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Featured Application: Getting around privacy concerns that arise when evaluating biometric systems
with real biometric samples by introducing privacy-friendly datasets of synthetic fingerprints.

Abstract: The datasets of synthetic biometric samples are created having in mind two major objectives:
bypassing privacy concerns and compensating for missing sample variability in datasets of real
biometric samples. If the purpose of generating samples is the evaluation of biometric systems, the
foremost challenge is to generate so-called mated impressions—different fingerprints of the same
finger. Note that for fingerprints, the finger’s identity is given by the co-location of minutiae points.
The other challenge is to ensure the realism of generated samples. We solve both challenges by
reconstructing fingerprints from pseudo-random minutiae making use of the pix2pix network. For
controlling the identity of mated impressions, we derive the locations and orientations of minutiae
from randomly created non-realistic synthetic fingerprints and slightly modify them in an identity-
preserving way. Our previously trained pix2pix models reconstruct fingerprint images from minutiae
maps, ensuring that the realistic appearance is transferred from training to synthetic samples. The
main contribution of this work lies in creating and making public two synthetic fingerprint datasets of
500 virtual subjects with 8 fingers each and 10 impressions per finger, totaling 40,000 samples in each
dataset. Our synthetic datasets are designed to possess characteristics of real biometric datasets. Thus,
we believe they can be applied for the privacy-friendly testing of fingerprint recognition systems. In
our evaluation, we use NFIQ2 for approving the visual quality and Verifinger SDK for measuring the
reconstruction success.

Keywords: synthetic biometrics; fingerprint synthesis; synthetic datasets; generative adversarial
networks; pix2pix

1. Introduction

The range of applications that make use of biometric user authentication based on
fingerprints is very broad. On the one end, there are uncritical applications, e.g., mobile
phones can be unlocked by scanning a fingertip. On the other hand, there are very sensitive
access-control systems that scan fingers to grant access to bank accounts or governmen-
tal services.

The recent trend of developing fingerprint processing and recognition algorithms
is an application of deep learning, or to be more precise, training of deep convolutional
neural networks (DCNN). In fact, deep learning-based approaches recently outperformed
almost all traditional approaches, even in the domain of fingerprint processing. However,
the training of DCNN models is data-greedy, meaning that a huge number of samples is
needed. This makes collecting a large-scale dataset of biometric samples a prerequisite for
the development of up-to-date fingerprint recognition systems.

Considering interpretability and explainability issues related to DCNN, training net-
works with real biomertic data raises serious privacy concerns because it is hard or almost
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impossible to ensure that no training samples can be induced from the outcomes of a
trained DCNN model [1]. Hence, training datasets need to be privacy-friendly, meaning
that they are harmonized with local regulations on the protection of private data. It is
important to note that in the European Union, biometric data is a subject of protection
by the General Data Protection Regulation (GDPR) and in covered by Article 9. Even
if this article might not apply to using real biometric datasets in academic research, bio-
metric data are considered to be a special case of private data, which means that there
are strong restrictions on collecting, processing, and sharing this type of data. All in
all, the requirements on private data protection make the usage of real biometric data
inconvenient or in some cases even impossible. The eventual conflicts with local data
protection regulations forced many institutions to withdraw their biometric datasets from
public access. For instance, the National Institute of Standards and Technology (NIST)
has withdrawn the fingerprint datasets SD4, SD14, and SD27. Instead, the fingerprint
dataset SD300 has been made publicly available, for which the Federal Bureau of Inves-
tigation (FBI) explicitly confirmed that all subjects presented in the dataset are deceased,
see https://www.nist.gov/itl/iad/imagegroup/nist-special-database-300 (accessed on
4 September 2023).

A simple and inexpensive way to get around privacy concerns related to real fin-
gerprints is to introduce virtual individuals along with their synthetic fingerprints. It is
important that synthetic fingerprints look like real fingerprints, which implies that they
appear realistic to the human eye and that the generated images possess the same statistical
characteristics as real fingerprint images. Moreover, synthetic fingerprints should be anony-
mous, which means that it is impossible to link a synthetic fingerprint to a finger of any
natural person that is presented in the dataset used for training of the fingerprint generator.

With the recent development of generative adversarial networks (GAN), the task of
realistic image synthesis can be considered solved. As demonstrated in [2,3], the synthesis
of random fingerprint images that appear realistic to the human eye and possess visual
characteristics of fingerprints used for generative model training can be conducted by any
advanced NVIDIA GAN architecture such as progressive growing GAN (PGGAN) [4],
StyleGAN [5], or StylaGAN2 [6]. However, these architectures neither ensure anonymity
nor are capable of generating mated impressions (different fingerprints of the same finger).

If the focus is the evaluation of biometric systems, the synthesis of mated impressions
is the most important ability of a generative model. For that, the standard unconditional
GAN architecture should be extended by two mechanisms: conditional generation (taking
fingerprint identity as a condition) and the simulation of intra-class variations. The majority
of fingerprint verification algorithms use minutiae as the means of fingerprint matching.
Hence, the finger’s identity is de facto given by co-allocation of minutiae points. Hence,
the straightforward idea to generate a fingerprint for a particular finger is to reconstruct it
from minutiae. In our previous paper [7], we have demonstrated that the pix2pix architec-
ture is a powerful and scalable conditional GAN (cGAN) that fits well for reconstructing
fingerprint images from minutiae. Reconstruction from minutiae is also a key for fulfilling
the requirements on the anonymity and diversity (as these are introduced in [8]) of synthetic
fingerprints because the minutiae sets can be created in a pseudo-random way or simply
derived from synthetic fingerprints that are known to be anonymous.

The main contribution of this paper is in compiling and providing the research com-
munity with two datasets of realistic synthetic fingerprints. In order to compile datasets,
we combined two concepts: (i) the generation of minutiae sets for mated and non-mated
impressions and (ii) the reconstruction of realistic fingerprints from minutiae. The latter
concept has been introduced in our previous report [7], while the former concept is the key
novelty of this paper. In particular, our novel approach is in combining model-based and
data-driven fingerprint generation techniques to create realistic and anonymous fingerprints
with an option for mated impressions. The high-level view of our approach for compiling
datasets is depicted in Figure 1. The dashed lines refer to the parts introduced in our

https://www.nist.gov/itl/iad/imagegroup/nist-special-database-300


Appl. Sci. 2023, 13, 10000 3 of 25

previous report, while the solid lines and text in bold refer to the new parts firstly reported
in this paper.

Figure 1. A concept of identity-aware synthesis of fingerprints by reconstructing patterns from minutiae.

We first define 500 virtual subjects with 8 fingers each. For each finger, we define a
basic pattern based on global statistics and generate a non-realistic fingerprint with this
basic pattern as a source of minutiae (denoted as non-realistic pseudo-random synthetic
fingerprint). After extracting minutiae, we slightly manipulate minutiae locations and
orientations as well as remove a small subset of minutiae (denoted as pseudo-random minu-
tiae modification) to create nine further sets of minutiae for generating mated impressions.
Next, we synthesize ten impressions per finger, making use of the two selected pix2pix
models from our previous study [7]. In total, each dataset comprises 40,000 samples.

The synthetic fingerprints are assessed using the NIST fingerprint image quality
(NFIQ) 2 tool for approving their visual quality and Verifinger SDK for measuring the
reconstruction success. Subjectively, the fingerprints are almost indistinguishable from
real ones. The synthetic datasets are designed to possess characteristics of real biometric
datasets, so we believe they can be applied for the privacy-friendly testing of fingerprint
recognition systems. Both datasets and generative models are publicly available at https:
//gitti.cs.uni-magdeburg.de/Andrey/gensynth-pix2pix (accessed on 4 September 2023).

