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Abstract: Active optics is a key technology in ground-based large-aperture telescopes. The active
correction of the surface shape of the primary mirror is used to reduce the surface shape error
and improve the imaging quality. At present, the structure of the active optics support system is
not standardized. Therefore, to ensure the imaging quality of a telescope using a 4m SiC (silicon
carbide) primary mirror, this article designed an active support system for the primary mirror and
comprehensively evaluated the performance of the system. The system used pneumatic actuators to
correct the surface shape of the primary mirror and a six-hardpoint positioning mechanism to correct
the pose of the primary mirror. A method for compensating for the force on the hardpoints that causes
protrusions and dents on the primary mirror surface was proposed, which effectively improved
the accuracy of the primary mirror surface. The bending-mode method was used to determine the
correction force. To achieve better results in the surface shape correction based on the bending mode,
the relationship between the order of the bending modes used in the correction and the correction
effect was studied, enabling the system to achieve a higher surface shape accuracy with a smaller
correction force. Finally, the performance of the system was evaluated under various conditions,
such as under gravity, thermal load, and wind load. The results indicated that the system had good
correction effects on the deformation of the primary mirror under various operating conditions and
could meet the requirements of optical design for surface accuracy. In conclusion, this study not only
verified the application of active optics technology based on the bending mode in large-aperture SiC
mirrors, but also improved on the relevant theoretical research on active optics.

Keywords: active optics; primary mirror support; six-hardpoint positioning mechanism; force on
hardpoint; bending mode

1. Introduction

The support system of the primary mirror is a key system in ground-based large-
aperture telescopes, as it determines the surface shape and pose accuracy of the primary
mirror and plays a decisive role in the imaging quality of the telescope. The primary mirror
support system must resist the influence of gravity, thermal load, and wind load, which
are often dynamic. Therefore, active optics has been proposed and applied. Since its first
application to the New Technology Telescope (NTT) at the European Southern Observatory,
active optics technology has become a key technology for large-aperture telescopes. Active
optics refers to the active correction of the surface shape of the primary mirror, which
can significantly reduce the surface shape error caused by various loads and improve the
imaging quality and observation performance of the telescope [1–4]. It can achieve the
closed-loop control of the surface shape of the primary mirror, providing feedback through
the monitoring of the primary mirror shape and adjusting and correcting the primary
mirror shape through the use of actuators [5,6].

The active support system based on active optics technology has two subsystems,
the surface control system and the positioning system. The surface control system uses

Appl. Sci. 2023, 13, 9966. https://doi.org/10.3390/app13179966 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13179966
https://doi.org/10.3390/app13179966
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13179966
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13179966?type=check_update&version=1


Appl. Sci. 2023, 13, 9966 2 of 27

proper force actuators to output axial force to the primary mirror to correct the surface
shape, and the positioning system is used to constrain the rigid displacement of the primary
mirror relative to the mirror cell. Active optics technology is currently applied to more
than ten telescopes, which can be divided into three categories according to the positioning
system scheme. The first type uses fixed positioning points to achieve primary mirror
positioning and includes the NTT [7], VLT Survey Telescope (VST) [8], Subaru Telescope [9],
and Southern Astrophysical Research Telescope (SOAR) [10]. The second type uses virtual
positioning points and includes the Advanced Electro-Optical System 3.6 m telescope
(AEOS) [11], Very Large Telescope (VLT) [12], and Gemini Telescope [13]. The third type
uses a six-hardpoint positioning mechanism for primary mirror positioning, including the
MMT Telescope [14], Large Binocular Telescope (LBT) [15,16], and the unfinished Large
Synoptic Survey Telescope (LSST) [17,18]. Although a rough classification is possible, the
structure of the active support system and primary mirror are not standardized, and each
support system is customized for the specific telescope and primary mirror [19]. Therefore,
in order to ensure the surface accuracy of a 4m SiC lightweight primary mirror, this article
designs an active support system for the primary mirror. Considering that primary mirror
positioning based on hardpoints can maintain and adjust the pose of the primary mirror,
the designed system uses hardpoints for primary mirror positioning.

