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Abstract: With the increase in rooftop photovoltaic (PV) systems at the residential level, customers
owning such renewable resources can act as a source of generation for other consumers in the
same network. Peer-to-peer (P2P) energy trading refers to a local trading platform where the
residential customers having excess PV power (prosumers) can interact with their neighbors without
PV resources (customers) to improve the social welfare of society. However, the performance of a
P2P market depends on the power system network constraints and trading strategy adopted for
local energy trading. In this paper, we compare different trading strategies, i.e., the rule-based zero
intelligent (ZI) strategy and the preference-based game theory (GT) approaches, for a constrained
P2P platform. Quadratic trading loss and impedance-based network utilization fee models are
suggested to define the network constraints for the P2P system. Additionally, a reluctance-based
prosumer-sensitive model is developed to adjust the trading behavior of the participants under
the heavy distribution losses/network fee. The presented results show that the suggested trading
strategies enhanced the average welfare of the participants by approximately 17%. On average, the
customers saved about $33.77 monthly, whereas the average monthly earnings of the prosumers
were around $28.3. The ZI strategy enhanced the average monetary advantages of all the market
participants by an average of 7% for a system having small distribution losses and a network fee
as compared to the GT approach. Contrarily, for a system having high losses/a utilization fee, the
GT approach improved the average welfare of the prosumers by around 75% compared to the ZI
strategy. However, both trading strategies yielded competitive results compared to the traditional
market under the standard values of network coefficients.

Keywords: game theory; network constraints; P2P trading; photovoltaic solar energy; prosumer
sensitivity; trading strategies

1. Introduction

Deregulated structures offer a competitive market environment where participating
customers can interact autonomously to enhance their social welfare [1]. A peer-to-peer
(P2P) structure is a local competitive market framework where customers with surplus
energy produced by renewable power, such as photovoltaic (PV) solar or previously stored
in a battery energy storage system (BESS) can sell it to the other consumers in the same
network. These consumers with excess energy are known as prosumers in the P2P network.
The basic intuition of the P2P platform is to efficiently utilize the PV energy of prosumers
to improve the welfare of the P2P community. In traditional vertically aligned grids, the
excess PV power can only be shared with the grid, which results in a limited flexibility
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for the prosumers. However, with the advancements in smart grids, the prosumers can
interact with their neighbors to sell their PV energy at the desired price in the form of P2P
trading. The main advantages of a P2P market are competitive buying/selling rates and
increased flexibility for the market participants [2,3]. In P2P markets, prosumers can sell
their PV energy at a competitive price compared to a utility feed-in tariff (FIT), whereas
customers can meet their demand at a price that is lower than the utility price [4]. This sets
up a competitive trading environment, where the participants can get competitive rates
compared to the traditional market prices [5,6].

P2P markets can be set up using a centralized method, i.e., the energy transactions
are monitored by a central entity such as the market operator or an aggregator, or using a
decentralized method, i.e., the customers trade without any central operator overlooking
the transactions [7,8]. The formulation of the P2P network depends on the bidding strategy
used for the participants and the physical constraints of the network. The proper selection of
the trading strategy can ensure a positive welfare for the P2P market by giving additional
monetary advantages to the participants. Contrarily, if unaccounted for, the network
constraints of the system can impair the welfare of the market. Different methods have
been presented in the literature to model the behavior of such markets under the influence
of the physical constraints of the network [9].

The major challenge for P2P platforms is to decide the optimal type of trading strategy
based on the network parameters of the system. An improper selection of the bidding
framework can impair the performance of the P2P platform under varying network param-
eters [10]. In this paper, we provide a comparison of two different trading strategies for
the P2P platform while incorporating the network parameters and their impacts on the
social–economic welfare of the market. Additionally, the reluctance-based sensitivity of
prosumers towards the network parameters was developed to adjust the trading strategy
of the participants based on the system parameters.

1.1. Literature Review

A literature survey of the P2P platforms with various bidding methods has been
presented in this part of the introduction. Additionally, the importance of the network
constraints for P2P markets has been shown from the previous literature.

1.1.1. Trading Strategies for P2P Platforms

One of the main components of P2P trading is the type of trading mechanism used for
sharing PV energy between the prosumers and the customers. Different bidding strategies
have been presented in the literature for P2P trading. In [11], a continuous double auction
(CDA)-based market framework was formulated while using trading mechanisms such
as the eyes on best (EOB) price and the zero intelligent (ZI) strategy. A privacy-preserved
trading platform for the P2P market was developed in [12] for urban community microgrids
while using the CDA mechanism. The authors in [12] proposed a price-targeting mechanism
to maximize the profit of the participants in a decentralized manner. A nonuniform clearing
mechanism using the k-continuous double auctions for the CDA-based structures was
presented in [13] to optimally decide the clearing price based on the market behavior.
The presented modification to the CDA trading mechanism in [13] resulted in a market-
dependent clearing price to ensure maximum welfare for the customers. A robust trading
price mechanism that considered the preference of the prosumers was suggested in [14] to
develop the P2P structure within the microgrid. A dynamic price mechanism to find the
equilibrium point between the traded quantity and the buy/sell price has been suggested
in [15] for a smart community having renewable energy resources.

A blockchain-based implementation for the CDA markets was suggested in [16] using
a game theory (GT) approach to optimally decide the clearing price for the customers.
Similarly, the authors in [17] developed a decentralized GT pricing mechanism to solve
the P2P trading problem in an energy blockchain environment to optimize the welfare
of the prosumers in the microgrid. Various trading strategies such as uniform k-DA,
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discriminatory k-DA, Vickrey–Clark–Groves, and trade reduction auction mechanisms
were compared in [18] for solar-based P2P trading platforms. The authors in [18] compared
the bidding strategies under varying penetrations of PV energy resources for a suggested
transactive energy framework. A cooperative GT-based approach was presented in [19] for a
local energy community framework for maximizing the social welfare of both the customers
and prosumers. A dual bidding strategy considering both inter- and intracommunity
trading was suggested in [20] to enhance the economic welfare of the market participants
while considering the uncertainties in the renewable power generation.