Hereafter, the paper is organized as follows: Section 2 provides an overview of related
works. In Section 3, we first elaborate on the generation of pix2pix models and then show
how these models are applied to a compilation of synthetic datasets with mated and non-
mated impressions. In Section 4, we first assess the performance of the generative models
and then approve the utility of our synthetic datasets. In Section 5, we critically discuss
the evaluation results. Section 6 concludes the paper with the summary of results and
future work.

2. Background and Related Work

Having a reliable and robust generator of fingerprint images is a prerequisite for the
compilation of synthetic datasets. This section presents an overview of studies related to
model-based and data-driven fingerprint generation techniques.

2.1. Model-Based Fingerprint Generation

Model-based approaches can be roughly classified in physical and statistical modeling.

2.1.1. Physical Fingerprint Modeling

Physical modeling approaches strive to explain the process of forming ridge-line
patterns on fingertips and simulate the pattern generation process by differential equa-
tions. For instance, in [9], the authors consider the basal layer of the epidermis as an
elastic sheet influenced by neighboring tissues. By modeling the buckling process using
Karman equations, they confirm that ridges are formed in the direction perpendicular to
the direction of greatest stress. They define two factors contributing to stress: resistance
at the nail furrow and flexion creases, and the regression of volar pads during finger-
print development. The fingerprint patterns generated in computer simulations confirm
these hypotheses. In [10], Legendre polynomials are used for modeling fingerprint ridge
orientations, resulting in a discontinuous orientation field. The method is effective for
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modeling singular points by zero-poles of the polynomials but comes with a trade-off in
terms of computational complexity. The study in [11] outlines the limitations of modeling
fingerprints by the phase portraits of differential equations.

2.1.2. Statistical Fingerprint Modeling

In contrast to physical modeling, statistical modeling approaches build on statistical
models trained using publicly available databases of real fingerprints to retain predefined
features, including singular points, orientation fields, and minutiae [12]. In [13], the authors
propose a process that involves generating multiple master fingerprints and subsequently
producing different fingerprint impressions for each master fingerprint. The generation of
master fingerprints comprises four steps: the generation of fingerprint shape, directional
map, density map, and ridge pattern. Likewise, the process of fingerprint impression
generation consists of four steps: ridge average thickness variation, distortion, the addition
of noise, and global rotation. The study in [14] introduces a technique for modeling texture
characteristics of real fingerprints (incl. ridge intensity, ridge width, ridge cross-sectional
slope, ridge noise, and valley noise) to be reproduced in synthetic fingerprints.

The approach from [13] is implemented and advanced in the commercial tool SFinGe [15],
which is de facto the state-of-the-art tool for statistical modeling of fingerprints. It starts with
defining a fingerprint area and estimating orientation and frequency maps from a given
basic pattern and singularity points. Then, Gabor filters are applied to iteratively draw
ridge lines along the orientation lines, resulting in a master-fingerprint. Minutiae points are
randomly sampled based on constructed ridge lines. Next, the physical characteristics of
fingers and of sensor characteristics, as well as the contact between fingers and the sensor
surface, are simulated by applying further filters. As a result, the fingerprint patterns appear
more realistic. Anguli [16] is an open-source re-implementation of the core functionality
of SFinGe. The tool is available at https://dsl.cds.iisc.ac.in/projects/Anguli (accessed on
4 September 2023) and can be perfectly utilized for the synthesis of idealistic non-realistic
fingerprint patterns.

Although the aforementioned model-based approaches can be applied for the compila-
tion of large-scale fingerprint databases, they generally suffer from lacking realism, meaning
that synthetic fingerprints are often visually distinguishable from real fingerprints [17].

2.2. Data-Driven Fingerprint Generation

In contrast to fingerprint modeling, data-driven approaches rely on learning the
appearance of fingerprints from data. The most commonly used technique for realistic data
synthesis is the generative adversarial network, or simply GAN.

2.2.1. Basics of GAN

GANs were originally introduced in [18]. GANs belong to the family of deep neural
networks as they consist of two deep neural networks called generator (G) and discrimina-
tor (D). In traditional GANs, G obtains a random latent vector and produces a synthetic
sample that should resemble the training samples, while D decides whether the given
instance is original or synthetic. The training of G and D is done interchangeably based
on an objective function. Here, the objective of G is to produce synthetic instances that are
able to fool D. The objective of D is to make no errors in discriminating between real and
synthetic instances. The weights of G and D are updated via back propagation.

An input of G is a random latent vector Z sampled from the uniform or normal
distribution. Given Z, G generates a synthetic instance. During GAN training, Z is not
controlled. After training, the latent space can be explored by modifying inputs and
observing the changes in outputs. For producing more diverse outputs, the authors of [5]
propose to add noise.

The role of D is in guiding G to produce more realistic data. D acts as a traditional
binary classifier. It obtains either a training sample (labeled as real) or a synthetic sample
generated by G (labeled as fake). The outcome of D is the adversarial loss used to adapt
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both G and D. After the GAN training is finished, D is dropped and G is used as a
standalone tool.

In the initial work [18], G contains only fully connected layers. As suggested in [19],
the original GAN struggles to process high dimensional data such as images because D
always dominates the scene. In order to work with images, the authors of [20] proposed
to use deep convolutional neural networks (DCNNs) in the GAN architecture. Recently,
NVIDIA research group proposed several advanced architectures such as PGGAN [4],
StyleGAN [5], StylaGAN2 [6], and StylaGAN3 [21] that still dominate the field.

In order to control the GAN generated output, the conditional GAN (cGAN) archi-
tecture is introduced in [22]. Instead of feeding a random latent vector to the generator,
the GAN is fed with some meaningful information called “condition”. This is how GAN
is guided to generate specific data. CycleGAN [23] and pix2pix [24] are two popular and
effective cGAN architectures for image-to-image translation.

2.2.2. Fingerprint Generation via GANs

According to [25], GANs outperform statistical modeling at generating fingerprint
images by capturing their underlying probability distribution and replicating the over-
all appearance from training samples, rather than modeling fingerprint attributes. Al-
though GANs enhance the visual quality of generated samples, they fall short of accurately
capturing the crucial fingerprint characteristics due to their reliance on random inputs
during synthesis.

Finger-GAN proposed in [26] is the very first study that utilizes a GAN-based frame-
work to create synthetic fingerprint images. The proposed approach uses the deep con-
volutional generative adversarial network (DCGAN) [20] with a modified loss function.
The primary goal is that the lines in created fingerprint images are connected, just like they
are in real fingerprints. The network is trained based on two fingerprint databases finger-
print verification competition (FVC) 2006 [27] and The Hong Kong Polytechnic University
(PolyU) [28], making use of data augmentation. The performance is validated using the
Frechet inception distance (FID) [29].

Research in [30] proposes a GAN model with loss-doping, which helps prevent a
mode collapse and improves convergence. The generator incorporates residual connections,
enhancing stability throughout the training process. Data augmentation techniques are
employed. Due to hardware limitations, the synthesized fingerprints are limited to the size
of 256 × 256 pixels. However, it is stated that the concept can be extended to synthesize
bigger images.

In [2,3], it is demonstrated how the common NVIDIA GAN architectures such as
PGGAN, StyleGAN, or StyleGAN2 can be applied to the random generation of partial and
full realistic fingerprints.