The optical design of the telescope requires the active support system for the 4m SiC
primary mirror to ensure a root mean square (rms) of the primary mirror shape error of less
than λ/30 (λ = 632.8 nm). The designed system uses pneumatic actuators for conducting
surface corrections and to also provide force to support the gravity of the primary mirror.
Some studies have shown that there is mutual interference between the surface control
system and the positioning system. For example, Li et al. [20] studied the interference of
fixed points in surface shape correction and proposed using compensation planes to solve
it and achieved a good surface shape. However, there is currently no research to solve the
problem of reduced surface accuracy caused by force on hardpoints. Therefore, a method
is proposed to compensate for the force on the hardpoints, which solves the problem of
protrusions and dents on the primary mirror surface caused by the force on the hardpoints.

In order to achieve closed-loop control of the primary mirror surface shape, the
required correction force must be calculated based on the primary mirror shape error.
Currently, four methods are used to calculate the correction force. The free-resonance
method establishes a mapping relationship between the free-resonance modes of the
primary mirror and the correction force. Then, the free-resonance modes are used to fit the
surface error of the primary mirror, thereby determining the correction force [21,22]. This
method is generally applied to thin primary mirrors rather than lightweight honeycomb
mirrors. The second method, called the direct least squares method, establishes a mapping
relationship between the force and deformation of the primary mirror surface through
an interaction matrix, thereby determining the correction force [23]. The correction force
obtained with this method is typically relatively large. The third method, called damped
least squares or constrained least squares, is an improvement on the direct least squares
method, which introduces damping factors to limit the amplitude of the correction force [24].
This method is relatively complex and requires optimization to obtain the optimal damping
factors. The fourth method, called the bending-mode method, generates several bending
modes through the singular value decomposition (SVD) of the interaction matrix. Then,
the primary mirror surface shape error is fitted with several lower-order bending modes,
thereby determining the correction force [25]. Considering that the bending-mode method
avoids the problems of the first three methods, we use this method to solve the correction
force. However, current research on bending modes [25–27] has ignored the issue of how
to reasonably select the orders of bending modes. Therefore, this article investigates the
relationship between the orders of bending modes used in surface shape correction and
the correction effect, enabling the system to achieve a higher primary mirror surface shape
accuracy with a smaller correction force.
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The main contributions and innovations of this article are as follows: (1) The design
and performance evaluation of an active support system for a 4m SiC primary mirror is
achieved and the system can achieve good surface accuracy. (2) A method for compensating
for the force on the hardpoints is proposed to solve the problem of protrusions and dents
on the primary mirror surface caused by the force on hardpoints. (3) The bending-mode
method is deeply studied, the relationship between the order of the bending modes used in
the surface shape correction and the correction effect is investigated, and the active optics
correction method based on the bending mode is improved.

The remainder of this article is organized as follows: Section 2 explains the principle
and structure of the designed 4m SiC primary mirror active support system. Section 3
discusses the surface and pose correction methods for the mirror and proposes a compen-
sation method for the force on the hardpoints. Section 4 evaluates the performance of the
designed system and tests its performance under conditions such as gravity, thermal load,
and wind load. Section 5 provides the conclusion.

2. Principle and Structural Design of the Active Support System for a 4m SiC
Primary Mirror

The active support system for a 4m SiC primary mirror is shown in Figure 1. The sys-
tem used pneumatic surface control actuators and a six-hardpoint positioning mechanism
to connect the primary mirror and mirror cell. The actuators and hardpoints were epoxy-
bonded to the backface of the primary mirror, and the bonding position was determined
with a laser tracker. The pneumatic actuators were used to correct the surface shape of
the primary mirror and the six-hardpoint positioning mechanism was used to define the
relative pose of the primary mirror and mirror cell. The primary mirror was a lightweight
mirror weighing 1600 kg, with a diameter of 4 m and center hole diameter of 0.5 m. It was
composed of SiC and had the structure of a semienclosed honeycomb. The primary mirror
had a surface thickness of 15 mm and radial and circumferential rib plates arranged on its
back, forming numerous fan-shaped lightweight holes. The rib plate thickness was 7 mm
(some rib plates were 12 mm thick).
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2.1. Pneumatic Surface Control Actuators and Hardpoints

The pneumatic surface control actuators correct the surface shape of the primary
mirror and support its weight. It is structurally divided into single- and two-axis actuators.
Single-axis actuators provide only axial force, whereas two-axis actuators provide both
axial and radial forces.