The mentioned literature survey covers the most commonly used trading strategies for
the P2P platform. However, in the majority of the literature above, the network constraints
were not considered while modeling the P2P trading structure. The energy transactions
between the customers of a P2P market take place over the physical distribution lines of the
utility, which are prone to trading losses. Similarly, the majority of implementations of P2P
environments require a central entity to coordinate the transactions between participants.
This requires a certain transaction fee for each P2P order for the market services provided
by the market operator. The next part of the introduction provides an overview of the
various implementations of P2P networks while considering network parameters.

1.1.2. P2P Market with Network Constraints

Network constraints play a pivotal role in determining the performance of a P2P
market. The authors in [21] suggested network constraints for the P2P market in the
form of trading losses and a network utilization fee. However, their implementation was
limited to a social welfare maximization, and the individual welfare of each customer was
not modeled using the network parameters. A constrained CDA market was developed
in [22] for low-voltage (LV) networks using power factor distribution and loss factors for
the network. A distribution locational marginal pricing (DLMP)-based formulation for
the P2P networks was developed in [23] while developing the optimal-power-flow-based
formulation for the LV networks.

A similar formulation for the P2P markets using the DLMP approach was suggested
in [24] for a transactive energy framework for distribution networks. Trading losses have
been suggested for the auction-based markets using the Bayesian GT in [25] to model the
physical constraints for the P2P network. A DSO-based P2P market was formulated in [26]
to model the interactions between the participants using the reserve constraints for the
energy transactions. A congestion management for the LV P2P networks was suggested
in [27] using the marginal prices of the network. The formulation in [28] models the
individual behaviors of the market players of the P2P platform by using the user-centric
behavior models while developing the network constraints for the P2P market. However,
the implementation in [28] did not consider the optimal P2P clearance for the participants
and the sensitivity of the prosumers towards the network coefficients.

1.2. Research Gaps and Contributions

The welfare of a P2P network depends on the type of bidding strategy and the physical
parameters of the system. In a majority of the literature, (i) the network parameters are not
considered while comparing the bidding mechanisms for the P2P participants; (ii) different
trading strategies have not been explored while developing the constrained P2P markets;
and (iii) the sensitivity of the prosumers towards the network parameters have not been
discussed for modeling their trading behavior. Considering the mentioned research gaps,
the proposed contributions are as follows:

• We modeled the intermittent nature of the PV sources for P2P trading prosumers
using the fractional integral polynomial method;

• We compared different trading strategies, such as the rule-based ZI mechanism and
GT approach, for constrained CDA markets for trading the PV energy to analyze the
impact on the individual/social welfare;



Appl. Sci. 2023, 13, 10044 4 of 23

• We suggested quadratic trading loss and network-impedance-based utilization fee
models for the P2P markets to incorporate the network constraints;

• We designed a reluctance-based sensitivity model for the prosumers towards the
network constraints of the system to highlight the trading pattern of the participants
under heavy distribution losses/a network fee;

• We extended the P2P platform presented in [28] to incorporate the GT approach
while considering the preference of the individuals and a sensitivity analysis of
network parameters.

The remaining paper is organized as follows: Section 2 describes the system model for
the suggested P2P market. In Section 3, the details of the market structure are presented.
The results and analysis for the given test cases are discussed in Section 4. The findings of
this research are concluded in Section 5.

2. System Model

The suggested model simulates the P2P market over the duration of a single day that
is divided into Tn number of intervals of equal duration ∆ti. Additionally, the network
consists of P = {1, 2, 3, . . . p} sets of prosumers and C = {1, 2, 3, . . . c} sets of customers
trading with each other such that P ∩ C = ∅. Note that in all of our discussion, we refer to
customers as the participants that consume the PV energy of the prosumers.

The suggested framework consists of three stages, as shown in Figure 1. The first stage
collects the input data (i.e., the load profiles, PV curves of the prosumers, and day-ahead
market price). The second stage uses the data from the first stage to compute the winners
and the market price range for each time interval using the CDA market. The bid signals
refer to the price set up by the customers, whereas the ask values refer the market price set
up by the prosumer. Finally, in the third stage, the market operator determines the optimal
set of parameters (i.e., the optimal trading quantity and P2P price for the matched orders
using the trading approach).

Input Data

PV Power

Load Profile

Market Price
Initial Bids/Ask 

Signals

Market Stage
(Double Auction)

Winners

𝒑𝐦𝐢𝐧, 𝒑𝐦𝐚𝐱

𝒅𝐜,𝑷𝐩

Market Operator

Trading Strategy

Optimal Decision    
(𝐩∗, 𝐱∗)

Input Stage
CDA Stage

Trading Stage

Figure 1. Breakdown of different stages for the suggested market structure. The first step is to collect
the input data for the CDA market. The second stage uses the CDA market to generate the winners
for CDA auction. Third stage involves the trading strategy based on the parameters of the second
stage to determine the optimal trading power x∗ and P2P price p∗ for each matched order.

Any unmatched orders at the end of P2P trading will be cleared at the utility price
by the market operator. Prosumers will sell any excess renewable power as a FIT to the
market operator. Similarly, the customers will pay the utility price to the market operator
for meeting their demand.

2.1. Load Modeling for Market Participants

Load modeling is a crucial component for determining the demand curves of the
P2P participants. This research uses the queuing load model as suggested in [29,30]
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to determine the load profile of the P2P participants. The queuing load model has the
following advantages:

• The start time of each device is modeled as the output of a random process to capture
the individual behavior of each participant. Due to the fact that the residential cus-
tomers have distinct consumption patterns, queuing theory captures this uniqueness
by determining the start time of each device randomly while still following a known
stochastic process.

• To capture the daily and seasonal variations, the arrival rate of the devices are modeled
using a Poisson distribution to capture the time-varying nature of the load.