The study in [31] proposes an approach of synthesizing high-resolution fingerprints
of up to 512 × 512 pixels using the improved Wasserstein GAN (IWGAN) [32] and a
convolutional autoencoder. The methodology consists of two phases: training the convolu-
tional autoencoder and then training the IWGAN. The autoencoder includes an encoder to
embed the input fingerprint and a decoder to reproduce the original fingerprint from the
embedded vector. The IWGAN is trained with the generator initialized using the decoder
part of the autoencoder. The fingerprints generated in this way lack uniqueness. This issue
is addressed in [33] by incorporating the identity loss, guiding the generator to synthesize
fingerprints corresponding to more distinct identities.

In [34], it is proposed to combine traditional statistical modeling with CycleGAN to
create master-fingerprints with level three features (sweat pores) and make them appear
realistic by performing style transfer with the image-to-image translation. This approach
allows for producing several instances of one finger.

The most recent approach utilizing GANs for fingerprint synthesis is PrintsGAN [17].
The synthesized samples closely replicate the minutiae quantity, type, and quality distribu-
tions observed in target fingerprint datasets. The proposed method gives increased control
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over the synthesis process and enhances the realism of rolled fingerprints in high-resolution
images with a size of 512 × 512 pixels.

2.3. Fingerprint Reconstruction from Minutiae

Reconstructing fingerprints from the minutiae templates or the inversion of fingerprint
templates was initially addressed in 2001 [35]. However, intensive research in this area
started in 2007 by [36,37]. Regarding the model-based approaches, the process is technically
similar to fingerprint synthesis with the only difference being that singularity points and
the orientation map are estimated from minutiae and not vice versa. The most common
approach in [36] estimates the orientation map using a modified model from [38] and
applies Gabor filtering iteratively, starting from minutiae locations. The final rendering step
enhances realism. In [37], a fingerprint image is generated from a skeleton image, which is
reconstructed from minutiae. The process involves estimating an orientation map using
minutiae triplets and drawing streamlines starting from minutiae and border points. In [39],
a unique method is introduced where a phase image is reconstructed from the minutiae
template and subsequently converted into a fingerprint image. In [40], an alternative
approach is presented, wherein ridge patterns are reconstructed using patch dictionaries.
This method enables the synthesis of idealistic ridge patterns that clearly lack realism.

Relying on the assertion that real fingerprints exhibit non-random distributions of
minutiae, with different fingerprint types showcasing distinct patterns, the authors in [25]
propose an integrated framework that combines fingerprint reconstruction and synthesis.
They begin with StyleGAN2 training from the NIST SD14 database [41] to facilitate fin-
gerprint synthesis with the generator part of the model. Then, DCNN (referred to as the
minutiae-to-vector encoder) is trained to produce embeddings that act as an input for the
GAN generator. By steering latent vectors, visual characteristics of fingerprints such as dry
skin artifacts can be controlled.

The study in [42] proposes approaches for fingerprint reconstruction from minutiae
and from deep neural network embeddings and compares them to each other. The ef-
fectiveness of inversion attacks is evaluated, and it is suggested that reconstruction from
embeddings is less successful than from minutiae.

The application of pix2pix to fingerprint reconstruction from minutiae was first intro-
duced in [43]. The original challenge is transformed into an image-to-image translation
task. First, minutiae points are depicted on a minutiae map, an image visually representing
all essential minutiae information. Then, a minutiae map is translated to a fingerprint
image. Research in [7,44] advances the concept of [43] and demonstrates state-of-the-art
results in fingerprint reconstruction. A new minutiae encoding approach is introduced,
and it is shown in cross-sensor and cross-dataset experiments that the pix2pix models
have potential to generalize [44] effectively. However, the original pix2pix [24] can only
handle images of 256 × 256 pixels and lower. In [45], pix2pixHD is proposed to handle
larger images. Our previous study in [7] introduces a simple yet effective method to handle
512 × 512 pixel images. In contrast to [45], we extend both the discriminator and generator
of the original pix2pix architecture by adding one convolutional layer. We also proposed
an alternative minutiae encoding approach and trained several generative models based
on real and synthetic fingerprint data.

The work in [7] is an important component of the work presented in this paper
enabling generation of large-scale datasets of mated and non-mated fingerprints.

Several aforementioned fingerprint synthesis techniques were applied to the com-
pilation of synthetic datasets. However, only a few of them comprise a large amount
of realistic full fingerprints at their native resolution of 500 ppi and also contain mated
impressions. The most widespread fingerprint datasets used in different years for the fin-
gerprint verification competition (FVC2000 [46], FVC2002 [47], and FVC2004 [48]) contain
only 880 synthetic samples each. The L3-SF dataset created in [34] contains 7400 partial
fingerprints. The fingerprint dataset from Clarkson University [3] contains 50,000 full
non-mated fingerprints. The only existing synthetic dataset surpassing our datasets in
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terms of a fingerprint number is the MSU PrintsGAN dataset [17] with 525,000 images of
35,000 identities (fingers) with 15 impressions each. However, the fingers in PrintsGAN
are not assigned to virtual subjects and the frequency of the occurrence of particular basic
patterns is not addressed.

3. Research Methodology

The research presented in this paper comprises two parts: the training of gener-
ative models that will further assist us in generating fingerprints of virtual subjects
(Section 3.1) and the compilation of two exemplary biometric datasets of synthetic fin-
gerprints (Section 3.2). Note that the former part is mostly derived from our previous
work [7] and replicated here to simplify the understanding of the complete approach.

While defining the pipeline for the generation of datasets of synthetic images ap-
propriate for the evaluation of fingerprint matching algorithms, we have in mind four
objectives: (1) appropriate image resolution, (2) the realistic appearance of generated fin-
gerprints, (3) the anonymity of generated fingerprints, and (4) the ability to produce mated
fingerprints.

The former two objectives are covered by the design of the pix2pix models trained in
our previous work [7], which allow for reliable fingerprint reconstruction from minutiae.
To cover the latter two objectives, we propose to apply the Anguli tool to generate random
non-realistic fingerprints with predefined basic patterns. These non-realistic fingerprints
are used as a source of minutiae from which realistic fingerprints are generated using the
pix2pix models. In doing so, we ensure the anonymity of the resulting synthetic fingerprints.
In order to produce several mated impressions for one finger, we propose to modify the
minutiae extracted from Anguli fingerprints to preserve the identity of the finger and use
these modified minutiae sets as an input for pix2pix models. In doing so, we ensure that
the outcomes of a pix2pix model are the mated fingerprints, if the transformations applied
to minutiae locations and orientations are in a certain range.

3.1. Training of Generative Models

In the following, we formally describe the process of constructing our generative
models.

3.1.1. Problem Statement

Let I be a fingerprint image and L : Li = (xi, yi, ti, θi) be the set of minutiae where
(xi, yi) is a location, ti is a type (either bifurcation or ending), and θi is an orientation of the
ith minutiae. Our objective is to train a cGAN generator G so that it is able to generate a
fingerprint image I∗ from a minutiae set L, or formally I∗ = G(L). The resulting synthetic
fingerprint image I∗ should: (i) depict a full plain fingerprint at a resolution of 500 ppi,
(ii) appear realistic to the human eye, and (iii) yield a high matching score when it is
biometrically compared to the original fingerprint image I.

The first requirement (i) will be automatically fulfilled if we generate images of
512 × 512 pixels. In our estimation, the realistic appearance (ii) is proven indirectly
by checking the NFIQ2 score [49] of a fingerprint image. For the purpose of biometric
comparison of fingerprints (iii), we decided for Neurotechnology Verifinger SDK v12.0 [50].

