2 + d2]√

ρ2 + d2

)
(1)

where k2
d = 3µa(µ′s + µa). C, µ′s, µa, and d represent the constants with respect to ρ and

d, the reduced scattering coefficient, the absorption coefficient, and the depth of the light
source, respectively.

In transillumination imaging, the light source is placed outside the scattering medium,
as shown in Figure 1b, and the light distribution on the observing surface (black line) is
a collection of the distribution of the light-missing points. The depth-dependent PSF is
derived from a light source, so we cannot apply it directly for transillumination imaging.
To make the PSF applicable, we invert the distribution of the light-missing point (black
line) to have the distribution the same as the distribution of light in fluorescent imaging
(dashed orange line), as shown in Figure 1b.
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Figure 1. The intensity distribution at the medium surface in fluorescent (a) and transillumination
(b) imaging.

The effectiveness of this approach was rigorously evaluated through comprehensive
simulations and experimental validations [7,10,12]. Convolution images of the original
structures with depth-dependent point spread functions were used at different depths to
generate the data in this study, as described in Equation (2) and Figure 2.

y = h⊗ x (2)

where ⊗ denotes convolution operation.

Figure 2. Blurred image generation process.

In this study, the original structure images are images obtained from the image of
12 randomized structures in a transparent medium. These pre-blurred images are specifi-
cally designed to emulate the intricate structural characteristics of blood vessels beneath the
skin. The blurred images were generated by convoluting the original structures with the
PSF given by Equation (1) at different depths with the parameter values of µ′s = 1.0 mm−1

and µa = 0.00536 mm−1. These parameters were used in all simulations described here-
inafter. These coefficients are pivotal in understanding light–tissue interactions, particularly
in optical imaging and spectroscopy. µ′s signifies the extent of light scattering as it traverses
tissue, indicating the likelihood of scattering per unit path length. This is crucial because
of diverse tissue structures that cause light to scatter in various directions. µa gauges the
extent of light absorbed by tissue during propagation, closely related to light-absorbing
constituents such as hemoglobin, lipids, and water. Different tissues and substances possess
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varying absorption characteristics at different wavelengths. In the given context, specific µ′s
and µa values might be set to simulate tissue optical properties in a model. These values
depend on the type of tissue, the wavelength of light, and the experimental conditions.
Setting these values likely aims to ensure that simulations closely mimic real tissue optical
behavior under specific circumstances. Although the specific rationale hinges on precise
values, the choice of these parameters is vital to accurately model light–tissue interactions
and align simulation outcomes with experimental data.

In studies involving optical imaging and simulations of light propagation in biological
tissues, setting the values of µ′s (reduced scattering coefficient) and µa (absorption coeffi-
cient) is a critical step. Researchers usually consider the following factors when determining
µ′s and µ′a values:

• Empirical data: Experimental measurements of optical properties in specific tissue
types at various wavelengths can serve as a foundation for determining the appropri-
ate values. These measurements can come from the literature or new measurements
conducted by the researchers themselves.

• Literature references: Previous studies often report ranges or specific values of µs and
µa for similar tissue types. Researchers can use these references as a starting point and
adjust the values based on their experimental setup.

• Theoretical models: There are established theoretical models that relate optical prop-
erties to tissue composition and structure. Researchers can leverage these models to
estimate µs and µa based on the known components and concentrations in the tissue.

• Tissue variation: Different tissues exhibit different optical properties as a result of
variations in cellular composition, structure, and pigmentation. Consequently, the spe-
cific tissue under investigation must be carefully considered when selecting µs and µa
values.

• Wavelength Dependence: Optical properties can vary with the wavelengths of light.
Researchers may choose µs and µa values that align with the wavelength range used
in their experimental setup.

• Validation: Validating the chosen values involves comparing the simulation results
with actual experimental observations. If the simulated outcomes closely match the
experimental data, this provides confidence in the suitability of the parameter values.

• Sensitivity analysis: Researchers may conduct sensitivity analyses to assess how
changes in µs and µa impact simulation results. This analysis helps to determine
reasonable ranges for these parameters.

In essence, substantiating the selections of µs and µa values typically entails a combina-
tion of empirical data, theoretical frameworks, references from the literature, and validation
against experimental results. The specific strategy can be flexible to existing resources,
unique tissue attributes, and the specific objectives of the experiment.

For the de-blurring study, a comprehensive dataset consisting of 8000 pairs of clear
and blurred images was generated by convoluting 10 of 12 original structures with the
PSF given by Equation (1) at depths ranging from 0.1 to 20.0 mm (interval 0.1 mm) and
then rotating at four different angles, as illustrated in Table 1. The remaining 2 of the
12 original structures were used to generate data for testing. During the training process
for de-blurring, the generated dataset was used to train the models with a batch size of 8.
The learning rate was set to 10−4, and the models were trained for 100 epochs.

