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Abstract: The feature point method is the mainstream method to accomplish inter-frame estimation
in visual Simultaneous Localization and Mapping (SLAM) methods, among which the Oriented
FAST and Rotated BRIEF (ORB) feature-based method provides an equilibrium of accuracy as well
as efficiency. However, the ORB algorithm is prone to clustering phenomena, and its unequal
distribution of extracted feature points is not conducive to the subsequent camera tracking. To solve
the above problems, this paper suggests an adaptive feature extraction algorithm that first constructs
multiple-scale images using an adaptive Gaussian pyramid algorithm, calculates adaptive thresholds,
and uses an adaptive meshing method for regional feature point detection to adapt to different scenes.
The method uses Adaptive and Generic Accelerated Segment Test (AGAST) to speed up feature
detection and the non-maximum suppression method to filter feature points. The feature points are
then divided equally by a quadtree technique, and the orientation of those points is determined by
an intensity centroid approach. Experiments were conducted on publicly available datasets, and the
outcomes demonstrate the algorithm has good adaptivity and solves the problem of a large number
of corner point clusters that may result from using manually set detection thresholds. The RMSE
of the absolute trajectory error of SLAM applying this method on four sequences of TUM RGB-D
datasets is decreased by 13.88% when compared with ORB-SLAM3. It is demonstrated that the
algorithm provides high-quality feature points for subsequent image alignment, and the application
to SLAM improves the reliability and accuracy of SLAM.

Keywords: visual SLAM; feature extraction; adaptive threshold

1. Introduction

SLAM refers to the model in which a subject equipped with some sensors creates a
map of the surroundings during its motion and estimates its own velocity without any a
priori information about the environment [1]. SLAM technology is widely used in the fields
of autonomous driving, drones, and robot navigation. It can help devices determine their
own position and the terrain and obstacles of the surrounding environment. Or, combined
with a variety of information, such as semantic information, and perceptual systems, such
as target recognition [2], instance segmentation [3], etc., more complex tasks can also be
accomplished by SLAM technology.

SLAM is mainly divided into laser SLAM and visual SLAM because of the different
sensors it carries. In terms of theory and engineering, laser SLAM is more mature, and it
has practical applications in industrial industries. The SLAM system called Visual SLAM
(VSLAM) relies heavily on pictures to provide environment-aware data. Visual SLAM,
which primarily focuses on calculating camera poses and constructing 3D maps using
the multi-view geometry approach, is still in the laboratory research stage and has fewer
practical applications. However, compared to laser sensors that can only provide single
spatial structure perception information, visual sensors have great advantages and the
potential to improve inter-frame estimation accuracy and loop closing detection accuracy
with their abundant sense information, which includes texture and color [4]. Moreover,
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cameras are inexpensive and can provide rich environmental information, so VSLAM
solutions where a camera serves as the primary sensor are extremely intriguing.

The processing of SLAM systems is frequently divided into two phases: front-end
inter-frame estimation and back-end optimization. In order to accomplish feature point
tracking and mapping in parallel, PTAM [5], which distinguishes between the front-end
and back-end, was the first to propose and implement this processing. Front-end inter-
frame estimation is based on the sensor information between two adjacent frames to obtain
an estimate of the motion during that time interval, also known as visual odometry.

There are two categories of inter-frame estimation implementation techniques in the
front-end: direct methods and feature point methods.

The direct method makes direct use of image information, which relies on dense
pixel points to estimate structure and motion directly by minimizing an error measure
that is based on the image’s pixel-level intensities [6]. However, because the approach is
dependent on the assumption of grayscale invariance, it cannot be applied to scenes with
significant illumination changes and can lead to tracking failure if the movement of the
camera is too large.

The feature point method extracts a collection of salient image characteristics (such
as corner points) from every image, matches them in consecutive frames using invariant
feature descriptors of this set, and then uses the epipolar geometry to steadily recover
camera motion and structure. In back-end optimization, camera poses and maps are
optimized by minimizing feature point reprojection errors. In loop closing detection,
feature correspondence with old landmarks is established by feature descriptors, which
increases both the constraints in BA (Bundle Adjustment) optimization, which improves the
accuracy of the optimized trajectory, and the relocalization capability, resulting in a more
robust system. Feature point methods rely on effective feature detectors and descriptors
that enable matching images with large variations in illumination and viewpoint.

The feature point method calculates camera motion via a part of the image’s points.
Although the feature point method takes significant amounts of computational resources
in the process of calculating descriptors, it has the excellent feature of being insensitive to
changes in illumination and dynamic environmental changes. It can also be understood
that the feature point method has no rigid requirements for environmental conditions;
therefore, it is highly adaptable, so it holds a mainstream position in visual odometry.

In SLAM, back-end optimization is not performed in real time. To obtain high-
precision pose estimation, the local or global drift error is eliminated by only activating
it when a frame is chosen as a key frame. Therefore, the feature extraction speed has a
significant impact on the SLAM’s real-time performance.