Note that minutiae extraction can be conducted by any arbitrary tool. For the sake of
simplicity, we use the same tool as for biometric fingerprint matching (Verifinger SDK). Let
MinExt denote the minutiae extraction function; then, the process can be formalized as
L = MinExt(I).

3.1.2. Minutiae Map Generation

The most crucial step in pix2pix-based fingerprint reconstruction is the transformation
of a minutiae template to an image depicting minutiae. We call such an image a minutiae
map. This process is further referred to as minutiae encoding and visualized in Figure 2. Let
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M denote a minutiae map and Enc the minutiae encoding function; then, M = Enc(L) =
Enc(MinExt(I)).

Figure 2. Construction of a minutiae map. Minutiae extraction is followed by minutiae encoding
either by “directed lines” (DL) or by “pointing minutiae” (PM). Black color is used for endings and
white for bifurcations. Minutiae orientation is given by the angle θi. The fingerprint is from the
Neurotechnology CrossMatch dataset [51].

In the initial work on application of pix2pix to fingerprints [43], minutiae are encoded
by gray squares. Formally, we encode every minutiae Li in the minutiae list L by drawing a
gray square of a fixed size and centered at (xi, yi) in an image of the same size as the original
fingerprint image. The intensity of a gray value encodes the minutiae orientation θi. The
distribution of colors and the size of a square may vary depending on an implementation.
However, shades of gray used as an orientation encoding are not optimal because the slight
difference in colors may dilute during convolutions.

In [7], we focused on two alternative minutiae encoding approaches: “directed lines”,
also referred to as DL, and “pointing minutiae”, also referred to as PM.

Directed Lines (DL). Each minutiae Li from the minutiae list L is encoded by a
directed line, which starts at (xi, yi) and is pulled in the direction defined by the angle θi.
Bifurcations are represented by white lines (intensity value of 255) and endings by black
lines (intensity value of 0). The intensity value for the background of a minutiae map is 128.
This selection of intensity values is not random. The idea is to underscore the dualism of
bifurcations and endings. It is claimed that directed line encoding outperforms gray square
encoding for our purpose. For 500 ppi fingerprint images, we use a line with the length of
15 pixels and the width of 4 pixels.

Pointing Minutiae (PM). Pointing minutiae encoding can be seen as a combination
of squares and directed lines. For a minutiae Li from the minutiae list L, there is a square
centered at (xi, yi) and a line pulled in the direction defined by the angle θi. As in directed
line encoding, bifurcations are represented by white lines (intensity value of 255) and
endings by black lines (intensity value of 0). The intensity value for the background of a
minutiae map is 128. As for directed line encoding, pointing minutiae encoding underscore
the dualism of bifurcations and endings resulting in invariance to color inversion. For
500 ppi fingerprint images, we use a line with a length of 15 pixels and a width of 4 pixels.
The square size is 7 × 7 pixels.

3.1.3. Pix2pix Architecture

Pix2pix is a conditional GAN architecture proposed for image-to-image translation.
Examples are converting satellite views to street views, summer landscape to winter
landscape, or daylight pictures to night pictures. In our considerations, the generator G
of pix2pix converts the minutia map M derived from a minutiae list L as described in
Section 3.1.2 to a synthetic fingerprint image I∗, see Equation (1).
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I∗ = G(M) = G(Enc(L)) = G(Enc(MinExt(I))) (1)

The basic characteristics of the pix2pix are that it uses convolutional neural network
(CNN) layers, which consist of strided convolutions. Especially for compressing the image
data, the stride, which is a parameter of CNN, helps in determining how many pixels
should be passed moving over the given image. Even though pooling can be used for down-
sampling the image, striding has the advantage that it can learn the parameters by itself
through training. The network also uses the normalization technique, which helps to reduce
model training time and an internal covariance shift. The standard approach is using batch
normalization in G to make a gradient flow smoother for handling overfitting. The network
also uses the dropout layer, which randomly drops out some neuron outputs in the layers.
The activation functions are either ReLU or Leaky-ReLU for achieving non-linearity.

Generator with Skips. The role of G is to take a minutiae map M as an input and
generate the fingerprint I∗ as close to the original fingerprint I as possible.

The backbone of G is the U-Net network introduced in [52]. The proposed U-Net
mainly contributes to extending the architecture [53], which also converges with good
metrics for a small number of training samples. There are other proposed approaches
where the network architecture is referred to as Encoder-Decoder [54,55]. In such networks,
the encoder takes the input, progressively down-samples it, compresses it into a bottle-
neck representation, and progressively up-samples it. Here, the key information is the
bottleneck representation. In contrast to such networks, the U-Net-based networks have
skip connections, meaning that the contracting layers (down-sampling) are concatenated
with corresponding expansion layers (up-sampling). The information that is being passed
through the contracting path helps for localizing high resolution features. The generator
G is visualized in Figure 3. The contracting layers apply “Conv 2d”, “Instance-Norm”,
and “Leaky-ReLU” operations, while the expansion layers apply “Conv-Transpose 2d” and
“Instance-Norm” operations. The very first and very last layers apply no normalization.
The very last layer finishes the processing with “Tahn” activation. Even though the pro-
posed generator G utilizes U-Net, no image modifications such as cropping, corner-cut,
etc., are made at the contracting path, meaning that the input and output dimensions are
the same.

The generator loss comprises adversarial loss and L1 loss, see Equation (2).

LossG = LossAdv + LossL1 (2)

The adversarial loss is derived from the discriminator D and is computed with binary
cross entropy (BCE), see Equation (3).

LossAdv = BCE(D(G(M))) (3)

The L1 loss is computed by taking the mean absolute error (MAE) between the original
image I and generator synthesized image I∗ and multiplied with a penalty factor λ; see
Equation (4). λ helps to reduce the visual artifacts in some applications.

LossL1 = λ ·MAE(I∗, I) (4)
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Figure 3. Pix2pix generator architecture.

PatchGAN-based Discriminator. The discriminator D that is used in pix2pix work
is also commonly known as the PatchGAN discriminator (see Figure 4). The architecture
of D is a sequence of convolutional layers. Each layer applies “Conv 2d”, “Batch-Norm”,
and “Leaky-ReLU” operations. In the very first layer, “Batch-Norm” is not present. While
in traditional GAN, the discriminator classifies the given input as fake or real by a single
output neuron unit, the PatchGAN discriminator makes a decision based on the majority
voting of several decisions made at an image patch level. A single patch of the input is
propagated through the network and then mapped to a single output neuron unit. The same
happens to all image patches. The advantage of propagating forward in such a way is
that we end up with a network that has fewer parameters. Moreover, the inference can be
performed faster as patches can be convolved independently in parallel with less memory
consumption. In the formal description of D (see Equation (5)), N denotes the total number
of patches in the input, and D(Pij) denotes the discriminator’s prediction for the patch
located at (i, j) within the input tensor, which comprises a fingerprint and minutiae map.

D(I|I∗, M) =

{
1 if 1

N ∑i,j D(Pij) ≥ 0.5
0 otherwise

(5)

The patch size varies with reference to the network parameters. However, the patch
size is defined based on the network parameters. The individual patch is also referred to as
a receptive field. The overall discriminator D and a single patch convolution can be seen in
Figure 4. Please note that in contrast to the original network in [24], which accepts at most
256× 256 pixel images, our network accepts 512× 512 pixel images as input. Consequently,
the patch size is 142 × 142, which is much larger than the original paper.
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Figure 4. Pix2pix PatchGAN discriminator: Every layer includes “Conv 2d” followed by “Batch-
Norm” and “Leaky-ReLU”. In the very first layer, “Batch-Norm” is not present.