For the depth estimation study, the corresponding depth labels associated with the
blurry images were used. A dataset of 70,400 images was generated that depicts the
absorbing structures within the scattering medium at different depths. The blurred images
in this dataset were generated by convoluting 11 of the 12 original structures with the PSF
given by Equation (1) at depths ranging from 0.5 to 20.0 mm (interval 0.5 mm) and then
rotating at 160 different angles, as illustrated in Table 1. The remaining original structure
was used to generate data to test the performance of the convolution neural network
models. During the depth estimation training process, the generated dataset was used to
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train the models with a batch size of 32. The learning rate was set to 10−4, and the models
were trained for 20 epochs.

Table 1. Dataset for training, validation, and testing of scattering de-blurring and depth estimation.

Model Training Validation Testing Total

De-blurred 5600 1600 800 8000
Estimate depth 56,320 14,080 7040 70,400

Training was carried out on a high-performance workstation that features two Intelr

Xeonr CPUs E5-2683 v4 with 64 GB of RAM. In addition, an NVIDIA Quadro K2200
graphics processing unit was used to accelerate the computational tasks involved in the
training process. The specific training parameters used, including batch size, learning rate,
and number of epochs, are provided in Table 2.

Table 2. Parameters for de-blurred and depth estimation models.

Parameters De-Blurred Depth Estimation

µ′s 1.0 mm−1 1.0 mm−1

µa 0.00536 mm−1 0.00536 mm−1

dmin–dmax 0.1–20.0 mm 0.5–20.0 mm
Step depth 0.1 mm 0.5 mm
Batch size 8 32

Learning rate 10−4 10−4

Epoch 100 20
Loss function Dice-coef loss Categorical Cross-entropy

Optimizer Adam Adam
Input shape 256 × 256 × 1 224 × 224 × 1

2.2. Image De-Blurring

Transillumination imaging techniques for visualizing absorbing structures within
the body often encounter blurring. While both scattering and absorption contribute to
image blurring, scattering plays a dominant role. Many research efforts have been made
to overcome this challenge. In the previous studies of the group, the suppression of
the scattering effects on the transillumination image was carried out by deconvolution
with the depth-dependent PSF, and the deep learning scatter blurring method has also
proved to be feasible and efficient [5–7,10,12]. However, these methods still have some
limitations in implementation, such as the imperfection of the deconvolution technique,
the long computation time, the computational hardware requirements, and the limitation
of effective de-blurring shallower than 15.0 mm. In the previous study, we employed fully
convolutional networks (FCN) based on the U-net with skip connections. The training
process for the scattering de-blurring model is visually represented in Figure 3, offering a
clear visualization of the methodology employed. The results show that we can obtain a
clear image of the absorbing structure as deep as several to 10.0 mm in a turbid medium.

To address this challenge, the Attention U-Net model and the Attention Res-UNet
model were incorporated for the de-blurring process [16,17]. The attention gate is a mecha-
nism that selectively emphasizes specific regions of interest while suppressing the activation
of irrelevant regions on a given input feature map X. To achieve this, the attention gate
takes advantage of a gating signal G ∈ RC′×H×W , which is obtained at a coarser scale and
incorporates contextual information. When additive attention is employed, the attention
gate calculates the gating coefficient. Initially, both the input X and the gating signal G
undergo linear mapping to a RF×H×W dimensional space. Subsequently, the output is
compressed in the channel domain to generate a spatial attention weight map S ∈ R1×H×W ,
as shown in Figure 4. The entire process can be formulated as described in Equation (3)
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and Equation (4) [18], where φ, φx, and φg are linear transformations implemented as
convolution 1× 1.

S = σ
(

ϕ
(
δ
(
φx(X) + φg(G)

)))
(3)

Y = SX (4)

Figure 3. De-blurring using a deep learning model: (a) training process with pair of images before
and after blurring, and (b) image de-blurring process.

1 
 

Figure4 
 
 

 

  Figure 4. The diagram of the attention gate.

Residual blocks, which are skip-connection blocks, are designed to learn residual
functions by referring to the layer input instead of learning unreferenced functions. These
blocks were originally introduced as a component of the Res-Net architecture. In a formal
sense, denoting the desired underlying mapping as H(x), the stacked non-linear layers aim
to approximate an additional mapping that captures the difference between the current
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output and the input, denoted as Equation (5). By explicitly modeling the residual mapping,
the network can effectively learn residual functions and enhance optimization.