A total of 54 pneumatic surface control actuators were installed at 54 support points on
the back of the primary mirror. The positions of the support points were obtained through
a finite element analysis and optimization, and their positions and numbers are shown in
Figure 2. The origin of the coordinate system shown in Figure 2 coincided with the vertex
of the reflecting surface of the primary mirror. The y-axis was parallel to the elevation
axis, the unmarked z-axis was parallel to the optical axis and pointed to the observation
target, and the x-axis direction was determined using the right-hand rule. Among the
30 two-axis actuators, 26 were arranged parallel to the x-axis and could output a radial
force in the x-direction to balance the radial component of gravity. The two-axis actuators
19, 24, 25, and 30 were arranged in the y-axis direction and could output a radial force
in the y-direction. The structures of the single- and two-axis actuators were as shown
in Figure 1.
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The actuator was powered with a cylinder. The stroke of the cylinder was ±20 mm
and the output force range was ±0.85 kN. The range of the output force of the single-axis
actuator was the same as that of the cylinder. The range of the axial force output by the
two-axis actuator was ±1.45 kN, and the range of radial force was ±0.85 kN. Each cylinder
was connected in series with two hinges, enabling the pneumatic actuator to meet the
displacement of±20 mm and rotation of±0.21◦ of the primary mirror. The range of motion
of the mirror was obtained through a kinematic analysis based on the Monte Carlo method.
Each cylinder was connected in series with an S-type tension and pressure sensor that
could achieve closed-loop control of the output force.

Six hardpoints with the same structure formed a six-hardpoint positioning mechanism,
which was used to define the relative pose between the primary mirror and mirror cell. The
numbering of the hardpoints is illustrated in Figure 2. The hardpoints can be understood
as linear displacement actuators with a high axial stiffness, as shown in Figure 1. The
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six-hardpoint positioning mechanism adjusted the pose of the primary mirror by changing
the length of the hardpoints. Maintaining the length of the hardpoints unchanged could
preserve the pose of the primary mirror. The flexible hinges in the hardpoints provided
the necessary degrees of freedom, and a breakaway mechanism provided an overload
protection function. A spoke-type tension and pressure sensor measured the force on the
hardpoints. The axial stiffness of the hardpoints, 33.044 N/µm, could provide a one-order
natural frequency of over 25 Hz for the system [28]. The displacement accuracy of the
hardpoints depended on the displacement accuracy of the actuator. The displacement
stroke of the hardpoints was ±10 mm, and the displacement resolution was 0.33 µm. The
repeatability accuracy was 7.026 µm.

2.2. Finite Element Model of the Active Support System for the 4m SiC Primary Mirror

A finite element model of the primary mirror support system was established, as
shown in Figure 3. To improve the efficiency of the analysis, the hardpoints were simplified
as rod structures in the model, the rod element was used, and the axial stiffness was
set to 33 N/µm. Gravity counter forces and correction forces were applied at the 54
support points to simulate the force actuator. The primary mirror was composed of SiC,
and the mirror cell was composed of carbon structural steel Q235. The model contained
309,433 units and 893,116 nodes.
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3. Active Optics Correction of the 4m SiC Primary Mirror

The main purpose of the active support system is to ensure the surface shape and pose
accuracy of the primary mirror, thereby ensuring a good imaging quality of the telescope.
Therefore, active optics includes two parts: the primary mirror shape and pose corrections.
This section introduces the correction methods and discusses the relevant mathematical
derivation. In addition, to ensure the accuracy of the surface shape and pose, a method for
compensating for the force on the hardpoints was proposed.