For every single training instance, the discriminator loss is the sum of binary cross
entropy (BCE) values of original and synthesized images. Given that I and M are sets of
original images and their minutiae maps, respectively, the overall loss of D is given by
Equation (6).

LossD = BCE(D(I)) + BCE(D(G(M))) (6)

3.1.4. Concept Overview

We finalize the description of the concept of applying a pix2pix network (image-
to-image translation) to the task of fingerprint reconstruction from minutiae maps, with
Figure 5 depicting a diagram that gives a schematic description of all components and
interactions between them.

Figure 5. An overview of the fingerprint reconstruction concept based on a pix2pix network. The fin-
gerprint is from the Neurotechnology CrossMatch dataset [51].
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3.1.5. Technical Aspects of Model Training

As a backbone for our generative models, we cloned the pix2pix network from the
following repository: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix (ac-
cessed on 4 September 2023) and extended both the generator and discriminator architec-
tures by one convolutional layer. This step enables training and further synthesis with full
fingerprints at a native resolution in 512 × 512 pixel images. The modified pix2pix network
is available at https://gitti.cs.uni-magdeburg.de/Andrey/gensynth-pix2pix (accessed on
4 September 2023).

For training, we use the desktop PC with the AMD Ryzen 9 3950X 16-Core CPU
(3.5 GHz) and 128 GB RAM. It has two NVIDIA Titan RTX GPUs with 24 GB VRAM each.

Training Dataset. Considering the requirements mentioned in the beginning of
Section 3.1, we decided to use high-fidelity plain fingerprints for training our generative
models. Our primary focus is on fingerprints captured by optical biometric sensors similar
to CrossMatch Verifier 300 [56].

There are three subsets in our training dataset:

1. The 408 samples from the Neurotechnology CrossMatch dataset. The images are
license free and can be downloaded from:
https://www.neurotechnology.com/download.html (accessed on 4 September 2023).

2. The 880 samples from the FVC2002 DB1 A+B dataset. This dataset has been created
for the Second International Fingerprint Verification Competition (FVC2002) back in
2002:
http://bias.csr.unibo.it/fvc2002/databases.asp (accessed on 4 September 2023).
Note that in contrast to other two datasets, the fingerprints in FVC2002 DB1 A+B are
from Identix TouchView II and not from CrossMatch Verifier 300.

3. The 880 samples from the FVC2004 DB1 A+B dataset. This dataset was created for the
Third International Fingerprint Verification Competition (FVC2004) back in 2004:
http://bias.csr.unibo.it/fvc2004/databases.asp (accessed on 4 September 2023).

The total number of samples is 2168.
In order to increase the size and diversity of our training dataset, we perform data

augmentation. Fingerprint images are horizontally flipped and rotated with eight angles
of rotation: ±5°, ±10°, ±15°, and ±20°. Calculating together the original images, flipped
images, rotated original, and rotated flipped images, we increase the number of training
samples by a factor of 18. After data augmentation, the total number of samples is 39,024.
In the remainder of the paper, we refer to this dataset as “aug39k”.

Training Hyperparameters. After abundant experimentation with different training
hyperparameters, we ended up with a learning rate of 0.002 and 120 epochs, the first
60 epochs with a constant learning rate, and 60 epochs with linear decay of the learning
rate. In our very first training runs, we trained models with batch normalization. The best
results have been achieved with the batch size of 64, but the resulting fingerprint patterns
were quite noisy. Especially the background, which is expected to be blank containing only
white pixels, exhibited a lot of noise. For this reason, batch normalization was replaced by
instance normalization, as suggested in [57]. The noise does not appear in the background
anymore, but, based on a subjective analysis, the realistic appearance of ridge lines has
worsened. The reason for the instance normalization outperforming batch normalization
might be the insufficient batch size as well as the fact that the inputs of the generator are
minutiae maps where pixel statistics do not vary highly in terms of intensity values.

Based on the subjectively best visual performance, we picked one model trained with
a batch normalization and a batch size of 64, for which “directed line” minutiae encoding
was applied. This model is further referred to as “aug39k_DL_BN_60+60ep”.

Based on the experiment from [7], we also picked the model with the best fingerprint
reconstruction performance with acceptable visual performance. This model had been

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://gitti.cs.uni-magdeburg.de/Andrey/gensynth-pix2pix
https://www.neurotechnology.com/download.html
http://bias.csr.unibo.it/fvc2002/databases.asp
http://bias.csr.unibo.it/fvc2004/databases.asp
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trained with an instance normalization in only 15 epochs, making use of “pointing minutiae”
encoding. We further refer to this model as “aug39k_PM_IN_15ep”.

3.2. Compilation of Synthetic Datasets

The high-level overview of the dataset compilation process in shown in Figure 1. We
generate our synthetic fingerprints using a combination of model-based and data-driven
approaches, which allows for more realistic fingerprints with all necessary characteristics.
We first utilize a model-based fingerprint generation tool Anguli as a source of minutiae
templates. The fact that Anguli fingerprints do not appear realistic to the human eye plays
no role because the only information used is the set of minutiae derived from a pattern.
Then, we extract minutiae with the Verifinger SDK [50], convert a minutiae template
to a minutiae map using either DL or PM encoding, and finally apply one of the two
aforementioned generative models to synthesize realistic fingerprints.

The next important step is taking into account the natural distribution of fingerprint
patterns among virtual subjects. The intuition behind this is that not all patterns are equally
frequent and that some combinations of patterns come together more frequently than
other combinations, see, e.g., http://fingerprints.handresearch.com/dermatoglyphics/
fingerprints-5-fingers-distributions.htm (accessed on 4 September 2023). It is well known
that the most frequent pattern is the ulnar loop (UL), followed by whorl (WH). Arches
(AR) and tented arches (TA) are rare patterns that usually appear on all fingers of a subject.
Radial loops (RL) are also very rare; they usually appear on index fingers in combination
with ulnar loopson all other fingers.

We first define 500 virtual subjects with 8 fingers each. Thumbs are disregarded due
to a significantly different shape. Table 1 shows the distribution of the most frequent
fingerprint patterns over the fingers. Summing up the patterns in this table, we come up
with 44 UL, 4 RL, 16 WH, 8 AR, and 8 TA fingerprints for 10 subjects. Exactly the same
distribution of basic patterns is scaled up to 50 subjects, resulting in 4000 fingerprints.
The distribution of basic patterns in our synthetic datasets is visualized in Table 2).

Table 1. Common distributions of basic fingerprint patterns over fingers. UL—ulnar loop, RL—radial
loop, WH—whorl, AR—arch, and TA—tented arch.

Num. of Left Hand Right Hand

Subjects Index Middle Ring Pinky Index Middle Ring Pinky

50 UL UL UL UL UL UL UL UL

50 RL UL UL UL RL UL UL UL

50 WH UL UL UL WH UL UL UL

50 WH WH WH WH WH WH WH WH

50 UL UL WH UL UL UL WH UL

50 AR UL UL UL AR UL UL UL

50 WH WH UL UL WH WH UL UL

50 AR AR UL UL AR AR UL UL

50 AR TA TA TA AR TA TA TA

50 RL TA UL UL RL TA UL UL

http://fingerprints.handresearch.com/dermatoglyphics/fingerprints-5-fingers-distributions.htm
http://fingerprints.handresearch.com/dermatoglyphics/fingerprints-5-fingers-distributions.htm


Appl. Sci. 2023, 13, 10000 14 of 25

Table 2. Distribution of basic patterns in our synthetic datasets.