F(x) := H(x)− x (5)

The original mapping is reformulated as F(x) + x, where F(x) + x represents a resid-
ual component, thus giving rise to the term “residual block H(x)”. The rationale behind this
approach lies in the observation that optimizing the residual mapping is often more feasible
than optimizing the original, unreferenced mapping. In certain cases, minimizing the
residual to approach zero can be simpler than fitting an identity mapping using a series of
non-linear layers. The network is better equipped to learn mappings that resemble identity
transformations by incorporating skip connections. The proposed framework encompasses
a novel deep learning architecture known as Res-UNet-a and a novel loss function based on
the Dice loss. Res-UNet-a combines a U-Net encoder/decoder backbone with residual con-
nections, Atrous convolutions, pyramid scene parsing pooling, and multitasking inference,
thus enhancing its capabilities for various image analysis tasks, as shown in Figure 5.

 

2 

Figure5 

 

  Figure 5. A diagram of the residual block.

2.3. Depth Estimation

In transillumination imaging, the extent of blurring depends on the depth of the
absorbing structure within the scattering medium, with an increase in depth resulting in a
progressively more blurred image. To estimate the depth of the absorbing structure, a convo-
lutional neural network (CNN) model is trained using generated blurred images. We used
Res-Net-based convolutional neural networks (CNN) in the previous study. The training
process for the depth estimation model is visually represented in Figure 6, which provides
a clear visualization of the methodology used. The results show that we can effectively esti-
mate the depth of the absorbing structure as deep as several to 10.0 mm in a turbid medium.
Four pre-trained models, namely Res-Net50, VGG-16, VGG-19, and Dense-Net169 [19,20],
were used for the depth estimation challenge. The images were paired with their respective
depth labels during the training phase. An estimate of the depth of the absorbing structure
was obtained by entering a blurred image into the CNN model. This process aligns with
the fundamental classification task within deep learning. To ensure consistency, the train-
ing performance settings described in Table 2 were applied in different models, taking
into account computational constraints and system compatibility. Figure 6 illustrates the
estimation procedure for the depth of the absorbing structure using the CNN model.
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Figure 6. Estimating depth of absorbing structure with deep learning model: (a) training process and
(b) depth estimating process.

3. Metrics

The Dice coefficient is widely used to assess the agreement at the pixel level between a
predicted segmentation and its corresponding ground truth. It quantifies the similarity by
calculating twice the area of overlap divided by the sum of the total number of pixels in
both images. Equation (6) expresses the Dice coefficient as [21]:

Dice-coef =
2× |X ∩Y|
|X|+ |Y| (6)

where X and Y represent the predicted set of pixels and the ground truth, respectively.
Moreover, the loss of the Dice coefficient is employed as a measure of dissimilarity

between the predicted and ground-truth segmentation. It is computed by subtracting
the Dice coefficient from 1. Equation (7) presents the formulation of the loss of the Dice
coefficient [21].

Dice-coef loss = 1− 2× |X ∩Y|
|X|+ |Y| (7)

The Intersection over Union (IoU) is commonly utilized as an evaluation metric for
object detection accuracy in the dataset by calculating the ratio of the overlap and the union
areas between the predicted and ground-truth regions. Equation (8) [22] represents the IoU
formula as:

IoU =
Area of overlap
Area of union

(8)

When developing a depth estimation model, accuracy is used as a classification
metric to measure the proportion of correctly predicted instances where the predicted
depth exceeds the actual depth. It provides insight into the model’s performance on the
dataset. The accuracy is computed by dividing the sum of the True Negatives (TN) and
True Positives (TP) by the total number of samples. Equation (9), illustrates the accuracy
formula [23]:

Accuracy =
TP + TN

total sample
(9)
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4. Results and Discussion
4.1. De-Blurring Image

The significant impact of the attention gate on the scattering de-blurring process is
demonstrated by the results presented in Figure 7. The images obtained with the Attention
Unet model (D) show higher clarity and fidelity than those obtained with the standard
U-Net architecture (C), as the attention mechanism effectively suppresses the scattering
influence and improves the image reconstruction of the absorbing structure. Quantitative
evaluation, as indicated by the Intersection Over Union (IoU) index, further supports
the superiority of the gating attention approach. The IoU index of 0.908 achieved when
using gating attention exceeds the IoU index of 0.831 obtained with the standard U-Net
architecture. This substantial improvement demonstrates the ability of the attention gate to
capture the relevant features better and reduce the impact of scattering, leading to more
accurate and precise de-blurring results.

 

3 

Figure7 
 
 

 

  Figure 7. Scattering de-blurring with and without attention gate: (A) transillumination image
through turbid medium, (B) image taken through clear water, (C) output image from U-Net model,
and (D) output image from Attention Unet model.