While using the queuing theory, it is assumed that the population size and queue
lengths are infinite to capture all the electric loads arriving into the queue. The model used
in this research is an Mt/G/∞ queue implement load model [31], where Mt represents the
Poisson process, G represents the probability distribution of the appliances, and ∞ indicates
the infinite queue length. The Poisson process, λ(t), can then be defined mathematically
as follows:

λ(t) =
L(t + E[Dd])

E[Dd]E[Pd]
(1)

where E[Dd] and E[Pd] are the expected values for the duration and power of the electric
loads for the market participant d, respectively. The individual load L(t) for each household
can be modeled based on the aggregated distribution data Al(t) as follows:

L(t) = υmin +
Al(t)−min(Al)

max(Al)−min(Al)
· (υmax − υmin) (2)

where υmax and υmin are the scaling coefficients for the individual household. The authors
have provided a brief introduction of the suggested model for the simplicity of the readers.
Further mathematical details and the analysis of the suggested queuing model are presented
in [29,30].

2.2. Prosumer PV System Modeling

As the P2P trading model relies on excess prosumer energy, a prerequisite for the P2P
platform is to model the PV curves for prosumers. This research uses the fractional integral
polynomial method as suggested in [32] to model the PV energy of the prosumers by taking
into account the following advantages:

• The suggested model uses parameters such as irradiance and temperature to find the
PV energy, which reduces the modeling error compared to the standard irradiance-
based models;

• The suggested model depends on manufacturer parameters such as the maximum
voltage, temperature coefficient, short circuit current, and voltage coefficients. This
models a practical P2P community, where each prosumer has a different PV system
with distinct module parameters.

The subsequent subsections introduce the fractional integral polynomial method for
modeling the PV power based on the characteristics of the module. First, the mathematical
details of the model are presented based on the module parameters. The effect of the
atmospheric parameters on the power of the PV system is then depicted by varying both
the temperature and irradiance parameters. This models the intermittent nature of the PV
system, which is imperative to set up any P2P trading platform.

2.2.1. Fractional Integral Polynomial Method

The suggested fractional integral model calculates the PV module as a function of the
voltage, which is given as follows:

i(u) = i
′
sc − i

′
sc(

u
u′oc

)γ+δ, (3)
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where i
′
sc and u

′
oc are the short circuit current and open circuit voltage parameters, respec-

tively. Additionally, i represents the module current in the range 0 ≤ i ≤ i
′
sc, u represents

the voltage of the module in the range 0 ≤ u ≤ u
′
oc, and γ represents a value given in the

range 0 ≤ γ < 1. δ is a non-negative integer value. The power of the PV module can be
determined as follows:

p(u) = i(u) · u = (i
′
sc − i

′
sc(

u
u′oc

)γ+δ)u (4)

The above equations depend on the following major parameters: i
′
sc, u

′
oc, and the sum

of γ + δ. These parameters depend on the atmospheric conditions and the manufacturer
characteristics. The following equations determine the values of i

′
sc, u

′
oc, and the sum of

γ + δ:

u
′
oc = Smut(

G
Gstc

)(T − Tstc) + umax − (umax − umin) · e
(

G
Gstc

·ln(
umax − uoc

umax − umin
))

(5)

i
′
sc = Pm(

G
Gstc

)(isc + it(T − Tstc)) (6)

γ + δ =
isc

isc − iopt
, (7)

where, Sm and Pm are the series and parallel connected modules, respectively. Gstc and Tstc
represent the standard test conditions (STC) parameters, G and T represent the arbitrary
irradiance and temperature values, respectively, ut represents the open circuit voltage
temperature coefficient, it represents the short circuit current temperature coefficient, umax
and umin represent the voltage limits for the PV module, and uoc and isc are the rated PV
module parameters. The validation of the Equations (3)–(7) is presented in the following
subsections by varying the model parameters. Additionally, for complete mathematical
details and derivation of the presented model, the readers are encouraged to go through
the analysis provided in [32].

2.2.2. Temperature Effect on PV Power of Prosumers

One of the key advantages of using the suggested model compared to standard
irradiance-based models is that it takes into account the effect of the temperature and
the PV module characteristics on the power of the module. To demonstrate the impact
of the temperature on the power output at a fixed irradiance, we implement our model
for the module characteristics taken from [32]. The effect of the temperature on the i–u
characteristics and the power is given in Figure 2. As is evident from Figure 2a,b, the
temperature parameter affects the maximum power of the module.

(a) (b)
Figure 2. Temperature effect on the characteristics of the PV module. (a) The i–u characteristics.
(b) The power characteristics.
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Figure 3 shows the effect of the temperature parameter for a PV system with a rated
capacity of 5 kW and a system efficiency of 95% (the parameters for a single module are
the same as those used for the results of Figure 2). From the figure, it is evident that
the temperature parameter is important to model the PV curves for the prosumers. If
unaccounted for, the modeling error for the given system was around 8%. The model using
the irradiance parameter only ends up overestimating the PV power for the prosumer by
around 0.32 kW, which, over a long-term market operation, would overestimate the pro-
sumer energy available. Therefore, it is essential to use both the irradiance and temperature
profiles of the prosumers for modeling the PV power for each P2P market interval. Note
that any PV model that uses both the temperature and irradiance parameters (or standard
irradiance-based models) for modeling the PV power can be used for the suggested P2P
trading platform.

Figure 3. Heat map for the power of the PV system for constant irradiance and varying temperature.

2.2.3. Irradiance Effect on PV Power of Prosumers

The suggested model was also validated for the same module characteristics as de-
fined previously by varying the irradiance parameter while keeping temperature constant.
Figure 4 shows the effect of the irradiance on the i–u and power characteristics of the
module. From the given figure, it is evident that, by increasing the irradiance while keeping
the temperature constant, this increased the maximum power of the module. Figure 5
shows the sensitivity of the PV system to both the irradiance and temperature parameters.
The advantage of using the presented fractional integral model is its ability to model the
intermittent nature of the PV system while using the atmospheric parameters, as depicted
in Figures 2–5.