Additionally, the majority of feature extraction thresholds used in existing SLAM
feature detection are set manually. This could result in a lot of corner clusters and the
generation of too many feature points, which would not be able to meet the requirements
of various images for feature point extraction and increase the complexity of subsequent
image alignment.

Furthermore, the robustness of SLAM is more strongly influenced by the robustness,
orientation invariance, and scale invariance of extracted feature points. However, the
majority of feature extraction techniques use an image pyramid to give the features scale
invariance while simultaneously increasing computation. Many features that are faster to
extract mostly lack scale invariance. How to balance them is also an important issue.

This work proposes an adaptive feature extraction approach to address the above
issues while also increasing the real-time speed and robustness of SLAM. The following is
a summary of this paper’s main contributions:

1. This paper designs the detection thresholds for AGAST based on the image’s overall
grayscale information, which can be adjusted to varied situations and extract an
appropriate amount of feature points with high quality.
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2. Image pyramids are adaptively built for images of various sizes, and feature detection
is accomplished by utilizing the adaptive meshing method and AGAST algorithm.
This could adapt to various inputs and decrease unnecessary calculations.

3. Following the detection of feature points, we utilize the Non-Maximum Suppression
(NMS) method to filter the feature points and combine the quadtree algorithm to
homogenize them, which can avoid corner point clustering. We calculate the feature
point orientation using the intensity centroid method to provide orientation invariance
for it, which is conducive to subsequent feature matching.

2. Related Work
2.1. Visual SLAM

Currently, there are many excellent and mature solutions for SLAM tasks based on
the direct method. The DTAM system was presented by R. Newcombe et al. in 2011 [7].
Instead of using feature extraction, this system relies on dense pixel points for real-time
tracking and map building, comparing the input image with the synthetic view, and then
calculating the difference between the image and the view to accomplish localization
tracking. However, since this system is a monocular system, it needs to calculate the
depth information of each pixel point, so it is computationally expensive. In 2014, ref. [8]
suggested LSD-SLAM. This system randomly sets the initial depth value for each pixel
point, reconstructs the map for regions with significant gradient changes, and also uses the
synthetic view generated by the map to optimize the estimated camera motion. However,
it is tough to accurately calculate the depth information of the whole image because it
is not possible to estimate regions without texture. In 2017, Wang Rui et al. proposed a
completely straightforward system called DSO [9]. This system divides each picture into
blocks and selects high-intensity feature points as candidates for reconstructing the map.
Simultaneously, it uses geometric and photometric cameras to eliminate the error factor
and calibrate the results to decrease the cumulative error. Tested on a publicly available
dataset, the system achieves high localization accuracy and is one of the better algorithms
in the current direct method.

While the feature point method was initially used in VSLAM systems in 2007, the
literature [1] presented the MonoSLAM system as the first monocular VSLAM system
that could run in real-time. To track extremely sparse feature points at the front-end, the
system employs an extended Kalman filter as the back-end. In 2009, ref. [5] suggested the
monocular SLAM system PTAM. This system was the first to parallelize the tracking and
map-building processes. PTAM was the first system to use nonlinear optimization at the
back-end instead of traditional filters, and it proposed the keyframes mechanism so that it
does not have to process each image finely but instead processes a smaller number of key
images to optimize its trajectory and map. Following PTAM, VSLAM research increasingly
shifted to the back-end, which became dominated by nonlinear optimization.

The monocular ORB-SLAM system put forward by [10] represented a peak of main-
stream feature point SLAM in 2015. A year later, the authors [11] proposed the ORB-SLAM2
system to address the drawback that ORB-SLAM can only use monocular sensors. ORB-
SLAM2 was the first complete the open-source SLAM scheme for monocular, stereo, and
RGB-D cameras. And since then, many excellent visual SLAM systems have been improved
and optimized as a foundation for ORB-SLAM2.

Research in [12] proposed the feature-based, tightly coupled VIO system ORB-SLAM3,
which builds on ORB-SLAM2 to also conduct visual, visual inertial, and multi-map SLAM
utilizing pinhole and fisheye lens models. OV2SLAM [13] is a fully online and versatile
real-time visual SLAM system suggested in 2021 by Maxime Ferrera and collaborators. The
system restricts the extraction of features to keyframes and tracks them in the following
frames using minimized photometric errors, significantly reducing the computing effort.
And it integrates an online BoW method that creates its vocabulary tree step-by-step using
feature descriptors computed from keyframes, which can help it adapt to the environment
better. The system achieves better accuracy and real-time performance.
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2.2. Image Feature Point

The concept of image feature points was suggested by Moravec firstly [14]. After that,
related scholars at home and abroad studied this problem one after another. Lowe et al. [15]
proposed the Scale-Invariant Feature Transformation (SIFT) algorithm, which extracts feature
points with better scale invariance and rotation invariance. Additionally, it may give reliable
matching for a variety of affine distortions, 3D perspective changes, noise increases, and
illumination changes. However, it has high operational complexity and takes a long time to
extract features. In response to the question, ref. [16] suggested Speeded-Up Robust Feature
(SURF). This SURF algorithm improves the SIFT algorithm using integral maps, approximate
Hessian matrices, and Haar wavelet transformation operations, and although it improves the
algorithm’s performance, it still takes longer to calculate the feature descriptors and fails to
satisfy the SLAM real-time requirements.