The effectiveness of the attention gate can be attributed to its ability to selectively focus
on informative regions and suppress the interference caused by scattering. By assigning
different attention weights to different parts of the image, the attention gate improves the
model’s capability to accurately capture and reconstruct the absorbing structure image, even
at greater depths. These findings highlight the potential of the attention gate in improving
the scattering de-blurring process. Incorporating the gating attention mechanism into the
U-Net architecture can significantly enhance the quality and reliability of de-blurred images,
particularly in scenarios with high levels of scattering. Further exploration and optimization
of the attention gate in various imaging applications hold promise for advancing the image
reconstruction and de-blurring field.

The effectiveness of the residual block in the scattering de-blurring process is illus-
trated by the results presented in Figure 8. The images obtained from the Res-UNet model
show a remarkable improvement in the de-blurring outcome compared to those obtained
from the U-Net model, as evidenced by the higher IoU index of 0.885. This indicates a
more accurate reconstruction of the original absorber image at a depth of 15 mm, even in
the presence of scattering and blurring effects. In contrast, the standard U-Net architec-
ture yields a slightly lower IoU index of 0.831, indicating a relatively inferior de-blurring
performance. The superior performance of the Residual U-Net model can be attributed
to the ability of residual blocks to facilitate the propagation of gradient information effec-
tively. By allowing for the direct flow of information through skip connections, residual
blocks enable the model to capture and restore important features of the absorbing image
more efficiently. Consequently, the Residual U-Net model exceeds the standard U-Net
architecture in mitigating the negative impact of scattering and achieves more accurate
de-blurring results. These findings demonstrate the significance of incorporating residual
blocks into deep learning models for scattering de-blurring tasks. The Residual U-net
model proves to be a promising approach for addressing challenges associated with image
blurring in the presence of scattering media. Further investigations and optimizations can
be conducted to enhance the performance of the Residual U-Net model and explore its
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potential applications in various imaging tasks, such as medical diagnostics and image
analysis in turbid environments.

 

4 

Figure8 
 
 

 
  Figure 8. Scattering de-blurring with and without residual block: (A) transillumination image

through turbid medium, (B) image taken through clear water, (C) output image from U-Net model,
and (D) output image from Residual Unet model.

The primary objective of this study was to obtain de-blurred images by effectively
compensating for scattering effects. To accomplish this, the models employed in this
approach included Attention U-Net and Attention Res-UNet. These models were trained
using a carefully curated input and output image pairs dataset. A combination of PSF
convolutions at different depths was used to train the Attention U-Net and Attention
Res-UNet networks for image de-blurring. This involved pairing the original images
with their corresponding blurred counterparts. This approach enabled the networks to
learn the intricate relationships between different depths and their corresponding blurred
representations, facilitating accurate image de-blurring.

In the statistics table of the Dice coefficient for the two models, Attention Unet and
Attention Res-UNet, as shown in Table 3, we can observe crucial information on the perfor-
mance of these models. The Attention Unet model achieved a minimum Dice coefficient
of 0.931 and a maximum of 0.999487, with a mean of 0.996319 and a median of 0.999195.
The variability in the performance of this model is represented by a standard deviation of
0.009583. Similarly, the Attention Res-UNet model exhibits comparable parameters, with a
minimum Dice coefficient of 0.930391 and a maximum of 0.999492. The mean and median
values for this model are 0.996443 and 0.999223, respectively. The performance variability
of the Attention Res-UNet model is gauged by a standard deviation of 0.009603. Overall,
both models demonstrate consistent performance with minimal variation across the Dice
coefficient values. This underscores the efficiency and general applicability of the models
in de-blurring absorption structures within a dispersed medium. Figure 9 provides a visual
representation of the process.

Table 3. Performance Comparison of Attention Unet and Attention Res-UNet Models based on Dice
Coefficient Statistics.

Model Minimum Maximum Mean Median Std

Attention Unet 0.931056 0.999487 0.996319 0.999195 0.009583
Attention Res-UNet 0.930391 0.999492 0.996443 0.999223 0.009603

Figure 10 illustrates a representative example of input and output images obtained
by scatter blurring at various depths, specifically 0.1, 5.0, 10.0, and 20.0 mm. In particular,
the corresponding correlation indices for these depths were reported as 0.9360, 0.9167,
0.9130, and 0.9059, respectively. These correlation indices served as valuable quantitative
indicators, providing insights into the level of agreement between the predicted de-blurred
output and the ground truth images.
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Figure 9. Training and validation for de-bluring process: (A,B) Attention U-Net, (C,D) Attention Res-
UNet.
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5 

Figure10 
 
 

 
Figure 10. Representative images demonstrating the de-blurring process at various depths:
(A) 0.1 mm, (B) 5 mm, (C) 10 mm, and (D) 20 mm.