Basic Pattern Ulnar Loop Radial Loop Whorl Arch Tented Arch
(UL) (RL) (WH) (AR) (TA)

Absolute # 44 × 50 = 2200 4 × 50 = 200 16 × 50 = 800 8 × 50 = 400 8 × 50 = 400

Relative # 55% 5% 20% 10% 10%

An ulnar loop on a right hand is represented by a left loop fingerprint image just as an
ulnar loop on a left hand is represented by a right loop image. This means that considering
the equal proportion of ulnar/radial loops on the right and left hands, we need to generate
the same number of right and left loop images. In particular, we need 2400 loops in total,
split into 1200 right and 1200 left loops.

For the purpose of basic pattern generation, we apply Anguli to generate 1200 right
loops, 1200 left loops, 800 whorls, 400 arches, and 400 tented arches. According to Table 1,
the fingerprints are distributed between 500 subjects and their eight fingers: right hand
index, middle, ring, and pinky fingers; and left hand index, middle, ring, and pinky fingers.
This operation is covered by the first two blocks in Figure 1.

Next, we extract minutiae information for all fingerprints using Verifinger SDK [50].
Since captured fingerprints may not be perfectly aligned or positioned, meaning a finger-
print could be shifted from the image center, slightly rotated, or only partially presented
during the sensor capture, we simulate the intra-class variations by creating an addi-
tional nine impressions for each virtual finger. This operation is called “pseudo-random
modification” in Figure 1.

The first fingerprint impression is always the one generated from minutiae extracted
from the original Anguli pattern. The other nine impressions are generated from minutiae
that undergo random affine transformations or minutiae side cuts. To be more precise,
minutiae modifications include:

• Random rotation varying from −20 to +20 degrees with a step of 1 degree
• Random shift varying from −20 to 20 pixels regarding x-axis and y-axis
• Random cut of 0% to 15% of minutiae points at one of eight sides: top-left, top,

top-right, left, right, bottom-left, bottom, and bottom-right

Note that the transformations are applied not to minutiae maps but directly to minutiae
coordinates and orientations in a minutiae template.

The addition of mated fingerprints expands the dataset of synthetic fingerprints from
4000 samples to 40,000 samples. Note that both minutiae maps for original Anguli patterns
as well as minutiae maps for mated impressions are generated very quickly. The same
applies for the reconstruction of realistic fingerprints from minutiae maps. This means
that the number of fingerprints in a synthetic dataset can be significantly up-scaled in a
reasonable amount of time. Our synthetic datasets of 40,000 samples can be seen as an
example that demonstrates the validity of the proposed technique for the compilation of
large-scale synthetic datasets.

Our first synthetic dataset is created by applying the “aug39k_DL_BN_60+60ep”
model to the aforementioned set of 40,000 minutiae templates. Minutiae templates are
converted to minutiae maps using “directed line” encoding. The dataset is further referred
to as AMSL SynFP P2P v1.

Our second synthetic dataset is created by applying the “aug39k_PM_IN_15ep”
model to the aforementioned set of 40,000 minutiae templates. Minutiae templates are
converted to minutiae maps using “pointing minutiae” encoding. The dataset is further
referred to as AMSL SynFP P2P v2.

The last processing step is cutting the central region of 300 × 420 pixels from the
generated 512 × 512 pixel images. In doing so, the irrelevant border regions are dropped,
but the resulting images still contain full fingerprints.
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The fingerprints in both datasets are anonymous by design. The design of our genera-
tive models ensures the realistic appearance of fingerprint patterns, or to be more precise
their resemblance with real plain fingerprints captured by a CrossMatch Verifier 300 sensor.
The diversity of inter-class samples is ensured by the design of the Anguli tool, and the
sufficient variability and non-excessive diversity of intra-class samples will be confirmed
in Section 4.2.

4. Experimental Studies

Our experimental studies have two objectives: (i) the assessment of the pix2pix models,
including the effectiveness of the minutiae encoding approaches (directed lines vs. pointing
minutiae), which is mostly adapted from our previous report [7]; and (ii) the analysis and
discussion of the utility of our synthetic datasets, which is one of the main contributions of
this paper.

4.1. Evaluation of Generative Models

In our study, the evaluation of generative models is carried out not by analyzing
the design and the backbone network architecture establishing theoretical abilities of the
models but rather empirically by analyzing the outcomes of the generative models.

4.1.1. Evaluation Metrics

There are two aspects that need to be confirmed in the evaluation of the synthesized
samples: their realism and their biometric resemblance to the minutiae origins.

In our considerations, the realism of synthetic fingerprints is equal to their visual
quality and is estimated by calculating the NFIQ2 scores [49]. Note that the primary
objective of NFIQ2 scores is to estimate the utility of fingerprints or, in other words, their
effectiveness for the purpose of user authentication. However, it is known that NFIQ2
scores correlate well with the visual quality of fingerprints. The NFIQ2 scores range from 0
to 100, with higher scores indicating higher utility. Fingerprints with scores above 45 are
considered perfect, while scores above 35 indicate good fingerprints. Fingerprints with
scores lower than 6 are deemed useless due to poor quality.

The biometric resemblance with the minutiae origin is also referred to as reconstruc-
tion success. In order to measure reconstruction success, we apply VeriFinger SDK [50]
to calculate matching scores between reconstructed synthetic samples and the origins of
minutiae. Given a pair of fingerprints, the Verifinger’s outcome is a similarity score ranging
from 0 to ∞, with 0 for maximal dissimilarity. The decision threshold for confirming that
fingerprints belong to the same identity is set based on the desired security level of a
biometric system. The threshold is set in a way that the false acceptance rate (FAR) does not
exceed 0.1%, 0.01%, or 0.001%, with lower values indicating higher security. The Verifinger
thresholds at the aforementioned FAR levels are 36, 48, and 60, respectively.

For each generative model under evaluation, we calculate the fingerprint reconstruc-
tion success rate as the ratio of fingerprint pairs (synthesized vs. origin) for which matching
scores are higher than a pre-defined threshold in all tested fingerprint pairs. For the purpose
of comparability with other studies, this ratio is also referred to as the true acceptance rate
(TAR). In state-of-the-art studies, two types of TAR are estimated: Type 1 and Type 2. Type
1 TAR involves calculating matching scores between reconstructed and original finger-
prints, while Type 2 TAR involves calculating matching scores between the reconstructed
fingerprint and other impressions of the original fingerprint.

4.1.2. Evaluation Protocol

We use two datasets containing 880 samples each. These datasets are completely
detached from datasets used for the training of our generative models.

The first dataset has been created using Anguli [16]. Due to the idealistic ridge line
patterns in this dataset, we expect no minutiae localization errors with any minutiae
extractor. Hence, the idealistic fingerprint reconstruction performance can be estimated.
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The second dataset is the FVC2004 DB2 A+B dataset collected for the Third Interna-
tional Fingerprint Verification Competition, which comprises real fingerprints collected
with an optical scanner URU 4500. URU fingerprints are very diverse, including many
noisy or even partially corrupted patterns. Such fingerprints are very challenging for any
minutiae extractor, implying many minutiae localization errors. Moreover, the fingerprints
captured with URU and CrossMatch scanners are very different from each other. This fact
might lead to additional fingerprint reconstruction errors. All in all, with this dataset we
estimate a pessimistic fingerprint reconstruction performance. Samples from Anguli and
URU datesets are shown in Figure 6.

Figure 6. (Top row): fingerprints generated by Anguli; (bottom row): URU fingerprints from the
FVC2004 DB2 A+B dataset.