(a) (b)
Figure 4. Irradiance effect on the characteristics of the PV module. (a) The i-u characteristics. (b) The
power characteristics.
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Figure 5. Heat map for the power of the PV system for varying irradiance and temperature levels.

3. P2P Trading Platform

This section provides the details regarding the suggested P2P platform using dif-
ferent trading mechanisms under a CDA market structure while incorporating network
constraints. The major steps involved are (i) setting up the initial bid/ask values, (ii) deter-
mining the winners of the market using an equilibrium-matching mechanism, (iii) com-
puting the optimal set of quantities for each matched order using a bidding strategy, and
(iv) designing a clearance mechanism. The details regarding different steps are given
as follows:

3.1. Trading Strategies and Determination of Optimal Quantities

One of the fundamental steps for formulating a P2P platform is to develop the bidding
mechanism for the market participants and to determine the optimal quantities for each P2P
contract. This research compares two different strategies, i.e., the rule-based ZI method and
the GT approach. The selected trading strategies are efficient in utilizing the energy of the
prosumers in an intelligent fashion while increasing the monetary advantages of the market
participants [11,18]. Additionally, the GT approach enables the participants to adjust their
trading behavior based on the network parameters to avoid the negative welfare resulting
from the system having high losses/a network fee. However, the presented framework
can be implemented with any set of trading strategies. The quantities to determine the
matched orders are the P2P price and the traded quantity. The next part of this section
provides detailed description of the different trading mechanisms for the P2P platform, as
well as the criterion used to determine the matched orders.

3.1.1. Strategy I: Rule-Based Zero Intelligent Strategy

The zero intelligent (ZI) strategy models the behavior of the market participants as
“zero intelligent” by using a random criterion to generate the bid values. The main intuition
behind using the ZI strategy is to generate the bid/ask signals within the limits of the
utility values. The major advantage of using such a strategy is its constrained nature
between the utility price and the FIT. Each prosumer will initialize the ask value, which
cannot be higher than the utility tariff. Similarly, each customer will place a bid value that
is greater than or equal to the FIT. This ensures a positive welfare for the participating
customers/prosumers [11]. Mathematically, for any interval ∆ti, the price signals generated
using the ZI strategy are given as follows:

Bi,∆ti = U[F∆ti , R∆ti ] (8)

Aj,∆ti = U[F∆ti , R∆ti ] (9)
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where Bi,∆ti and Aj,∆ti represent the bid and ask price of the ith customer, and jth prosumer,
respectively, for the ∆ti market interval, F∆ti and R∆ti are the FIT and retail values for the
interval ∆ti, respectively, and U represents a uniform random number in the [0, 1] range.

Figure 6 shows the initialization of the bids using the ZI strategy. From the figure,
it is evident that the prosumers cannot put an ask price that is higher than the retail
tariff. Similarly, the customers will initialize a bid value that is greater than the FIT. This
ensures that, for the matched orders, the participants will get a better price compared
to the utility value. After receiving the bid values for each customer, the next step is to
use a matching mechanism for the proposed strategy. For finding the matched orders,
equilibrium matching (EM) is proposed in this research.

• Equilibrium matching: EM sorts the bid values of the customers in descending order,
whereas the ask prices for the prosumers are arranged in an ascending manner. P2P
orders will be matched if the bid value is greater than or equal to the ask price [28].
This process will continue for all the P2P orders until the market interval terminates.
Once the matched orders are determined using EM, the next part is to determine the
trading price and quantity for each matched order.

• Determination of the price and traded quantity: Once an order is matched using EM,
the rule-based ZI strategy determines the P2P price as follows:

pij =


1
2
(Bi,∆ti + Aj,∆ti ) if Bi,∆ti ≥ Aj,∆ti

0, if Bi,∆ti < Aj,∆ti .
(10)

where pij represents the P2P price for the matched orders. The traded quantity can be
determined based on the demand Di and the excess renewable power Gj of the jth
prosumer, which is defined as follows:

tij =

{
min(Di,∆ti , Gj,∆ti ) if Bi,∆ti ≥ Aj,∆ti

0, if Bi,∆ti < Aj,∆ti ,
(11)

where tij represents the traded quantity between ith customer and jth prosumer. Rule-
based determination for the ZI strategy is a simple yet effective way of determining
the optimal set of quantities for the matched contracts. However, it neglects the
individual preference of the prosumers/customers towards determining the P2P price
and amount of energy traded. This can impair the performance of the P2P network,
especially under the constrained environment. The second strategy, a GT approach,
provides an alternative to the simple rule-based determination to incorporate the
individual preference of the market participants.

Figure 6. Initialization of the bid/ask values using the ZI strategy.
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3.1.2. Strategy II: Preference-Based GT Approach

In the preference-based GT approach, the first step follows the rule-based determina-
tion, i.e., it determines the winners (matched orders) of the market using the EM approach.
Consider a particular P2P order X(pij, tij); then, using the EM, the winners will be deter-
mined as follows:

X(pij, tij) =

{
Xm(pij, tij) if Bi,∆ti ≥ Aj,∆ti

X
′
m(pij, tij) if Bi,∆ti < Aj,∆ti ,

(12)

where Xm(pij, tij) are the matched P2P contracts, and X
′
m(pij, tij) refer to the unmatched

orders such that Xm(pij, tij) ∩ X
′
m(pij, tij) = ∅. Xm(pij, tij) ∪ X

′
m(pij, tij) = XT(pij, tij) refer

to the total P2P contracts for a given market interval ∆ti. For order X(pij, tij) ∈ X
′
m(pij, tij),

the quantities pij, tij are given as follows:

pij, tij = 0 ∀X(pij, tij) ∈ X
′
m(pij, tij) (13)

The next step is to determine the optimal quantities (p∗ij, t∗ij) for the matched contracts
Xm(pij, tij) while considering the preference of the individuals.