Figure 11 illustrates the original and restored images of the absorbing structure after
applying the Attention U-Net and Attention Res-UNet models. Then, the correlation
coefficient is calculated. As the depth of the absorbing structure increases, the blurring effect
becomes more pronounced, leading to a rapid decline in the quality of the blurred image.
Furthermore, the reduction in training images significantly affects the correlation coefficient.

Figure 11. Correlation analysis between original and deblurred images with 256× 256 input im-
age size.
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The test results for the Attention U-Net model indicated that the correlation coefficient
exhibited a high value ranging from 0.9149 to 0.9013 for depths between 0.1 and 5.0 mm.
Beyond 5.0 mm, the correlation coefficient gradually decreased, reaching 0.8921 at a depth of
10.0 mm. Subsequently, for depths ranging from 10.1 to 20.0 mm, the correlation coefficient
rapidly decreased from 0.8918 to 0.8801 at a depth of 20.0 mm. In particular, the rate of
decrease in the correlation coefficient became more pronounced once the depth exceeded
10.1 mm.

Similarly, the Attention Res-UNet model yielded test results indicating a high cor-
relation coefficient ranging from 0.9308 to 0.9069 for depths between 0.1 and 5.0 mm.
Beyond 5.0 mm, the correlation coefficient gradually decreased, reaching 0.8845 at a depth
of 14.0 mm. In particular, for depths greater than 10.0 mm, the rate of decrease in the
correlation coefficient increased. Finally, for depths ranging from 14.1 to 20.0 mm, the cor-
relation coefficient exhibited a rapid decline from 0.8942 to 0.8876 at a depth of 20.0 mm.
Once again, the rate of decrease in the correlation coefficient decreased rapidly for depths
exceeding 14.1 mm.

In the subsequent experiment, the size of the training input image was modified from
256× 256 pixels to 112× 112 pixels while keeping the other training parameters in Table 2
unchanged. The results obtained from this adjustment are depicted in Figure 12.

Figure 12. Correlation analysis between original and deblurred images with 112× 112 input im-
age size.

The test results of the Attention U-Net model revealed that within the depth range
of 0.1 to 5.0 mm, the correlation coefficient initially reached a high value and gradually
decreased from 0.9186 to 0.8722. The highest correlation coefficient was achieved at a
depth of 0.1 mm, registering a value of 0.9186. As the depth increased from 5.1 to 10.0 mm,
the correlation coefficient experienced a gradual decrease, reaching 0.8184 at a depth of
10.0 mm. Subsequently, for depths ranging from 10.1 mm to 20.0 mm, the correlation
coefficient exhibited a rapid drop from 0.8172 to 0.6927 at a depth of 20.0 mm. Remarkably,
once the depth surpassed 7.0 mm, the rate of decline in the correlation coefficient with
respect to depth became more pronounced.

Similarly, the Attention Res-UNet model yielded noteworthy test results. At depths
ranging from 0.1 to 5.0 mm, the correlation coefficient reached a high value and gradually
decreased from 0.9337 to 0.9023. The highest correlation coefficient was observed at a
depth of 0.1 mm, yielding a value of 0.9337. For depths extending from 5.1 to 14.0 mm,
the correlation coefficient exhibited a gradual decrease from 0.9080 to 0.8736 at a depth of
14.0 mm. In particular, depths greater than 10.0 mm experienced an accelerated decline in
the correlation coefficient. Finally, within the depth range of 14.1 to 20.0 mm, the correlation
coefficient decreased rapidly from 0.8717 to 0.8539 at a depth of 20.0 mm. Once the depth
surpassed 11.6 mm, the rate of decrease in the correlation coefficient with respect to depth
decreased rapidly.



Appl. Sci. 2023, 13, 10047 14 of 21

For the Attention U-Net model, it was observed that at depths ranging from 0.1 to
0.5 mm, employing an input size of 112 × 112 pixels yielded better performance, with a
difference in the correlation coefficient ranging from 0.6% to 0.9%. On the contrary, at depths
ranging from 0.6 to 5.0 mm, adopting an input size of 256 × 256 pixels achieved superior
performance, exhibiting a difference in the correlation coefficient ranging from 0.02% to
3.08%. In particular, for depths ranging from 5.1 to 20.0 mm, the difference in performance
between the two input sizes increased rapidly, ranging from 3.35% to 20.91%.