Both datasets are used as sources of minutiae templates from which the generative
model has to reconstruct fingerprint images. The NFIQ2 scores of these datasets are seen as
a reference for the visual quality of fingerprints. The reconstruction success is estimated by
matching fingerprints from these datasets with their reconstructed counterparts.

4.1.3. Evaluation Results

The evaluation result of the aug39k_DL_BN_60+60ep and aug39k_PM_IN_15ep mod-
els are mostly derived from our previous paper [7], whereby the aug39k_DL_BN_60+60ep
model is not directly addressed in the paper but has been excessively evaluated in ex-
periments conducted to obtain the optimal training hyperparameters. In order to com-
pare “directed line” (DL) and “pointing minutiae” (PM) encoding approaches, we report
the evaluation results for three model snapshots (15, 30, and 55 training epochs) with
aug39k_PM_IN and aug39k_PM_DL generative models.

Realism of Synthetic Fingerprints. First, we discuss the NFIQ2 scores of the test
datasets, which are shown in Figure 7. The NFIQ2 scores of original Anguli (left column)
and URU fingerprints (right column) are taken as a reference. Our general observation is
that the visual quality of the reconstructed fingerprints mostly depends on training samples.
Since we use high-fidelity CrossMatch fingerprints for training, the mean NFIQ2 values in
all cases are higher than 40. The quality of samples from which minutiae were extracted has
an indirect influence on the visual quality of the reconstructed fingerprints, meaning that
the missed or falsely localized minutiae may worsen the realism of a fingerprint pattern.
We can clearly see that the distribution of NFIQ2 scores of Anguli fingerprints is narrower
than those of reconstructed fingerprints, but the mean values of all distributions are very
close, indicating the similar visual quality of fingerprints. In contrast, the distribution
of NFIQ2 scores of URU fingerprints is broader and shifted to the left, indicating that
the visual quality of URU fingerprints is significantly lower than that of reconstructed
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fingerprints. These observations apply to all generative models independently of the
snapshot selection. Based on diagrams, no conclusion can be made about the superiority of
the “directed line” or “pointing minutiae” encoding approach. However, depending on
the encoding approach, different snapshots should be preferred if the goal is to obtain the
lowest number of patterns with low NFIQ2 values. This fact is evident if reconstructing
from URU fingerprints. In the case of “directed line” encoding, the model snapshot with
55 training epochs, and in the case of “pointing minutiae” encoding, the model snapshot
with 15 training epochs, has no secondary peak in the low range of NFIQ2 values. We thus
intuit that models with “directed line” encoding may benefit from further training.

Figure 7. NFIQ2 score distributions for Anguli (left column) and URU (right column) fingerprints
and their reconstructed counterparts with the aug39k_DL_IN (top row) and aug39k_PM_IN (bottom
row) models, i.e., their snapshots at 15, 30, and 55 training epochs. DL—“directed line” encoding,
PM—“pointing minutiae” encoding.

Reconstruction Success. Second, we report the success of fingerprint reconstruction.
For that, the original fingerprints from the test sets are compared with their reconstructed
counterparts by means of the Verifinger matching algorithm. Referring to the metrics intro-
duced in Section 4.1.1, TAR Type 1 is used. The reconstruction rates are reported in Table 3
for both the idealistic Anguli fingerprints (an expected upper bound of reconstruction rates)
and very challenging URU fingerprints taken from the FVC2004 DB2 A+B dataset (the
estimation of pessimistic reconstruction rates). An important point to note is that URU
samples can be quite challenging for minutiae extractors. Therefore, we have dropped the
samples where Verifinger fails to extract even a single minutiae point.

We can also observe that NFIQ2 score distributions of fingerprints reconstructed from
URU samples have tails at the lower end. We suspect that this is due to the low quality
of some URU samples, where the minutiae extractors may not be able to extract minutiae
properly, resulting in incomplete or inaccurate patterns.

The reason for the low reconstruction rates with the aug39k_DL_BN_60+60 model
and the URU fingerprints is the evaluation run in which zero-minutiae samples have not
been dropped, causing a high portion of failed matching trials.
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Table 3. Fingerprint reconstruction success (in %); DL—directed line encoding, PM—pointing
minutiae encoding; IN—instance normalization, and BN—batch normalization.

Model Snapshot Anguli Fingerprints URU Fingerprints

Type1 TAR @ FAR of

TrainDB Enc Norm Epochs 0.1% 0.01% 0.001% 0.1% 0.01% 0.001%

aug39k DL IN
15 100.00 100.00 99.77 87.84 82.61 76.47
30 100.00 99.77 99.20 83.29 75.11 65.90
55 99.43 98.52 97.50 79.09 71.81 59.31

aug39k PM IN
15 100.00 100.00 100.00 95.45 95.00 93.52
30 100.00 100.00 100.00 95.11 94.31 93.29
55 99.88 99.43 98.86 93.52 91.36 88.86

aug39k DL BN 60+60 97.95 94.09 85.34 60.34 44.66 26.48

Based on the reconstruction rates, we arrive at the following statements, which apply
to both test datasets: Anguli and FVC2004 DB2 A+B:

• The “pointing minutiae” encoding outperforms the “directed line” encoding;
• The best reconstruction performance is achieved with the model snapshots at

15 training epochs;
• For the “pointing minutiae” encoding, there is almost no difference between snapshots

at 15 epochs and 30 epochs, while there is a notable performance loss with the snapshot
at 55 epochs;

• For “directed line” encoding, the additional training epochs worsen the reconstruction
performance, i.e., the snapshot at 15 epochs is better than at 30 epochs, which is better
than at 55 epochs.

4.2. Utility Evaluation of the Proposed Synthetic Datasets

We have chosen the aug39k_DL_BN_60+60ep model for the compilation of the first
synthetic dataset AMSL SynFP P2P v1 as one that subjectively generates the most realistic
patterns that are very close to original fingerprints (sources of minutiae). The downside of
this model is that the border regions of the generated fingerprint images that are expected
to be uniform or even flat (filled with white pixels only) include random noise. However,
since we cut the central part of the fingerprint image, this aspect does not influence the
fingerprint’s appearance in general. The second characteristic property of this model
is the lower reconstruction performance in comparison to the best performing models.
Although, at first glance, it sounds like a crucial disadvantage, we leverage this fact to
increase the diversity of mated fingerprints. Note that, from the subjective perspective,
the majority of reconstructed fingerprints appear to belong to the same identity as the
source of minutiae. This dataset should be quite challenging for state-of-the-art fingerprint
recognition algorithms.

As an alternative to the aforementioned model, we have chosen the best performing
model aug39k_PM_IN_15ep for the compilation of the second synthetic fingerprint dataset
AMSL SynFP P2P v2. The choice is explained by its superiority in terms of fingerprint
reconstruction and sufficient performance in terms of generating realistic fingerprints.
As we can see in the bottom row of Figure 7, the model snapshot after 15 training epochs
leads to NFIQ2 scores that are, on average, lower than those of the model snapshots after
30 and 55 epochs but generates almost no fingerprints with NFIQ2 scores lower than 30.
Hence, our second dataset can be seen as a source of high-quality fingerprints with which
state-of-the-art fingerprint recognition algorithms should have close to zero verification
error rates.

4.2.1. Realistic Appearance

The general impression of our synthetic fingerprints can be taken from Section 4.1.3
and Figure 8. Here, we compare the distributions of the NFIQ2 scores for the compiled
datasets. Figure 9 depicts the probability density functions of 40,000 samples included
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in each of the AMSL SynFP P2P v1 and AMSL SynFP P2P v2 datasets. We also plot the
distribution of the original 4000 Anguli fingerprints as a reference.