3.1. Surface Shape Correction of the 4m SiC Primary Mirror
3.1.1. Principle of Surface Shape Correction Based on the Bending Mode

A surface shape correction requires force actuators to output axial forces to the primary
mirror. Therefore, the key to surface correction is the calculation of the correction force,
which is based on measuring the surface error of the primary mirror. The designed active
support system for the 4m SiC primary mirror used the bending-mode method to calculate
the correction force.
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According to Hooke’s law, the relationship between the deformation of the primary
mirror and the force is linear [20]. Therefore, if we could determine the surface deformation
Ai after applying the axial unit force to each support point and obtain the interaction matrix
A = [A1, A2, . . ., A54], we could obtain the relationship between the force and deformation
of the primary mirror, where i represents the serial number of the support point. Ai is
called the influence function of the unit force and is a column vector of length m, where m
is the number of sampling points for the primary mirror shape, requiring m > 54. For a set
of forces F applied to the support points, the resulting deformation of the primary mirror
surface W satisfied

W = AF =
54

∑
i=1

AiFi (1)

where Fi is the i-th element of vector F. The mapping relationship between the force acting
on the primary mirror and the deformation of the mirror surface was established based on
the interaction matrix A. The correction force could be determined using Equation (1). The
above method is the direct least squares method. However, the correction force obtained
using this method is often extremely high, because the method attempts to correct all low-
and high-order components in the primary mirror shape error, and correcting higher-order
aberrations would result in a large correction force, which may exceed the output force
threshold of the force actuator and may also damage the primary mirror. In addition,
the shape error of the primary mirror is often dominated by low-order aberrations, and
correcting high-frequency aberrations results in a very small improvement in the shape.
Therefore, the benefits of this method are limited.

The fundamental flaw of this method is that the influence function Ai cannot reflect
the difficulty of the surface shape correction. Therefore, excluding high-frequency compo-
nents in surface shape errors is challenging. The bending-mode method can improve this
situation. According to the principle of the method, SVD was performed on the interaction
matrix A:

A = USVT (2)

Then, the bending mode Bi and the bending-mode matrix B were obtained as follows:

B =
[
B1 B2 · · · B54

]
= U = AVS−1 (3)

where
V =

[
V1 V2 · · · V54

]
(4)

Bi = AVi
1
µi

(5)

where µi is the element in matrix S and the singular value that affects matrix A. By introduc-
ing the bending mode Bi into Equation (1), the required force FBi for Bi could be calculated
as follows:

W = Bi = AVi
1
µi

= AFBi (6)

FBi = Vi
1
µi

(7)

where FBi, known as the bending-mode force, is the force required to generate the surface
Bi. Combining FBi into the bending-mode force matrix FB,

FB =
[
FB1 FB2 · · · FB54

]
(8)
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The bending-mode method used Bi to fit the primary mirror shape W and then solved
for the correction force:

W =
54

∑
i=1

Bibi (9)

The fitting result was the fitting coefficient bi, which was the proportion of each
bending mode Bi to the primary mirror shape W. If we multiplied and summed bi with the
bending-mode force FBi, we obtained the required force F for W:

F =
54

∑
i=1

FBibi = FB
[
b1 b2 · · · b54

]T (10)

The advantage of the bending-mode method is that the stiffness of Bi increased with
the order. According to the SVD properties, the rms of all Bi was equal, and the rms of all
V i was equal. As i increased, the value of µi gradually decreased. Therefore, according
to Equation (7), FBi gradually increased. This indicated that the stiffness and frequency
of Bi gradually increased with increasing i. Therefore, if only a few low-order bending
modes Bi were used to fit W, the amplitude of the correction force could be effectively
suppressed. In addition, owing to the dominant role of low-order aberrations in the surface
error, this method could ensure a good surface correction effect and achieve an accurate
surface shape.

Owing to the standard orthogonality among Bi, when fitting with the first q orders of
Bi, only the first q term of bi had to be retained, and the other terms had to be set to zero.
The solution method for the correction force was

F = FB
[
b1 · · · bq 0 · · · 0

]T (11)

3.1.2. Influence Function and Bending Mode of the 4m SiC Primary Mirror

The purpose of this section was to obtain the influence function, interaction matrix, and
bending mode of the 4m SiC primary mirror based on the theory described in Section 3.1.1.
To obtain the influence function Ai of the primary mirror, we used the equilibrium force
FAi approximated using the unit force. The characteristic of FAi was that the force at the
i-th support point was large, whereas that at the other support points was very small. The
effect of FAi was similar to that of the unit force, except that the resultant force and moment
of FAi on the primary mirror were zero, avoiding the trend of a rigid displacement of the
primary mirror.