Determination of p∗ij and t∗ij: For the orders X(pij, tij) ∈ Xm(pij, tij), the quantities
to find are the trading price pij and the trading quantity tij. This research uses a single-
leader-, multiple-follower-based Stackelberg game (SLMFSG) approach to find the optimal
quantities for the matched orders, as suggested in [33]. In our proposed framework, the
market operator acts as a leader, and the market participants are the followers of the game
that make their decisions based on the actions of the leader. For each X(pij, tij) ∈ Xm(pij, tij),
prosumer j computes the amount of power shared xj based on the utility function U(xj)
as follows:

U(xj) = (pt − Aj)xj − αjx2
j , xj ≤ Gj (14)

where pt is the market trading price, Gj is the excess renewable power, and αj is the
reluctance parameter for the jth prosumer, respectively. The first part (pt − Aj)xj of the
function U(xj) is the revenue that the prosumer receives from sharing xj energy in the
market. The reluctance term, αjx2

j , represents the negative impact on the utility of the
prosumer j, which measures the unwillingness of the prosumer j to share its power in
the P2P market [33]. For the given market price pt and the reluctance parameter αj, the
objective of the prosumer is to maximize its utility function as follows:

max
xj

[(pt − Aj)xj − αjx2
j ], xj ≤ Gj (15)

In the SLMFSG approach, the leader (market operator) has no control over the deci-
sions of the prosumers in solving its utility function. However, the operator sets the market
price pt to consider the savings of the customers participating with the prosumers in P2P
trading. The aim of the market operator is to choose the pt in such a way that it maximizes
the cost savings of the customers, which are given as follows:

Zi = (Bi − pt)xj (16)

where Zi represents the savings of the ith customer.
This forms an iterative process in which, at each iteration, the leader determines the

market price pt while considering the savings of the customer based on the amount of
energy shared xj. The prosumer will compute x∗j based on the pt to maximize its utility
function (note that the solution to the objective function given in Equation (15) can be found

using x∗j =
pt−Aj

2αj
[33]) and sends the updated xj to the operator for the next iteration. This

process continues until Stackelberg equilibrium is achieved. The pseudocode for the GT
algorithm is given in Algorithm 1. The proof for the uniqueness of the Stackelberg solution
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for the given game can be found in [33]. Figure 7 shows the flowchart of the suggested P2P
trading platform using both trading strategies.

Algorithm 1 GT pseudocode for determining traded quantity and price

Input: pt,min, Gj, αj, ∆pt and pt,max. in
Output: pij, tij. out

Initialization :pt ← pt,min; Zopt ← 0; popt ← 0.
1: while pt ≤ pt,max do
2: Solve maxxj [(pt − Aj)xj − αjx2

j ].
3: Solve Zi = (Bi − pt)xj
4: if (Zi ≥ Zopt) then
5: Zopt ← Zi;
6: popt ← pt;
7: end if
8: pt ← pt + ∆pt
9: end while

10: pij ← popt
11: tij ← xj
12: return (pij, tij)

Start

Read Data (Market 
Prices, Load Data, PV 
Power, and System 

Parameters) 

Input Stage

for 𝒊 = 𝟏:𝑵

CDA Stage

All orders

𝑿𝑻 𝒑𝒊𝒋, 𝒕𝒊𝒋

𝒑𝒊𝒋, 𝒕𝒊𝒋 = 𝟎
𝒑𝒊𝒋 =

𝟏

𝟐
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If 𝑿𝒎 𝒑𝒊𝒋, 𝒕𝒊𝒋If 𝑿′𝒎 𝒑𝒊𝒋, 𝒕𝒊𝒋
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Compute welfare metrics, 
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traded energy for 𝒊 interval
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𝒊 > 𝑵

End Yes
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𝒑𝒊𝒋, 𝒕𝒊𝒋 = 𝟎
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If 𝑿𝒎 𝒑𝒊𝒋, 𝒕𝒊𝒋

Algorithm 1
GT Approach

Trading Stage

Figure 7. Flow chart of the suggested trading strategies. First step involves collecting the data. The
next step is to determine the winners of the CDA stage. The optimal trading quantity and price are
then determined based on the type of trading strategy used.

3.2. Clearance Mechanism

There can be some unmatched P2P contracts, irrespective of the type of bidding
mechanism used. For clearing the unmatched orders X

′
m(pij, tij), the operator offers an

FIT to the prosumers to sell any remaining excess PV generation that they could not trade
into the market. Similarly, the customers will pay the retail tariff to meet their remaining
demand to the market operator. The clearance quantities can be determined as follows:

Ec,i = Di −
p

∑
n=1

tin, Ec,j = Gj −
c

∑
m=1

tmj ∀i ∈ C, ∀j ∈ P (17)

where Ec,i and Ec,j represent the clearing quantities, Di is the total demand of the customers,
and ∑

p
n=1 tin and ∑c

m=1 tmj represent the total P2P traded quantities.
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3.3. Network Constraints

P2P trading takes place over the distribution networks, which require the incorporation
of network parameters to determine the welfare of the market. The constraints such as
the trading losses and the line limits can limit the welfare of the market participants.
Therefore, it is important to consider the network constraints when developing the P2P
market structure. This research suggests P2P trading losses and a network fee for modeling
the physical constraints of the network.

3.3.1. Trading Losses

P2P transactions between the market participants take place over the distribution lines,
which accumulate the trading losses due to line impedance. To model the physical losses of
the system, this research presents a quadratic loss formula [21,28] based on the amount of
energy traded between the participants, which is given as follows:

PL = βijt2
ij (18)

where PL represents the P2P losses, and βij is the loss coefficient. The value of βij depends
on the distance between the market participants, the condition of the distribution lines
connecting the two nodes, and the system voltage; βij ensures that the longer-distance P2P
transactions will result in more trading losses for the participants [21].

3.3.2. Network Fee

P2P transactions require the services of the market operator to execute them in
an organized fashion. Due to the market services provided by the operator, the cus-
tomers/prosumers need to pay a certain amount of charges for each transaction. This
payment compensates the services and the capital investment made by the operator to
develop the P2P trading platform.