Figure 8. Results of fingerprint reconstruction. Minutiae are taken from Anguli (top) and
URU (bottom) fingerprints. Note that for Anguli, the reconstruction examples are with
aug39k_DL_BN_60+60ep and for URU with aug39k_DL_IN_15ep.
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Figure 9. Distributions of NFIQ2 scores for our synthetic datasets AMSL SynFP P2P v1 and AMSL
SynFP P2P v2 in comparison to the 4000 Anguli generated fingerprints taken as a source of minutiae.

In comparison to the NFIQ2 scores of Anguli fingerprints, which have a narrow
symmetric distribution around the mean of approx. 65, the distributions of synthetic
datasets are negatively skewed and wider spread, having significantly higher standard
deviations. The mean value of the AMSL SynFP P2P v1 is approximately 60, which is
lower than that of Anguli, and the mean value of the AMSL SynFP P2P v2 is approximately
75, which is higher than that of Anguli. The NFIQ2 scores validate that the AMSL SynFP
P2P v1 dataset includes a small portion of fingerprints that might be challenging for
minutiae extractors, leading to verification errors. In contrast, almost all of the fingerprints
in the AMSL SynFP P2P v1 dataset are of high utility, which is useful for checking that
an advanced fingerprint matching algorithm produces almost no verification errors with
this dataset.

4.2.2. Estimation of the Verification Performance

Finally, we take a look at verification scores produced by the Verifinger SDK with our
compiled synthetic datasets. Our evaluation protocol is defined as follows. Bearing in
mind that we have in total 500 persons with 8 fingers each and 10 impressions per finger,
we build the set of mated fingerprint pairs by pairing all impressions of a single finger,
resulting in 10 × 9/2 = 45 pairs. In total, we have 4000 ×45 = 180,000 mated fingerprint
pairs spread between different basic patterns, as shown in Table 4. The sets of non-mated
fingerprint pairs are built by combining only the first impressions of each finger.

Table 4. Distribution of basic patterns our synthetic datasets.

Basic Pattern Ulnar Loop Radial Loop Whorl Arch Tented Arch
(UL) (RL) (WH) (AR) (TA)

Relative number 55% 5% 20% 10% 10%

Impostor trials 99,000 9000 36,000 18,000 18,000

Genuine trials 3996 3996 3995 3990 3990

Although we disregard pairs that contain fingerprints with different basic patterns and,
therefore, significantly decrease the total number of possible non-mated pairs, the number
of pairs is still enormous. Hence, we decided to limit the number of non-mated pairs by
randomly selecting approximately 4000 pairs for each basic pattern. For exact numbers, see
Table 4.

By calculating the Verifinger scores for mated and non-mated pairs, we obtain genuine
and impostor score distributions, respectively. Figure 10 demonstrates the violin plots of
score distributions for different fingerprint basic patterns taken separately. The genuine
and impostor distributions are clearly separated for the AMSL SynFP P2P v2 dataset (right
plot). The majority of genuine scores range from 100 to 300, indicating the high number
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of very confident matches, while the majority of impostor scores are below 80 with a
significantly smaller spread. For the case of the AMSL SynFP P2P v1 dataset (left plot),
there is are huge overlap between genuine and impostor distributions in the range from
25 to 60, indicating the possibility for many verification errors at all standard decision
thresholds: 36, 48, and 60. The spread of impostor scores is higher in comparison to that in
the AMSL SynFP P2P v2 dataset, while the spread of genuine scores is lower, indicating
the low number of very confident matches.

Figure 10. Distributions of Verifinger matching scores with the AMSL SynFP P2P v1 (left) and
AMSL SynFP P2P v2 (right) datasets for different fingerprint basic patterns considered separately.

5. Results and Discussions

Our experiments have demonstrated that a pix2pix network in conjunction with
“pointing minutiae” or “directed line” encoding is a viable solution to reconstruct finger-
prints from minutiae. The network has a scalable architecture, allowing for training with
512 × 512 pixel images. The ridge patterns are realistic, which can be seen in Figure 8
for Anguli and URU fingerprints, respectively. The images demonstrate that our models
perform a style transfer, meaning that the resulting fingerprints bear a resemblance to those
obtained using a CrossMatch Verifier 300 sensor. The training of pix2pix models with
fingerprint data from other sensors would allow the style transfer to other sensor domains.
Note that our pix2pix models have been trained on 2168 original fingerprint images only.
The only limitation of our fingerprint generation approach is the lack of control over the
visual attributes of the generated fingerprints. Although the ridge patterns in reconstructed
fingerprints may not precisely match those in target fingerprints, the models reproduce the
minutiae co-allocation accurately enough to facilitate matching with the source of minutiae.

Our experiments confirm that the AMSL SynFP P2P v1 dataset is a challenging
dataset for the Verifinger SDK. This dataset can be utilized for benchmarking matching
performances of different fingerprint matchers. The AMSL SynFP P2P v2 dataset can
be seen as a means for confirming the power of a fingerprint matcher. For instance,
Verifinger SDK v12.0 makes almost no verification errors with this dataset. Note that
the higher diversity of Verfinger scores for mated fingerprints in the AMSL SynFP P2P
v1 dataset can be caused by an inaccurate fingerprint reconstruction, implying that the
transformations applied to minutiae templates may lead to a vanishing identity in a
reconstructed fingerprint. Hence, a systematic analysis of the influence of a particular
minutiae template transformation to the reconstruction process is required. However, this
analysis is beyond the scope of this paper and will be conducted in our future studies. Note
that the numbers of virtual subjects (currently 500) and fingerprint impressions (currently
10) are taken as an example to demonstrate the feasibility of the approach and can be easily
up-scaled. The manipulation of minutiae and the consequent reconstruction of fingerprints
from minutiae for fingerprint identity control and the production of mated impressions is
a completely novel technique that seems to be equally or even more effective than affine
transformations in an image domain or the thin-plate spline modeling. Comparing our
synthetic datasets to the few existing synthetic datasets, we claim that PrintsGAN [17] is
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the only dataset with a mechanism for controlling fingerprint identity that surpasses our
datasets in terms of the number of fingerprints.

6. Conclusions

Bearing in mind the objective of getting around privacy concerns arising when eval-
uating biometric systems with real biometric samples, the study reported in this paper
aims to compile large-scale synthetic fingerprint datasets that are suitable for assessing the
performance of fingerprint matching algorithms. It is demonstrated how model-based and
data-driven approaches can be combined to generate realistic, anonymous, and sufficiently
diverse fingerprints in a fully controlled environment, enabling the synthesis of not only
non-mated but also mated fingerprints. The applied technique is a reconstruction of realis-
tic fingerprints from minutiae extracted from pseudo-randomly synthesized non-realistic
fingerprints. Mated fingerprints are generated by reconstruction from slightly modified
minutiae templates. In particular, we train pix2pix generative models with high-quality
fingerprint images at a fingerprint-native resolution from public datasets. The generative
models reconstruct fingerprints from so-called minutiae maps—images in which minutiae
are encoded either by directed lines or by pointing minutiae. The pix2pix architecture is
extended to handle 512 × 512 pixels images. The evaluation results indicate that the appli-
cation of the pix2pix network to the reconstruction problem is a viable solution and validate
the utility of the compiled datasets for evaluating fingerprint matching algorithms. Future
work will be devoted to experimenting with a broad variety of alternative fingerprint
matching systems relying not only on minutiae but also on DCNN-based techniques and to
analyzing the influence of a particular minutiae template transformation on the fingerprint
reconstruction process.
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