The 54 actuators were distributed across four concentric circles. Applying FAi se-
quentially to the primary mirror resulted in 54 influence functions Ai. The influence
functions and equilibrium forces are shown in Figure 4 (because of space limitations, only
the influence functions corresponding to two actuators on each concentric circle were dis-
played; the surface shapes that were not provided were similar, owing to the symmetry of
the structure).

Based on the 54 influence functions Ai, we obtained the 4m SiC primary mirror
interaction matrix A. Then, SVD was performed on A to obtain the 54 bending modes
Bi of the primary mirror (only the first 51 of the 54 modes were valid). As mentioned
in Section 3.1.1, the rms values of all Bi were equal, and we further normalized them to
500 nm. Each Bi corresponded to a bending-mode force FBi, as shown in Figure 5. The Bi in
Figure 5 eliminated the tilt, and owing to space limitations, only the odd-order bending
modes and forces in the first 20 orders were displayed. The bending modes in Figure 5
were derived from SVD, so they were the theoretical values of Bi.
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Figure 5. Theoretical values of partial bending mode Bi of the 4m SiC primary mirror and correspond-
ing bending-mode forces FBi. (a) Bending mode B1 and bending-mode force FB1; (b) Bending mode
B3 and bending-mode force FB3; (c) Bending mode B5 and bending-mode force FB5; (d) Bending
mode B7 and bending-mode force FB7; (e) Bending mode B9 and bending-mode force FB9; (f) Bend-
ing mode B11 and bending-mode force FB11; (g) Bending mode B13 and bending-mode force FB13;
(h) Bending mode B15 and bending-mode force FB15; (i) Bending mode B17 and bending-mode force
FB17; (j) Bending mode B19 and bending-mode force FB19.
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Figure 5 shows that the higher the order, the higher the spatial frequency of the
bending mode. In addition, some bending modes exhibited similarities with specific
Zernike modes. For example, the first-order bending mode was similar to the astigmatism
in the Zernike mode. The third-order bending mode was similar to the trefoil aberration.
The fifth-order surface was similar to the defocus, and the seventh-order surface was
similar to the quadrafoil aberration. Figure 6 shows a schematic of the amplitude of the
bending-mode force. The figure shows that as the order i of the bending mode increased,
the amplitude of the bending-mode force generally increased. Figures 5 and 6 validate
the viewpoint proposed in Section 3.1.1, that the stiffness and frequency of Bi gradually
increased with increasing order. This indicated that the bending-mode method could
eliminate high-frequency components in the surface error and reduce the amplitude of the
correction force.
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Figure 6. Relationship between the amplitude of bending-mode force FBi and the order i of the
bending mode.

3.2. Pose Correction of the 4m SiC Primary Mirror

The six-hardpoint positioning mechanism consisted of six hardpoints of the same
structure, which can be understood as linear displacement actuators with a high axial stiff-
ness. When the length of the hardpoints remained unchanged, the rigid displacement of the
primary mirror was limited, and the pose of the primary mirror remained unchanged. The
pose of the primary mirror could be controlled by controlling the length of the hardpoints,
thereby actively adjusting the pose of the primary mirror.

The structural diagram of the six-hardpoint positioning mechanism is shown in
Figure 7, where Figure 7a shows the initial pose state of the mechanism and Figure 7b
shows the state of the mechanism after a pose adjustment [29]. When considered as a rigid
body, the primary mirror had six degrees of freedom, with q = [x y z α β γ]T represent-
ing the pose of the primary mirror, where q could be decomposed into a position vector
t = [x y z]T and attitude vector s = [α β γ]T. The relationship between the pose of the
primary mirror and the length of the hardpoints was

lj = t + Raj − bj (12)

where j = 1, 2, . . ., 6 corresponds to the six hardpoints. li is the vector that represents the
direction of the hardpoint, and the norm of the vector was the length of the hardpoint. t is
the coordinate of origin O1 of the coordinate system O1-x1y1z1 in the coordinate system O-
xyz. aj is the coordinate of the upper support point Aj in the coordinate system O1-x1y1z1,
and bj is the coordinate of the lower support point Bj in the coordinate system O-xyz. R is
the rotation matrix:

R =

cos γ cos β cos γ sin β sin α− sin γ cos α cos γ sin β cos α + sin γ sin α
sin γ cos β sin γ sin β sin α + cos γ cos α sin γ sin β cos α− cos γ sin α
− sin β cos β sin α cos β cos α

 (13)
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where α, β, and γ are the rotation angles of the primary mirror around the coordinate
taxes x2, y2, and z2, respectively, and are the components of the attitude vector
s = [α β γ]T. Equation (12) is called the inverse kinematics model of the six-hardpoint
positioning mechanism, and it established the relationship between the pose of the primary
mirror and the length and direction of the hardpoints.
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Figure 7. Structural diagram of the six-hardpoint positioning mechanism. (a) Mechanism in the
initial pose; (b) mechanism in the state after pose adjustment.

Based on the above theory, we could use the six-hardpoint positioning mechanism
to compensate for and correct the primary mirror pose error caused by the mirror cell
deformation. During a telescope observation, the mirror cell undergoes deformation due
to its own gravity and the reaction force of the pneumatic actuators, which can lead to an
error in the pose of the primary mirror. By changing the length of the hardpoints, the pose
of the primary mirror can be corrected.

Considering the case of elevation angles of 45◦ and 90◦ as examples, the corresponding
deformation of the mirror cell is shown in Figure 8. The deformation of the mirror cell
caused a displacement at the lower support point of the hardpoint, as shown in Table 1.
The displacement of the lower support point resulted in an error in the pose of the primary
mirror. The pose errors of the primary mirror at different elevation angles were calculated,
as shown in Figure 9.
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Table 1. Displacement at the fixed point between the hardpoint and mirror cell.

Number of
Hardpoints

Elevation Angle of 45◦ Elevation Angle of 90◦

dx/µm dy/µm dz/µm dx/µm dy/µm dz/µm

1 −6.37 0.96 −13.77 −1.86 1.41 −19.54
2 −6.36 −1.04 −13.74 −1.61 −0.39 −18.92
3 −5.00 −1.72 −17.00 −0.67 −1.06 −19.79
4 −3.96 −0.30 −22.35 0.88 −0.05 −19.66
5 −3.97 0.23 −22.53 0.87 1.01 −19.55
6 −5.01 1.63 −17.13 −0.77 2.17 −19.86
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Figure 9. Relationship between the pose error of the primary mirror and elevation angle.

The designed primary mirror support system corrected the pose of the primary mirror
by adjusting the length of the hardpoints. The required amount of the adjustment could be
calculated using Equation (12); the calculated results are shown in Figure 10. Owing to the
symmetry of the spatial arrangement of the six hardpoints, the adjustment amounts of the
two symmetrical hardpoints were similar. In addition, as the elevation angle increased, the
adjustment amounts of all the hardpoints tended to be similar. When the elevation angle
was 90◦, the adjustment amounts of all the hardpoints were almost similar, because when
the optical axis pointed towards the zenith, the primary mirror only had a position error in
the direction of the optical axis, and there was no attitude error.
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3.3. Influence of Force on Hardpoints on the Surface Shape of the 4m SiC Primary Mirror and
Compensation Methods