For the Attention Res-Unet model, it was observed that at depths ranging from 0.1 to
0.9 mm, employing an input size of 112 × 112 pixels resulted in improved performance,
with a difference in the correlation coefficient ranging from 0.4% to 0.6%. On the other hand,
at depths ranging from 1.0 to 5.0 mm, adopting an input size of 256 × 256 pixels yielded
better performance, exhibiting a difference in the correlation coefficient index ranging from
0.15% to 0.75%. Furthermore, for depths ranging from 5.1 to 20.0 mm, the difference in
performance between the two input sizes increased rapidly, ranging from 0.7% to 3.55%.

The results show the impact of resizing the input training image from 256× 256 pixels
to 112× 112 pixels on the correlation coefficient at different depths. These findings demon-
strate the importance of optimizing the input image size to achieve optimal performance in
terms of the correlation coefficient at different depths, as shown in Figure 13. The observed
trends can be ascribed to the interplay of scattering phenomena and the depth of the
absorbing structure. With increasing depth, the scattering effects intensified, leading to
diminished correlation coefficients. Moreover, the selection of the input image size exerted
a notable influence on performance, primarily by affecting the model’s ability to capture
intricate features amidst scattering influences. In particular, the optimal input size exhibited
variability depending on depth, thus facilitating improved adaptability to varying degrees
of scattering. These discernments underscore the imperative of factoring in depth and input
size while addressing scattering-induced de-blurring tasks, thereby providing valuable
insights for optimizing model efficacy across diverse scenarios. Further studies could delve
into the intricate dynamics connecting depth, scattering effects, and input size, thereby
advancing the potential for refining the applicability and precision of de-blurring models.

The validity of the diffusion approximation is based on the condition that the thickness
of the scattering medium is significantly greater than the average free-path length of 1/µ′s.
Consequently, caution must be exercised when applying Equation (1) in cases where√

ρ2 + d2 is not greater than 1/µ′s. As shown in Figure 1, the observing plan is considered
to be significantly larger than the light distribution on the surface. Therefore, it is better to
generate an appropriate wide image for training to ensure a result with a deep-absorbing
structure. The light distribution on the surface has a Gaussian distribution shape. The image
size in a dimension should be more significant than three times the standard deviation of
the light distribution on the surface of the medium when calculating the deepest light point
source distribution by Equation (1) in the turbid medium, as shown in Figure 13.

1 

 

 
Figure 13. Optimizing input image size across various depths.
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4.2. Depth Estimation

Depth estimation is an essential task for analyzing the properties of absorption struc-
tures. This section presents a deep learning approach to estimate the depths of absorption
structures from their images. For this purpose, a dataset of 7040 images of absorption
structures, each labeled with one of 40 depth values ranging from 0.1 mm to 20 mm,
is used. Four state-of-the-art deep learning models, namely ResNet50, VGG16, VGG19,
and DenseNet169, are trained and evaluated in this dataset. Accuracy is the evaluation
metric that measures the percentage of images whose depth labels are correctly predicted
by the models. Table 4 shows the training and validation accuracy of each model after
20 epochs.

Table 4. The training and validation accuracy of each model after 20 epochs.

Model Training Accuracy Validation Accuracy

ResNet50 0.4312 0.3921
VGG16 0.5124 0.4678
VGG19 0.4894 0.4500

DenseNet169 0.7323 0.6250

Table 4 shows that DenseNet169 achieves the highest accuracy in both the training and
validation sets, followed by VGG16, VGG19, and ResNet50. All models perform better than
in previous experiments with a smaller dataset, indicating the positive impact of dataset
size and diversity on model performance. However, the accuracy of all models is still low,
indicating the difficulty of the depth estimation task. To further analyze the behavior of the
models, the accuracy curves of each model were plotted during training and validation,
as shown in Figure 14.

Figure 14. Accuracy evaluation of various models: ResNet50, VGG16, VGG19, and DenseNet169.

In Figure 14, the conspicuous features include low accuracy values and pronounced
fluctuations, indicating a struggle of the models to glean effective insights from the original
7040-image dataset. This conundrum can be attributed to the inherent complexity of the
dataset, characterized by an extensive array of depth classes (40) coupled with a limited
count of images per class (fewer than 176 images). Consequently, the models struggled to
discern nuanced differentiators across various depth levels, impairing their capacity for
comprehensive learning. The fluctuations in accuracy, evident in the jagged trajectory after
each epoch, underscored the models’ susceptibility to data fluctuations, amplifying the
instability quotient.

To improve the performance of the models, data augmentation techniques were
applied to increase the size and diversity of the dataset. Specifically, angle rotation was
used to generate new images from existing ones by randomized 160 different angles and
rotating them at angles between 0 and 360 degrees. This resulted in an augmented dataset
of 70,400 images (7040 × 10) with the same depth labels as before.