In 2010, Rosten et al. proposed the Feature from Accelerated Segment Test (FAST)
algorithm [17], which is fast and can quickly detect corner points in images, but it does not
produce multiscale features, has no orientation information, and does not have rotational
invariance. In 2011, Rublee et al. presented the ORB algorithm [18], which detects feature
points using the FAST technique and obtains the feature descriptors of the image by
calculating Binary Robust Independent Elementary Features (BRIEF) algorithm, which is
more robust to noise. Therefore, the ORB algorithm extracts features more quickly. Under
the same conditions, the extraction speed of feature points is faster than SURF and SIFT
algorithms, which can fulfill the system’s real-time needs, but its robustness is not as good
as SIFT, and there is no scale invariance. Therefore, the algorithm is prone to feature point
redundancy, and these redundant feature points will lead to mismatches in image matching.
The ORB-SLAM is calculated around the ORB feature, which is an excellent compromise
between efficiency and accuracy at this stage of computing platforms. And the ORB feature
provides descriptors that enable loop closing detection and relocation during a large range
of motion. In response to the problems existing in the feature extraction algorithm, many
scholars have improved it. Research in [19] improved the original ORB and suggested a
better ORB algorithm based on region division, which ensures an improved uniformity of
extracted feature points; however, feature point mismatch still exists. Mair et al. proposed
the AGAST algorithm [20], which is an adaptive multi-scale fast corner point extraction
algorithm and is an improved version of the FAST algorithm. The technique increases
feature extraction speed while also having strong scale invariance. Aiming at the impact
of illumination changes on feature tracking, ref. [21] used the AKAZE detector to extract
feature points after they constructed a color space with constant illumination based on
adaptive histogram equalization and dark channel prior theory. This technique increases
the accuracy of extracting and matching image feature points in the event of significant
changes in illumination. Research in [22] enhanced the feature method of point-line
combination and implemented a local adaptive threshold calculation method and a new
meshing technique in ORB feature extraction. After meshing, the threshold is calculated
separately for each image block, which improves the adaptive ability of feature extraction.

Deep learning has advanced quickly in the field of computer vision in recent years.
Many scholars have applied deep learning to feature extraction tasks and achieved good
results. In 2018, DeTone, D. et al. [23] proposed SuperPoint by using deep learning methods
for feature extraction. It uses a single network and self-supervised methods to extract
keypoints, but its network structure is large and time-consuming. To tackle this issue, Li,
G.Q., et al. [24] designed a simpler convolutional neural network to detect keypoints and
calculate descriptors, which reduced the time-consuming process of feature extraction. It
can run on the graphics processor (GPU) in real time to meet the needs of SLAM’s real-time
performance, but when it is applied to ORB-SLAM2, its time consumption can reach 5.2 times
that of the original system. Zhao, X. et al. [25] designed a lightweight network for feature
point detection and descriptor extraction that can run images with a size of 640 × 480 at
a speed of 95 frames per second on a commercial GPU. We applied it to ORB-SLAM2 and
tested it in the experimental environment of this paper. The speed is faster than the above
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methods, but when considered comprehensively, its performance in SLAM tasks is still not
as good as ORB feature points.

We also enhance the ORB approach in this paper. We suggest a global adaptive
threshold calculation method that computes the threshold for various images based on their
gray information. We adaptively construct an image pyramid to provide scale invariance.
Different from the predefined threshold in ORB-SLAM2 and the FAST threshold calculated
for each image block after meshing the image pyramid in [22], we use the gray information
of the entire image to calculate a global adaptive threshold, which reduces the amount of
calculation before feature detection and takes into account the adaptability of the threshold.
Additionally, we design an adaptive meshing technique to segment the pyramid image,
allowing for the use of various detection thresholds in the same image. Different from
ORB [18] using the FAST algorithm, we use the AGAST approach to detect feature points,
which has better adaptability and extraction speed [20]. We apply the NMS method for
filtering the detected feature points and eliminating the local dense feature points. The
quad-tree algorithm is then applied to achieve equal division of feature points, similar
to the feature extraction part of ORB-SLAM2. Then the direction of the feature points is
calculated like the ORB algorithm.