In the designed active support system, the pneumatic surface control actuators were
not only used to correct the surface shape, but also to support the weight of the primary
mirror. The above scheme was to avoid force being applied on the hardpoints, thereby
improving surface accuracy. However, we found that the hardpoints were still subjected
to a force for other reasons, resulting in a decrease in the surface shape accuracy of the
primary mirror. We evaluated the reasons for the force on the hardpoints and proposed a
method to solve this problem. The force of the hardpoints caused obvious protrusions and
dents to remain in the corrected surface shape, as shown in Figure 11. These surface defects
were high-frequency errors in space, which are difficult to correct with active optics.
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The reasons for the force on the hardpoints were multifaceted. First, the pneumatic
actuators provided an axial force to balance the axial component of the primary mirror
gravity, while the two-axis actuators provided a radial force to balance the radial component.
The magnitude of the resultant force FG of the axial and radial forces was the same as the
gravity GPM of the primary mirror, whereas the direction was opposite. However, FG and
GPM may not be collinear, resulting in the primary mirror being subjected to a moment,
which, in turn, led to a force being exerted on the hardpoints. In addition, the primary
mirror and entire system were subjected to thermal loads, wind loads, and inertial forces,
which could also induce a force on the hardpoints. Due to the severe surface defects caused
by the force on the hardpoints, compensation had to be provided for the force.

Our approach used pneumatic actuators to output a certain force onto the primary
mirror to compensate for the force on the hardpoints before correcting the surface shape.
The stationary primary mirror was in a state of force equilibrium, and the resultant force and
moment of the primary mirror were 0. The resultant force and moment of the hardpoints
on the primary mirror were calculated based on the force on each hardpoint. Subsequently,
by applying the same force and moment to the primary mirror through the pneumatic
actuators, the primary mirror could still be in a state of force equilibrium, but the force on
the hardpoints was offset. This could eliminate the influence of the force on the hardpoints
on the surface shape and compensate for the force exerted on the hardpoints.

First, the resultant force of the hardpoints on the primary mirror was calculated. Let
the force on the hardpoint be FDj, with a positive value for compression and a negative
value for tension, where j = 1, 2, . . ., 6. Projecting the force on the hardpoints toward the
coordinate axis gave

FDXj = FDj cos αD (14)
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FDYj = FDj cos βD (15)

FDZj = FDj cos γD (16)

where FDXj, FDYj, and FDZj are the projections of FDj along the x-, y-, and z-axes, respectively.
αD, βD, and γD are the angles between FDj and the positive directions of the x-, y-, and
z-axes, respectively. FDXj, FDYj, and FDZj were summed to obtain the three components of
the resultant force of the hardpoints on the primary mirror:

FX =
6

∑
j=1

FDXj (17)

FY =
6

∑
j=1

FDYj (18)

FZ =
6

∑
j=1

FDZj (19)

Then, the three components of the resultant moment of the hardpoints on the primary
mirror could be calculated as

MX =
6

∑
j=1

FDZjyj (20)

MY = −
6

∑
j=1

FDYjxj (21)

MZ = −
6

∑
j=1

FDXjyj +
6

∑
j=1

FDYjxj (22)

where xj and yj are the x and y coordinates of the upper support point of the j-th hardpoint,
respectively. To compensate for the force on the hardpoints, we used the pneumatic
actuators to apply a force and moment equal to the resultant force and moment of the
hardpoints to the primary mirror. That is, the resultant force and moment of the hardpoints
were distributed over the pneumatic actuators.

Considering the installation direction of the two-axis pneumatic actuator, a specific
actuator could only be used to output a force in a specific direction. The force FX in the
x-direction was distributed over actuators 1–18, 20–23, and 26–29. The output force FFX of
each actuator was FX/26. The force FY in the y-direction was distributed over actuators
19, 24, 25, and 30. The output force FFY was FY/4. The force FZ in the z-direction was
distributed over actuators 1–30, and the output force FFZ was FZ/30.

In terms of the moment distribution, the moments MX and MY were generated by the
z-direction force output by actuators 1–30. To generate MX, the required output force for
each actuator was

FMXi = MXYM/
30

∑
i=1
|yi| (23)

where
YM =

[
y1/|y1| y2/|y2| · · · y30/|y30|

]T (24)

where yi is the y-direction coordinate of support point i. To generate MY, the output force
required for the actuator was

FMYi = −MYXM/
30

∑
i=1
|xi| (25)
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where
XM =

[
x1/|x1| x2/|x2| · · · x30/|x30|

]T (26)

where xi is the x-direction coordinate of support point i. The moment MZ was parallel to
the z-axis and was generated by the y-direction radial force output by actuators 19, 24, 25,
and 30. The required output force was

FMZi = −MZYZ/∑|yi| (i = 19, 24, 25, 30) (27)

where
YZ =

[
y19/|y19| y24/|y24| y25/|y25| y30/|y30|

]T (28)

In summary, to compensate for the force on the hardpoints, the combined force and
moment of the hardpoints on the primary mirror were calculated. Then, the equivalent
forces and moments were output through the pneumatic actuators to compensate for the
force on the hardpoints. The forces output by the pneumatic actuators are listed in Table 2.