The decision to employ 160 different angles for image rotation during the data gen-
eration process in this study is purposeful and aligned with the goal of improving the
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robustness and generalization capabilities of the trained convolutional neural network
(CNN) models. This technique, commonly referred to as data augmentation, serves to
simulate varying viewpoints and orientations of the same scene or object, thereby aiding
the model in comprehending and identifying features from diverse angles. In the con-
text of estimating depth from blurred images of absorbing structures within a scattering
medium, the rationale behind incorporating image rotation at numerous angles can be
succinctly summarized:

• Increased variability: By generating images from multiple angles, the dataset gains
greater diversity. This variability acts as a defense against overfitting, ensuring that
the model learns broader transferable features instead of memorizing specific training
samples.

• Robustness to orientation: Real-world scenarios involve objects with varying orien-
tations. Training the model on images spanning different orientations enhances its
resilience to changes in object rotation.

• Feature extraction: Image rotation encourages the model to learn invariant features. It
requires the model to emphasize features consistent across orientations, thus aiding in
the extraction of pertinent and informative features for accurate depth estimation.

• Generalization: Exposure to an extensive array of angles equips the model with the
ability to generalize its insights to novel orientations during inference.

In essence, the choice of 160 different angles probably stems from a balance between
creating a suitably diverse dataset and managing the computational demands of training.
This numerical selection may have emerged through iterative experimentation and val-
idation, ensuring that the model benefits from enhanced diversity while maintaining a
manageable training process.

Using the augmented data set, the same models (ResNet50, VGG16, VGG19, and
DenseNet169) underwent rigorous training and evaluation. This assessment used a multi-
faceted set of evaluation metrics, encompassing accuracy, precision, recall, and F1 score,
as shown in Table 5. These metrics serve as vital indicators of the efficacy of the model
in distinct facets of the depth estimation task. These models were subjected to rigorous
training spanning 100 epochs, with a batch size of 20 and a learning rate set at 0.001. This
comprehensive evaluation regimen ensured meticulous scrutiny of the models’ competence
from various vantage points.

Table 5. Evaluation metrics of different models after 100 epochs on the augmented dataset.

Model Accuracy Precision Recall F1-Score

ResNet50 0.9212 0.9221 0.9212 0.9216
VGG16 0.9324 0.9338 0.9324 0.9331
VGG19 0.9294 0.9300 0.9294 0.9297

DenseNet169 0.9523 0.9535 0.9523 0.9529

From Table 5, it can be observed that:

• All models attained substantial scores across evaluation metrics, indicating proficient
performance in depth estimation.

• DenseNet169 secured the highest values in all metrics, followed by VGG16, VGG19,
and ResNet50.

• The models demonstrated consistent alignment between accuracy, precision, recall,
and F1 score, reflecting balanced performance in positive and negative classes.

• In particular, the application of angle rotation as an enhancement technique yielded
notable improvements in the evaluation metrics compared to the previous experiment
with the original dataset.

The progression of the training and testing process over 100 epochs is visually cap-
tured in the collection of four graphs shown in Figure 15. This visualization offers valuable
insights: ResNet50 illustrates a gradual and consistent increase in accuracy across epochs,
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albeit with a modest final value. On the contrary, VGG16 and VGG19 exhibit swift accu-
racy improvements in the initial epochs, followed by a more gradual enhancement rate.
In particular, DenseNet169 demonstrates a consistent and rapid accuracy advancement
throughout the epochs, culminating in a substantial final accuracy value. It is important to
note that all models exhibit diminished accuracy fluctuations after each epoch compared to
the earlier experiment, indicating an improved level of learning stability.

Figure 15. Accuracy curves of (A) ResNet50, (B) VGG16, (C) VGG19, and (D) DenseNet169 models.
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In terms of training accuracy, a rapid increase was observed from epochs 1 to 10, rising
from 0.4412 to 0.9055. Subsequently, the training accuracy continued to improve, but the
rate of increase decreased with each epoch. Over the next ten epochs, the training accuracy
increased by only 0.06, reaching 0.9645 by the 20th training session. The use of the expanded
training dataset of 70,400 images contributed to the improved accuracy of the DenseNet169
model. The model achieved an accuracy of more than 65%, indicating the importance
of this research and the generated dataset to estimate the depth of absorption structures
in near-infrared images. The slow increase in accuracy from the 10th training session
onward can be attributed to the challenge of extracting specific features for each class in the
classification model, which comprises 40 classes that represent different depths. Moreover,
the increasing blurring of images of absorbing structures at depths above 16.0 mm poses
difficulties in distinguishing the blurred images. Furthermore, Figure 16 illustrates the
results of the correlation analysis between the depth estimated by the CNN model and the
depth given during testing. As the depth increased, the estimation error also increased.
The experiment involved 8000 images at 20 depths ranging from 1.0 mm to 20.0 mm, with
40 images per depth for testing. The correlation coefficient was R2 = 0.9911, demonstrating
the feasibility of the CNN-DenseNet-169 model in estimating the depths from images of
absorbing structures.