3. Our Method
3.1. Improved Feature Extraction Algorithm

The framework of the enhanced feature extraction algorithm suggested in this article
is shown in Figure 1, where the blue part is the pre-processing part before feature detection,
the gray part is the feature detection part, and the orange part is the feature point assignment
part. We will elaborate on the steps of this method in the following sections. After extracting
features, the Rotated BRIEF algorithm is used to describe the features.

Calculate the Global Adaptive 

Threshold for Images 
Input Image Build a Gaussian Pyramid Adaptive Meshing

AGAST Extract Feature Points

Divide Feature Points with 

Quad-tree 

Intensity Centroid Method to 

Calculate the Orientation of 

Feature Points

Filter Feature Points with Non-

Maximum Suppression   

Threshold
Apply to

Figure 1. The framework diagram of the enhanced feature extraction algorithm. An image pyramid
is created and gridded for the input image, which is then subjected to feature extraction using our
calculated thresholds, followed by filtering of the feature points using NMS and quad-tree algorithms,
and finally calculating the feature point orientation. The dashed arrows point to the example output
obtained after each step of processing. In the example output, the green circle is the feature point,
and the red line starting from the circle is the direction of the feature point.
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3.1.1. Calculate Global Adaptive Threshold

The setting of the feature extraction threshold has a significant impact on the number
and quality of extracted feature points. Because the extraction of feature points depends
on the image’s gray information, it is necessary to determine during feature detection
whether and how many times the gray difference between a pixel and its surrounding
pixels exceeds the threshold. The threshold represents the strictness of extracting feature
points and reflects the gray difference between a pixel and its surrounding pixels. Therefore,
based on the overall image’s gray information, we can determine whether the image’s
gray change is obvious, similar to the contrast. The gray difference between the pixels and
the surrounding pixels may be significant for images with obvious changes. At this time,
selecting a smaller threshold will extract too many feature points, which will affect the speed
of feature extraction, and those feature points that are extracted near the threshold have
a low degree of recognition, which will affect the matching of subsequent feature points.
If a larger threshold is selected, it may lead to the fact that the majority of pixels cannot
meet the threshold and the extracted feature points are too few, which is not conducive to
subsequent processing.

For adaptation to different scenarios, this work proposes an adaptive threshold calcu-
lation approach that can extract a sufficient number of feature points while simultaneously
guaranteeing the quality of the feature points for better tracking. Different from ORB-
SLAM2 [11], which sets a specific threshold value for feature extraction, this paper sets the
threshold value for feature extraction by considering the image grayscale information. The
thresholds are specifically derived from the following:

Threshold = (
1
n

width

∑
x=1

height

∑
y=1

(I(x, y)− I(x, y))2)/I(x, y), (1)

I(x, y) =
1
n

width

∑
x=1

height

∑
y=1

I(x, y), (2)

where n is the number of image pixels, I(x, y) is each pixel’s gray value, and I(x, y) is the

average gray value of the image.
1
n ∑width

x=1 ∑
height
y=1 (I(x, y)− I(x, y))2 is the variance of the

image gray value.

3.1.2. Construct a Gaussian Pyramid

The previous approaches frequently employed the image pyramid with a fixed number
of levels of 8 to offer scale invariance for features, such as ORB-SLAM3 [12,22]. The high
layer of the image, which is scaled down to create the image pyramid, contains less image
information when the image is small. In this case, the high-level image has little effect on
scale invariance. The amount of calculation may increase when the pyramid’s layers are
added. For the purpose of reducing the quantity of calculations and better tracking, this
paper designs an adaptive image pyramid layer decision method, facing the input pictures
with different resolutions. The number of layers is set as follows:

Level = Round((width + height)/200), (3)

We divided the sum of the picture’s width and height by 200 and rounded up to obtain
the number of levels of the pyramid’s construction plan because the picture’s proportions
could not be taken into consideration when utilizing the picture’s area. After calculating
the necessary number of pyramid layers, the picture is down-sampled based on the scale
factor to generate an image of all pyramid layers and set the number of feature points to be
acquired for each layer.
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3.1.3. Adaptive Meshing of the Image Pyramid

To extract feature points using various thresholds within the same image, the image is
divided into meshes. Feature points are extracted using lower thresholds on grids with less
texture. It lessens the possibility that the feature points are only distributed in certain areas
when compared to the extraction of feature points for the entire image. ORB-SLAM2 [11]
uses the meshing method. However, it divides the image into multiple 30× 30 grids during
feature extraction for each layer of the image. Due to the different scenes and sizes of
each image, using a single engineering empirical value of 30 to divide the grid causes the
algorithm to be unable to adapt well to the external environment. In this study, we apply
an adaptive algorithm to handle the grid division, and we divide each layer of the photo
according to its area and the number of feature points it needs to extract. The side lengths
of the grid are calculated as follows:

Wi = α
√
(widthi × heighti/Ni), (4)

where Wi is the side length of the i-th layer image partition grid. widthi and heighti are the
picture’s width and height in layer i, respectively, and Ni is the amount of feature points to
be extracted from the picture in layer i. α is the scale factor.