This research uses the impedance-based network utilization fee model with the partic-
ipant’s contribution factor, as proposed in [28], to model the network fee constraint. An
impedance-based approach computes the electrical distance between two nodes of the
network based solely on the system’s configuration. Due to its ability to find the distance
without using the operation conditions of the network, this makes it convenient to use it
for distribution/radial systems. The mathematical relation to find the electrical distance
using the impedance-based approach is given as follows:

dij = |Zii + Zjj − 2Zij| (19)

where dij represents the electrical distance, and Zii, Zjj, and Zij represent the self-impedances
and the mutual impedance between ith customer and the jth prosumer, respectively. The
total transaction fee paid to the market operator using the computed electrical distance can
be determined as follows:

T(tij) = ∑
i∈C

(∑
j∈P

ηc(γidijtij))︸ ︷︷ ︸
customers fee

+ ∑
j∈P

(∑
i∈C

(1− ηc)(γjdjitij))︸ ︷︷ ︸
prosumers fee

, (20)

where T(tij) is the network fee paid to the market operator, and ηc, given in the range
0 ≤ ηc ≤ 1, is the contribution factor. A higher value of the ηc results in a larger transaction
fee for the customers. The ηc can be predetermined by the operator between the market
participants. Finally, γ is the charge rate coefficient set up by the market operator, and it
can also be predetermined based on the services required for the P2P platform.

3.4. Welfare Metrics

The last step for the suggested P2P platform is to determine the welfare of the market
participants. This research suggests three metrics to evaluate the performance of the
market: (i) The prosumers’ welfare—the increase in the revenue of the prosumers selling
their excess PV energy; (ii) the customers’ welfare— the decrease in the payment of the
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customers interacting/trading with the prosumers; and (iii) the social welfare—the overall
improvement in the well-being of the market participants [28]. To develop the mathematical
relations, the original market value is first defined for the customers and prosumers
as follows:

C1 = ∑
i∈C

DiR∆ti , C2 = ∑
j∈P

GjF∆ti (21)

where C1 and C2 represent the original market value of the customers and prosumers
without the P2P, respectively. The prices for the P2P trading are given as follows:

C
′
1 = ∑

i∈C
(∑

j∈P
pijtij + Ec,iR∆ti ) (22)

C
′
2 = ∑

j∈P
(∑

i∈C
pijtij + Ec,jF∆ti ) (23)

where C
′
1 and C

′
2 are the P2P trading values. By including the transaction fee constraint,

the updated prices C
′
1 and C

′
2 can be written as follows:

C
′
1 = ∑

i∈C
(∑

j∈P
pijtij + Ec,iR∆ti ) + ∑

i∈C
(∑

j∈P
ηc(γidijtij))︸ ︷︷ ︸

customers fee

(24)

C
′
2 = ∑

j∈P
(∑

i∈C
pijtij + Ec,jF∆ti )−∑

j∈P
(∑

i∈C
(1− ηc)(γjdjitij))︸ ︷︷ ︸
prosumers fee

(25)

The welfare quantities can be determined as follows:

Wc =
C1 − C

′
1

C1
× 100%, Wp =

C
′
2 − C2

C2
× 100% (26)

Ws =

∣∣∣∣∣ (C1 − C2)− (C
′
1 − C

′
2)

(C1 − C2)

∣∣∣∣∣× 100%, (27)

where Wc, Wp, and Ws are the customers, prosumers, and social welfare, respectively.

4. Results and Analysis

The suggested market was evaluated using test system described in [28]. The details
of the test case (the market parameters, load profiles, and PV data for the prosumers)
can be found in [28] for a better understanding of the network. Briefly, the system under
consideration consisted of 10 customers and 5 prosumers. Additionally, two intervals were
simulated for the test case mentioned in [28]. Interval I simulated the system where the
excess renewable power of the prosumers was less compared to the customers’ demand.

In Interval II, the excess renewable generation of the prosumers was higher compared
to the demand of the customers. The market was averaged over samples N = 1000 to
average the results due to the random initialization of the bid/ask signals for the ZI strategy.
Figure 8 shows the simulation test case used to validate different trading strategies. Figure 9
shows the aggregated load data and the PV power for the market participants. Table A1
in the Appendix A shows the system parameters for the suggested P2P trading platform.
Note that a few of the market parameters mentioned in Table A1 were used to show the
original P2P trading trend in the Section 4. Parameters such as βij, ηc, γ, and αj were then
varied, as detailed in Section 4.5, to show the sensitivity analysis.
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Figure 8. Simulation test case with a set of 10 customers and 5 prosumers located at different nodes
in a radial network based on [34].

Figure 9. P2P input data for the suggested trading platform. The data is shown as the double axis
graph, where the aggregated PV power of the prosumers is shown in the form of the bar graph with
respect to the power axis.

4.1. Trading Results for Interval I

Figure 10 shows the trading results of the different trading strategies for Interval I.
Prosumers were able to sell the majority of their PV energy to the P2P customers because of
their lower generation and the high demand of the customers (see Figure 10b). Contrarily,
due to the relatively lower PV generation of the prosumers, the customers were only able to
trade a small amount of their demand from the P2P market (Figure 10a). Figure 10c shows
the Interval I welfare metrics using different trading strategies. Because the prosumers sold
the majority of their PV energy via the P2P trading platform, their welfare was relatively
higher compared to the customers’ welfare, as is evident in Figure 10c. The low welfare of
the customers was due to their limited participation in the market because of the relatively
lower PV generation of the prosumers. Figure 11 shows the convergence of the Stackelberg
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game for one of the samples of the market. In this particular sample, the matched orders
were (P1-C1, P2-C1, P3-C2, and P4-C3), where P represents the prosumer number, and C
represents the customer number. As is evident from Figure 11, the proposed GT approach
found the optimal solution while maximizing the utility function of the prosumers’ and the
customers’ savings.