Figure 16. Correlation Analysis of Given and Estimated Depths.

Figure 17 illustrates the workflow of the proposed method. First, the original image
was convolved with a point spread function (PSF) to simulate the blurring effect caused by
light scattering and absorption in biological tissue. This process yielded a blurred image
of the absorption structures. Second, the blurred image underwent de-blurring through
a fully convolutional network (FCN) model, which could have been either the Attention
UNet or the Attention Res-UNet, in order to recover the original image. Lastly, the blurred
image was subjected to decoding using a convolutional neural network (CNN) model to
estimate the depth of the absorption structures. In further studies, these results will be
optimized to reconstruct the 3D structure of biological tissue from a 2D image.
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Figure 17. Correlation analysis of given and estimated depths.

5. Conclusions

The de-blurring and estimation depths of the absorbing structure in transillumination
images taken through a turbid medium such as biological tissue have attracted significant
interest among researchers and experts in biomedical optics in recent years. This study
addresses the challenge of de-blurring and depth estimation in transillumination images
by utilizing the dependent point spread function (PSF) derived for the light source within
a scattering medium. The neural network (NN) technique is employed to find the deep
learning models capable of de-blurring the image and estimating the depth of the absorption
structure inside a turbid medium. The effectiveness of deep learning for de-blurring
transillumination images and also depth estimation has been successfully demonstrated
for depths ranging from 0.1 to 10.0 mm in previous studies. Although previous attempts
have been made to enhance blurred images, the technique proposed in this study offers
another solution.

The attention gate and the residual block were proposed to de-blur the image. At-
tention Unet and Residual Unet models were examined compared to the Unet model.
Attention UNet and Residual Unet models yielded better performance than the Unet model.
Attention Res-Unet then examined the performance compared to Attention Unet. Both the
Attention U-Net and Attention Res-UNet models achieved correlation coefficients exceed-
ing 88% even at a depth of 20.0 mm, affirming the applicability of deep learning models to
de-blur transillumination images. Finally, Attention Res-Unet shows better performance
in terms of the correlation between a de-blurred image and the original given image. The
impact of image size on the result was also investigated. To ensure a better result with a
deep-absorbing structure, the image size in a dimension should be more significant than
three times the standard deviation of the light distribution on the medium’s surface when
calculating the turbid medium’s deepest light point source distribution.

This study examined four different models, ResNet-50, VGG-16, VGG-19, and DenseNet-
169, to estimate the depth of the absorbing structure. DenseNet-169 demonstrates superior
performance among these models, achieving an accuracy rate greater than 65%. This
research and the generated dataset prove valuable in accurately estimating the depth of the
absorption structure from transillumination images. The evaluation of 1600 test images
at 40 different depths ranging from 0.5 mm to 20.0 mm yielded a correlation coefficient
of R2 = 0.9911, which affirms the feasibility of the DenseNet169 model in estimating the
depth of the absorbing structure.

It should be noted that this proposed technique requires a substantial amount of
training data and computational power. However, these challenges can be addressed
through the appropriate selection of PSFs and advances in computing capabilities. Conse-
quently, this study confirms the feasibility of deep learning in clarifying blurred images
and estimating the depth of absorption structures using PSF and CNN models based on
training data.
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The de-blurring and depth estimation results obtained for absorption structures at
depths from 0.1 to 20.0 mm are highly satisfactory. These findings indicate the usefulness
of the proposed methods for observing subcutaneous structures, identifying tumors and
small animal parts, and determining depth distributions up to 20.0 mm. In particular, this
technique is based solely on computer vision without complex exposure, ultrasound, or ad-
ditional substances. Therefore, it presents a novel tool for the diagnosis of dermatological
diseases, various tumor-associated diseases, vascular diseases, and tissue metabolism.

The results of this study contribute to the development of depth estimation and de-
blurring methods using deep learning models. Furthermore, merging two targets identified
by a single deep learning model will enable the definition of multiple depths within a single
image. To expand the model’s de-blurring and depth estimation capabilities, it is crucial
to increase the number of samples and pairs of images for the training data and expand
the depth range. These insights will facilitate the determination of actual dimensions and
image depths within the absorption structure for the development of applications using 2D
and 3D absorbing structure images in the near future.
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