After obtaining Wi, we can calculate the number of columns and rows per layer of the
image, as shown below: {

Cols = bwidthi/Wic
Rows = bheighti/Wic

(5)

The next step is to traverse the number of rows and columns to extract the picture
block’s features.

3.1.4. AGAST Extract Feature Points

We extract feature points using the AGAST method [20] from the divided grid im-
age. The AGAST algorithm has added two states “not brighter” and “not darker” to the
configuration space of FAST. The specific state is defined as follows:

Sn→x =



d, In→x < In − t (darker)
d̄, In→x ≥ In − t ∧ S

′
n→x = u (notdarker)

s, In→x ≥ In − t ∧ S
′
n→x = b̄ (similar)

s, In→x ≤ In − t ∧ S
′
n→x = d̄ (similar)

b̄, In→x ≤ In − t ∧ S
′
n→x = u (notbrighter)

b, In→x > In + t (brighter)

, (6)

where the state of a pixel for kernel n is denoted as Sn→x, S
′
n→x denotes the previous state,

I represents the pixel luminance, and u indicates the unknown state. t represents the
detection threshold; d indicates that the grayscale of the current point is darker than the
center point; d̄ indicates that the current point’s grayscale is non-darker than the center
points’; s indicates that the grayscale of the current point is similar to the center point; b
indicates that the current point’s grayscale is brighter than the center points’; b̄ indicates
that the grayscale of the current point is non-brighter than the center points’.

The AGAST [20] algorithm improves the Accelerated Segment Test (AST) module
at the bottom of FAST. It uses an algorithm similar to reverse induction in the extended
configuration space to find an optimal decision tree and combines the decision trees so
that corner point detection can automatically adapt to changes in the external environment
without having to reacquire the decision tree. AGAST improves the trinomial decision
tree in the FAST algorithm into a binary tree, as shown in Figure 2. Once the pixel neigh-
borhood changes, AGAST switches between two (or more) trees. In homogenous pixel
neighborhoods, the left tree achieves fewer pixel evaluations (shorter decision paths), while
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the right tree is optimized for texture regions. AGAST dynamically and efficiently assigns
decision trees based on the currently processed image information, improving the detection
speed of the algorithm.

Homogeneous

Heterogeneous

Figure 2. Principle of the adaptive and generic accelerated segment test. The nodes indicate the pixels
in the current feature extraction region, and the shade of the leaf node color indicates the difference
between the pixel point and the center point. The lighter color indicates that the two pixel points are
more similar in gray value, and the darker color indicates that the two pixel points are more different
in gray value. Reproduced with permission from [20], Spinger Nature, 2010.

In order to ensure that enough feature points are extracted in areas with less texture,
the global adaptive threshold obtained in a is first used as the initial value to detect feature
points from the picture. The threshold is set to 1/4 of the original value, and feature points
continue to be extracted when the obtained image feature points are insufficient.

3.1.5. NMS to Filter Feature Points

We refer to the concept of NMS of [26] to filter feature points and eliminate local dense
feature points for the extracted feature points. The fundamental idea behind this method is
to leave the most significant feature points in the region by the size of their corresponding
values and suppress the insignificant feature points to increase the feature points’ accuracy
and stability.

3.1.6. Divide Feature Points with Quad-Tree

Similar to [10], we additionally partition the feature points using the quad-tree ap-
proach to ensure that they are distributed equally. We initialize the nodes of each layer of
the pyramid image, divide the image into four regions, and obtain four sub-nodes. We
count how many feature points are present in each node. If a node does not include any
feature points, it should be deleted; if it has just one, it ought to be marked as a leaf node,
saved, and no longer split; if the node contains multiple feature points, it is called the
parent node and continues to be divided. If all the current nodes are non-repartitionable or
the sum of the number of leaf nodes and the number of parent nodes that need to continue
to be partitioned reaches the requirement of the number of feature points, the partition is
terminated. We retain the feature points in each node area with the largest response value.
The division outcome for a target of 20 feature points is depicted in Figure 3, where the red
dot is the feature point and the area of the fork is the deleted node area.
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Figure 3. An example of the quad-tree algorithm dividing feature points, where the red dot is the
feature point and the area of the fork is the deleted node area.

3.1.7. Intensity Centroid Method to Calculate the Orientation of Feature Points

According to the method proposed by [27], we define the direction of the feature point
as the angle between the line connecting the feature point to the centroid of the picture
block centering on the feature point and the horizontal direction. Shown in Figure 4a is
an example of an image block. The centroid calculation formula for the image block is
as follows:

Q = (
m10

m00
,

m01

m00
), (7)

where m stands for the moment of the region, which is calculated as follows:

m10 = ∑
x,y

xI(x, y),

m01 = ∑
x,y

yI(x, y),

m00 = ∑
x,y

I(x, y).