Another important aspect for Interval I was that the amount of P2P energy traded
using the GT approach was lower compared to the ZI strategy. This resulted in lower
welfare for the market participants using GT compared to the rule-based determination.
This was due to the fact that the prosumers will have some reluctance (αj > 0) when
determining their utility function, which limits their participation in the P2P market. In an
ideal case where the prosumers have zero reluctance (αj = 0), both the ZI and GT methods
will yield approximately the same trading results. However, the reluctance parameter αj is
imperative to model the individual preference of the participants under the heavy losses/a
network fee, which will be depicted at the later portion of the Section 4. Additionally, to
avoid the singularity for the optimization function of the prosumers given in Equation (15),
the problem will be solved for αj > 0. Note that the clearance mechanism (gray portion of
the bar graphs) in the results shows the unmatched orders of the P2P market. For customers,
the clearance amount is the energy bought from the market operator at the utility real-time
price (RTP). Similarly, the prosumers sell any remaining excess PV energy to the operator
as a FIT for clearance purposes.

(a) (b)

(c)

Figure 10. Comparison of P2P trading results for Interval I for different trading strategies. (a) Cus-
tomers’ trading pattern for Interval I. (b) Prosumers’ trading pattern for Interval I. (c) Welfare metrics
for Interval I.
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(a) (b)
Figure 11. Convergence of the Stackelberg game for one of the samples of market. (a) Prosumers’
power. (b) Customers’ savings.

4.2. Trading Results for Interval II

Figure 12 shows the trading pattern for Interval II using different trading methods.
For Interval II, the customers traded the majority of their demand from the market due to a
relatively higher excess generation of the prosumers compared to the customers’ demand
(Figure 12a). The market operator cleared only a small portion of the customers’ demand at
the RTP for Interval II. Contrarily, the prosumers traded a small portion of their PV energy
with the customers (Figure 12b), but the majority of the PV energy of the prosumers was
cleared by the market operator as an FIT. This led to a lower welfare of the prosumers for
Interval II when compared to the customers, as is evident from Figure 12c. The same trend
was observed for the GT approach, i.e., due to a small value of the αj, the welfare of the
market participants was lower as compared to the ZI strategy.

(a) (b)

(c)

Figure 12. Comparison of P2P trading results for Interval II (excess PV generation of prosumers was
higher compared to the demand of the customers) for different trading strategies. (a) Customers’
trading pattern for Interval I. (b) Prosumers’ trading pattern for Interval I. (c) Welfare metrics for
Interval I.
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4.3. P2P Traded Energy during Solar Hours

Figure 13 shows the amount of P2P energy traded over the solar hours. From the
figure, it is evident that the P2P energy traded between the participants increased for the
hours where there was more surplus PV power for the prosumers. For the solar hours
where there was less PV energy available, the P2P energy traded also decreased. The
amount of traded energy for the ZI strategy was comparatively higher when compared to
the GT method, as is explained above.

Figure 13. Comparison of P2P traded energy over the solar hours for each trading strategy. The
results are plotted as double axis graph. Dotted plot shows the prosumers’ excess PV power with
respect to the second axis.

4.4. Price Comparison and Average Savings of Participants

Figure 14 shows the comparison of the average P2P price versus the RTP and FIT. As
is evident from the figure, the participants were offered a price that was competitive to the
market values. The customers were offered a price that was lower than the retail tariff, and
the prosumers sold their energy at a higher price than the FIT. This resulted in additional
saving/earning for the market participants.

Increase in selling 
cost for prosumers 
for given interval

Reduction in electricity cost
for customers for given
interval

Figure 14. Comparison of average P2P price with retail and FIT during the solar hours for each
trading strategy.

Note that both of the strategies offered an average P2P price that was competitive woth
respect to the market values. Table 1 shows the percentage of P2P trading for the different
intervals using each trading strategy. The percentage shows the amount of PV energy traded
via the P2P market. Table 1 also shows the average monthly savings of the participants.
Each customer saved around $3.50, and each prosumer earned an additional $5.80 for the ZI
strategy. Similarly, the average savings per participant for the GT approach were $3.25 (per
customer) and $5.50 (per prosumer). The monetary advantages for the market participants
were established without impairing their comfort factor (shifting of loads). This shows
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that the presented framework improves the welfare of the P2P community by utilizing the
excess PV power of the prosumers in an efficient manner.

Table 1. Percentage of local trading of P2P energy for the two intervals and average monthly savings.

Trading Method PV Trading for
Interval I (%)

PV Trading for
Interval II (%)

Monthly Customers
Savings ($)

Monthly Prosumers
Savings ($)

ZI Method 74.78 22.79 35.05 29.10
GT Approach 71.04 21.34 32.50 27.50

4.5. Effect of Network Parameters on Welfare of P2P Platform

The welfare of the suggested P2P trading platform depends on the network coefficients
such as the loss coefficient, the contribution factor, and the charge rate coefficient. If
the distribution/radial network is prone to high losses/a network fee, the welfare of the
customers/prosumers can be impaired compared to the ideal market. Under such scenarios,
the preference of the participants can play a pivotal role in determining the trading pattern.
This research proposes a reluctance-based sensitivity approach for the prosumers to curtail
the amount of the traded P2P power for the networks having high distribution losses/a
network fee. Note that we only show the effect of network parameters for Interval I. The
same conclusions can be made regarding the results for Interval II.

4.5.1. Effect of Contribution Factor

The contribution factor ηc determines the percentage of the network fee that the par-
ticipants need to pay to the market operator for providing the services. In the suggested
network utilization fee model (refer to Equation (20)), the network fee paid by the pro-
sumers depends on the factor (1− ηc). Contrarily, the customers pay the ηc portion of the
total network fee. Hence, by increasing the value of the ηc, the portion of the network fee
that the customers need to pay for each energy transaction increases. Contrarily, the net-
work utilization fee decreases by increasing the value of the ηc for the prosumers. Therefore,
the prosumers’ welfare is directly proportional to the value of ηc. On the other hand, the
customers’ welfare decreases with the increase in the ηc due to the fact that it increases the
amount of the utilization fee that customers need to pay for the market services. Figure 15
shows the effect of the contribution factor for the suggested platform. At the intersection
point of Figure 15, the ηc found the best compromise between the welfare of both the
customers and prosumers. Note that, for the both ZI and GT strategies, the general trend
remained same, with the only difference being the lower welfare for the GT method, as is
explained above in the Section 4.