(8)

This allows us to determine the feature points’ orientation as follows:

θ = arctan(
m01

m10
) (9)

The orientation of the feature points provides rotational invariance for the feature
points. It is illustrated in Figure 4c as the image of Figure 4b after rotation, and the
orientation of the feature point P remains unchanged during the rotation.

x

y

P

Q

y

x

P

Q

(a) (b) (c)

Figure 4. Rotation invariance correlation. (a) is an example of determining the direction of feature
points. (c) is the rotation of (b) the direction of the feature point does not change. Where P is the
feature point. Q is the centroid of the point P.
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3.2. SLAM Framework

Our SLAM process is made up of three main components: tracking, local mapping,
and loop closing detection. Tracking is the front end, which needs to run in real time.
Local mapping and loop closing detection belong to the back-end. The main purpose is to
optimize the camera pose and the generated map points obtained by the tracking module to
ensure the accuracy of SLAM. Our SLAM uses a keyframe mechanism and a bag-of-words
model to accelerate feature matching and perform closed loop detection.

The tracking module processes image information and applies adaptive feature ex-
traction algorithms to obtain feature points. In addition, it matches the feature points and
calculates the pose of the present frame relative to the active map in real time based on the
obtained matching relation, minimizing reprojection errors in matching map features. It
decides when to insert new keyframes. The calculation of pose by feature matching can be
divided into three methods. One is to anticipate the pose of the current camera based on
the previously predicted inter-frame camera motion and search for features in a small range
for matching. The second is to track the features between two adjacent frames without
motion prior. The third is to track the feature points between the reference key frame and
the present frame and use the bag-of-words model to accelerate feature matching.

The local mapping module adds key frames and points to active maps, applies a strict
point culling strategy so that only high-quality map points are retained, and performs local
optimization, that is, using visual BA to optimize map points on local maps. The local
mapping module is also responsible for eliminating redundant key frames.

The loop closing detection module detects similar key frames to the present key frame
between the working map and the entire atlas. If similar key frames are found on the
working map, a closed-loop correction is performed. If the two are not on the same map,
map fusion is performed. Redundant key frames are removed after updating the connection
relationship of the covisibility graph. Finally, global BA optimization is carried out.

4. Experiment

Aiming to test the effectiveness of the proposed method, this work first performs ex-
periments with the improved feature extraction algorithm, and then applies the improved
algorithm to SLAM to verify whether the algorithm has an effect on the accuracy and ro-
bustness of SLAM tracking. The experiment is carried out on public datasets. The computer
used in the experiment is a desktop computer with an Intel Core i5-10400F@2.90 GHz CPU
and an NVIDIA GeForce GT1030 GPU. We configured a dual system on the computer,
allocated 200 GB disk space to build Ubuntu 18.04 LTS, and the experiment was completed
on the system.

4.1. Experimental Datasets

KITTI dataset: The KITTI dataset is a dataset based on real-world scenarios established
by Geiger et al. [28] using their autonomous driving platform. It primarily consists of
outdoor scenarios such as urban, rural, and highway. The visual odometry part includes
22 sequences such as 00–21, among which the sequences such as 00–10 have ground truth
values, which can be used to analyze how effectively the SLAM algorithm in this work
performed. The sequences 00, 02, 05–07, and 09 contain loops.

TUM RGB-D dataset: The TUM RGB-D dataset [29] consists of indoor RGB-D sensor
sequences, which are divided into several categories and can be used to evaluate SLAM
methods in a variety of texture, illumination, and structural conditions. It is a benchmark
for evaluating RGB-D SLAM.

EuRoC dataset: 11 stereo sequences from a micro air vehicle (MAV) flying in two
various rooms and a sizable industrial setting are included in the latest EuRoC dataset [30].
A binocular camera was used for sampling at a sampling frequency of 20 Hz.

Overall, these three datasets are rich in content. Different acquisition equipment is
used by them, including autonomous driving equipment, handheld equipment, and flight
equipment. It covers a range of scenarios, such as different moving speeds, changing
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illumination, motion blur, etc. These datasets possess considerable authority in this area
and are capable of thoroughly evaluating the algorithms suggested in this work, taking into
account the numerous SLAM application situations. Figure 5 shows examples of images
included in the three datasets.

Figure 5. Sample image of the dataset. The KITTI dataset is in the top row, followed by the TUM
RGBD dataset in the second row, and the EuRoC dataset that was taken in the factory scene is in the
final row.

4.2. Evaluation Indicators

The effectiveness of the improved adaptive feature extraction SLAM technique de-
scribed in this study is assessed using the root mean square error (RMSE) of the camera’s
absolute trajectory error, the average feature extraction time of each frame, the average
tracking time of each frame, and the average tracking time of each frame.

Absolute trajectory error (ATE), which may be used to assess the overall consistency
among the trajectories, refers to the distance in terms of absolutes between the estimated
camera trajectory and the real trajectory. If the predicted camera trajectory is expressed
as P1, . . . , Pn ∈ SE(3), the true trajectory is expressed as Q1, . . . , Qn ∈ SE(3), using ∆ to
represent a fixed time interval. The ATE of frame i is as follows:

Fi = Q−1
i SPi, (10)

The ATE of the overall camera motion’s RMSE is as follows:

RMSE(F1:n, ∆) = (
1
n

n

∑
i=1
‖trans(Fi)‖2)

1
2 (11)

When mapping the predicted trajectory P1:n to the true trajectory Q1:n, S is the least
squares solution.

4.3. Feature Extraction

With the aim of verifying the effectiveness of our suggested method, we compare
it with the original ORB feature extraction algorithm and randomly select images from
the three datasets of KITTI, TUM, and EuRoC for testing. From each image, we extract
1000 feature points. Figure 6 depicts the feature extraction results. The ORB algorithm
extracts features with a large number of aggregations, as can be observed intuitively. This
is because it selects feature points according to the response value, so the detected feature
points will be clustered in areas of strong texture. The feature points are concentrated in
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a small part of the area, which makes us unable to fully utilize the image information. In
extreme situations, if all feature points are concentrated on the same point and applied to
SLAM, there may be situations where the camera pose cannot be solved.

In addition, the traditional ORB feature extraction algorithm uses a fixed threshold for
feature extraction, which cannot adapt well to environmental characteristics. In this paper,
a series of adaptive methods are proposed and combined with the quadtree algorithm
and the AGAST algorithm for feature extraction. The obtained feature points are basically
distributed equally throughout the whole image, as seen in the left column of the figure,
which can provide high-quality feature points for SLAM.

(a) (b)

(c) (d)

(e) (f)

Figure 6. This graph shows the comparison of the feature extraction outcomes. (a,c,e) are the results
of the features extracted using the algorithm of this paper in the KITTI dataset, in the TUM fr1
sequence, and in the EuRoC MH01 sequence, respectively. (b,d,f) are the outcomes of features
extracted applying the conventional ORB algorithm in the KITTI dataset, in the TUM fr1 sequence,
and in the EuRoC MH01 sequence, respectively.

4.4. Overall Performance

Aiming to prevent the impact of experimental hardware and its computing power,
results from ORB-SLAM2 and ORB-SLAM3 [12] experiments are obtained by running
under the experimental equipment. We evaluate the average tracking time of different
methods for each frame on 9 sequences of the KITTI dataset. Table 1 shows the experiment
outcomes, with each number gathered after 10 runs and averages. It is clear that the
algorithm proposed in this study achieves an advantageous effect in time and accuracy.
Compared with ORB-SLAM2, we save a lot of time without losing accuracy. Compared with
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ORB-SLAM3, in most sequences, SLAM using this algorithm achieves better performance.
Some estimated trajectories are shown in Figure 7. However, the difference in trajectories
between the two algorithms is relatively small due to the large size of the real trajectories,
so we cannot see a significant difference in this figure.

Table 1. Comparing the performance of the three methods on the KITTI dataset with respect to mean
tracking time and the RMSE of ATE.

Sequence
ORB-SLAM 2 ORB-SLAM 3 Our Method

Mean
Time (ms) RMSE (m) Mean

Time (ms) RMSE (m) Mean
Time (ms) RMSE (m)

00 58.388 1.293 36.161 1.242 35.607 1.224
01 80.643 10.422 31.035 14.755 30.637 13.926
02 62.803 6.095 35.727 5.967 35.907 5.422
03 62.404 0.670 31.703 1.326 31.254 1.309
04 64.720 0.226 32.114 0.219 32.143 0.206
05 65.096 0.793 34.178 0.967 33.638 0.817
06 70.992 0.770 35.875 1.231 36.2021 0.945
07 61.913 0.539 39.554 0.483 42.281 0.450
09 62.606 3.056 32.568 2.049 32.5301 1.989
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Figure 7. Comparison of trajectories on the KITTI datasets, where (a–d) are results on sequences 00,
02, 05, and 07, respectively. The black line represents ground truth.

The speed of feature extraction has a significant impact on how well SLAM performs
in real time. We conducted experiments on four sequences of fr1 in the Tum dataset.
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The feature extraction time of the method and ORB-SLAM3 is displayed in Table 2.
Table 3 provides the RMSE of the two algorithms’ ATE. In order to avoid being affected
by accidental results when evaluating the performance of each approach, we run each
algorithm 10 times and average the results to obtain two tables of data. During the
experiment, ORB-SLAM3 [12] has experienced multiple local map tracking failures when
running on the fr1_desk sequence, which has an impact on the accuracy of positioning
and mapping. Our method does not have such phenomena in repeated operations and has
certain robustness. From Tables 2 and 3, we can see that the suggested algorithm reduces
the time of feature extraction to a certain extent, which is beneficial to the subsequent
camera tracking and improves the robustness of SLAM. Figure 8 is the trajectory diagram
of two of the sequences. It can be seen that the camera motion predicted by our SLAM
algorithm is closer to the ground-truth motion trajectory than that obtained by ORB-
SLAM3 in the presence of handheld device shaking.