(a) (b)
Figure 15. Effect of the contribution factor on the welfare of the participants for Interval I. (a) ZI
strategy. (b) GT approach.

4.5.2. Sensitivity towards Loss Coefficient

Figure 16 shows the effect of the loss coefficient on the prosumers’ welfare for Interval I.
It is evident from Figure 16a that if the value of the loss coefficient (βij) was increased
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to a high value, the welfare of the prosumers became negative. This was due to the fact
that, for very high values of βij, the majority of the PV power of the prosumers was
utilized in meeting the losses of the system. A small portion of the P2P power traded
by the prosumers was utilized by the customers, which resulted in a negative revenue
compared to the traditional market. In the ZI strategy, because the prosumers do not have
any preference when determining the amount of traded energy for the matched orders, the
P2P energy will remain the same for each value of the loss coefficient. Since PL = βijt2

ij, at
constant value of traded energy tij, increasing βij increases the trading losses PL. Contrarily,
for the GT approach, the prosumers can use their reluctance parameter αj to limit their
participation in the P2P market by decreasing the tij under heavy distribution losses.

Figure 16b shows the trading pattern of the prosumers for different values of the loss
coefficient using the GT approach. For high values of the loss coefficient, the prosumers
increased their reluctance parameter αj. This resulted in the limited amount of PV energy
traded with the customers that could avoid the negative welfare for the prosumers. Under
such circumstances, the prosumers preferred to sell their surplus PV energy to the operator
as an FIT. This is one of the main advantages of the suggested GT approach, where the
prosumers can adjust their trading pattern based on the network parameters using the
parameter αj.

(a) (b)
Figure 16. Prosumers’ welfare for different values of loss coefficient. (a) ZI strategy. (b) GT approach.

4.5.3. Sensitivity towards Charge Rate Coefficient

Figure 17 shows the effect of the charge rate coefficient γ on the welfare of the pro-
sumers for Interval I. The same trend can be observed as with the loss coefficient, where
the prosumers’ welfare decreased to a negative value for the ZI strategy. This is because the
network utilization fee is directly proportional to the charge rate coefficient γ. Increasing γ
to a high value results in the prosumers paying more to the market operator as compared
to what they will earn from the market for P2P transactions. This results in a negative
revenue for the prosumers participating in the P2P market at high values of γ. For the GT
approach, the prosumers increase the value of αj to decrease the amount of traded energy
with the customers. Note that for high values of the charge rate coefficient, the welfare also
remains negative for the GT approach. This is because at such values of γj, the prosumers
will have to pay more to the market operator when compared to the revenue they will
earn from the P2P market for any amount of energy traded. However, the GT approach
manages to limit the welfare of the prosumers to a very small negative value, which is more
competitive compared to the ZI results. Because the suggested P2P platform depends on
the day-ahead market and intermittent nature of the PV resources, the performance of the
presented trading strategies can be improved by introducing the intraday market to model
the uncertainty of the PV source. However, this aspect of the suggested P2P platform has
been left for future research [35].
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(a) (b)
Figure 17. Prosumers’ welfare for different values of charge rate coefficient. (a) ZI strategy. (b) GT approach.

5. Conclusions

The efficient utilization of the excess PV energy of prosumers can enhance the social
welfare of the P2P community. P2P trading platforms using a specific trading mechanism
ensures that the surplus PV energy can be shared in a cost-effective manner. This research
proposed the comparative analysis of two trading strategies, i.e., the ZI method and GT
approach, for a constrained P2P trading platform. The results were simulated over different
intervals to show the effectiveness of the proposed trading methods. Additionally, the
trading losses and network utilization fee were suggested for incorporating the network
constraints. The results show that both of the trading methods give additional monetary
advantages for the market participants, while they increased the average welfare by 17%.

A reluctance-based sensitivity approach was also suggested to model the individual
preferences of the prosumers under heavy distribution losses/network fees. The GT
approach is more beneficial for the networks where there are high losses/a utilization fee as
compared to the ZI method, wherein it improved the welfare of the market participants by
about 75%. The future research involves adding battery energy storage and an aggregator
demand response optimization framework to further enhance the monetary benefits of the
market participants for the suggested P2P network.
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List of Symbols
Tn Number of Market Intervals
Mt Poission Process
E[Dd] Expected Value of Device Duration
E[Pd] Expected Value of Device Power
υmax, υmin Scaling Coefficients for Queuing Model
i
′
sc Short Circuit Current

u
′
oc Open Circuit Voltage

Sm Series-Connected Modules
Pm Parallel-Connected Modules
Gstc, Tstc STC Parameters
umax, umin Maximum and Minimum Voltage Levels
i Index of Customer
j Index of Prosumer
pij P2P Price
Di Demand of Customer
Ec,i , Ec,j P2P Clearance Quantities
PL P2P Loss
βij Loss Coefficient
dij Electrical Distance
T(tij) Network Fee
ηc Contribution Factor
γ Charge Rate Coefficient

Appendix A

Table A1 shows the simulation parameters used for the suggested P2P trading platform.

Table A1. Simulation parameters used for the suggested P2P platform.

Parameter Value

Queuing Load Model Parameters

Al PJM system operator data for January 1, 2016 for ComEd load area [36]
υmin 500 W [30]
υmax 5 kW [30]

Solar Parameters

Module characteristics Five different characteristics taken for prosumers given in [32]
Rated system capacity Randomly initialized in range [3, 6 kW] [28]
T Forecast temperature data presented in [28]
G Forecast irradiance data presented in [28]

Market Parameters

Tn 96
∆ti 15 min
N 1000
Retail tariff ComEd hourly price [37]
FIT ComEd hourly price [37]
βij 0.05 [28]
ηc 0 [28]
γ 0.03 [28]
αj 0.001
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