Table 2. The average feature extraction time on the TUM RGBD datasets, compared with ORB-
SLAM3 [12].

Sequence ORB-SLAM 3 Our Method
Mean Time (ms) Mean Time (ms)

fr1/desk 10.116 10.108
fr1/360 9.199 9.162

fr1/room 9.906 9.666
fr1/rpy 9.830 9.779

Table 3. The RMSE of ATE on the TUM benchmark, compared with ORB-SLAM3.

Sequence ORB-SLAM 3 Our Method
RMSE (cm) RMSE (cm)

fr1/desk 2.073 1.598
fr1/360 19.028 17.719

fr1/room 6.026 5.261
fr1/rpy 2.095 1.975
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x (m)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

y 
(m

)

fr1_desk_gt
ORBSLAM3
Ours

−1.0 −0.5 0.0 0.5 1.0 1.5
x (m)

−1.0

−0.5

0.0

0.5

y 
(m

)

fr1_room_gt
ORBSLAM3
Ours

(a) (b)

Figure 8. Comparison of trajectories on the TUM RGBD datasets. (a,b) are results on sequences
fr1_desk and fr1_room, respectively. The black line represents ground truth.

The matching between feature points with the same name is crucial to feature point-
based SLAM. Aiming to validate the method of this paper, we test the algorithm in the
factory scene of the EuRoC datasets. Table 4 provides the results of the trials after we
repeated each group of experiments five times and averaged the values, where the data
of the SVO experiments were collected from [31]. Compared with SVO [31] and the
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SLAM algorithm based on ORB features, it is clear that our method has achieved positive
results. The SVO algorithm is a more classic SLAM algorithm that combines the feature
point approach and the direct approach. Our method performed well in the difficult
sequence of MH04 when SVO tracking failed. In addition, it enhances the tracking
accuracy by roughly 31% when compared to ORB-SLAM2 and by 23.2% when compared
to ORB-SLAM3. For other sequences, the algorithm also achieved good results. The mean
absolute trajectory error RMSE of our method on these four sequences is reduced by
13.8% compared to ORB-SLAM3 and 13% compared to ORB-SLAM2. Experiments show
that high-quality feature points are beneficial to improving the performance of SLAM.
Figure 9 shows the comparison between the trajectory predicted by our SLAM and the
real trajectory.

Table 4. Location error (RMSE/cm) of different methods on the EuRoC dataset.

Sequence SVO ORB-SLAM 2 ORB-SLAM 3 Our Method

MH01 4 3.883 3.717 3.664
MH02 5 4.894 5.045 4.679
MH03 6 3.940 5.374 4.791
MH04 X 11.493 10.318 7.924

X denotes tracking failure.
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Figure 9. Comparison of trajectories on the EuRoC datasets. (a) comes from the simple sequence
MH01. (b) comes from the simple sequence MH02. (c) comes from the medium sequence MH03.
(d) comes from the difficult sequence MH04. The black line represents ground truth.
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5. Conclusions

Aiming to extract high-quality, uniformly distributed feature points and reduce corner
clusters, this work suggests an adaptive feature extraction approach and applies it to
SLAM. The AGAST algorithm is employed in this technique to detect feature points. Before
feature detection, we perform adaptive image pyramid building and adaptive image
meshing, design adaptive thresholds based on image gray information to better adapt to
environmental information, and then detect keypoints in each region of the image using
different thresholds. After detecting the features, the algorithm utilizes NMS to filter out
the local dense feature points and the quad-tree algorithm to homogenize the features,
which can also reduce corner clusters. Finally, we use the intensity centroid method to
calculate the direction of the feature points, aiming to provide rotation invariance.

After that, we applied it to SLAM and tested it on three public datasets. Our method
performs well on three datasets. The RMSE of the absolute trajectory error achieved by our
approach in the factory scene of the EuRoc dataset is 13.8% lower than that of ORB-SLAM3.
The experimental results show that our approach enhances the performance of SLAM without
increasing the time consumption. It is clear that the method described in this research can
enhance the quality and speed of feature extraction while better adjusting to the environment.

Our algorithm solves some issues and enhances its performance when applied to SLAM,
but not much, because its subsequent feature matching will also significantly affect the
performance of SLAM. Most methods are based on the assumption of a static environment,
omitting the influence of the mismatching of dynamic feature points on SLAM. Due to this
issue, we plan to combine deep learning to distinguish dynamic points from static points in
the image and use different methods to track them in future work so as to improve the ability
of SLAM to cope with complex environments and improve positioning accuracy.
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