Table 2. Output force required for the pneumatic surface control actuators to compensate for the
force on the hardpoints.

Force Direction of Force Role of Force Number of the Actuator i Value of Force/N

FFZi z Compensate for FZ 1–30 FZ/30
FFXi x Compensate for FX 1–18, 20–23, 26–29 FX/26
FFYi y Compensate for FY 19, 24, 25, 30 FY/4

FMXi z Compensate for MX 1–30 MXYM/
30
∑

i=1
|yi|

FMYi z Compensate for MY 1–30 −MYXM/
30
∑

i=1
|xi|

FMZi y Compensate for MZ 19, 24, 25, 30 −MZYZ/∑|yi|

4. Performance Evaluation of the Active Support System for the 4m SiC Primary Mirror
4.1. Verification of the Bending Mode

In Section 3.1.2, the theoretical values of 51 orders of valid bending modes of the 4m
SiC primary mirror were obtained. To compare the theoretical and actual values of the
bending modes, the bending mode forces FBi were sequentially applied to the primary
mirror, and the responses of FBi were the actual values of the bending mode Bi. The results
are shown in Figure 12. Figures 5 and 12 show that the theoretical and actual values of most
Bi values were very similar. However, certain differences existed between the theoretical
and actual values of the first- and seventh-order bending modes. This was because the tilt
was eliminated in Figure 5, but not in Figure 12. Overall, the designed support system for
the 4m SiC primary mirror could accurately generate various bending modes.

4.2. Correction of Gravity Deformation of the Primary Mirror

Under the action of gravity, the primary mirror underwent a deformation related to
the elevation angle, which refers to the angle between the optical axis of the telescope
and the horizontal direction. When studying the gravity deformation, we focused on the
situations where the elevation angles were 90◦, 45◦, and 0◦. The gravity deformations
under the three elevation angle conditions are shown in Figure 13.



Appl. Sci. 2023, 13, 9966 16 of 27
Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 27 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

 

 

 

 
(j)  

Figure 12. Actual values of partial bending mode Bi of the 4m SiC primary mirror. (a) Actual values 
of B1; (b) Actual values of B3; (c) Actual values of B5; (d) Actual values of B7; (e) Actual values of B9; 
(f) Actual values of B11; (g) Actual values of B13; (h) Actual values of B15; (i) Actual values of B17; (j) 
Actual values of B19. 

Figure 12. Actual values of partial bending mode Bi of the 4m SiC primary mirror. (a) Actual values
of B1; (b) Actual values of B3; (c) Actual values of B5; (d) Actual values of B7; (e) Actual values of B9;
(f) Actual values of B11; (g) Actual values of B13; (h) Actual values of B15; (i) Actual values of B17;
(j) Actual values of B19.
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Figure 13. Schematic diagram of the deformation of the 4m SiC primary mirror surface due to gravity.
(a) Elevation angle of 90◦; (b) Elevation angle of 45◦; (c) Elevation angle of 0◦.

To verify the proposed compensation method for the force on the hardpoints, we
attempted to use the first 40 orders of bending modes to correct the gravity deformation of
the primary mirror at an elevation angle of 45◦. The surface shape before the correction
is shown in Figure 13b, with a rms of 165.3 nm. If the force on the hardpoint was not
compensated, the corrected result was as shown in Figure 14a. At the position where the
hardpoints came into contact with the back plate of the primary mirror, the surface of the
mirror showed obvious protrusions and dents. The rms of the surface shape was 50.4 nm.
From both the data and image perspectives, the surface shape was very poor. Based on
Figure 13b, we compensated for the force on the hardpoints and obtained the situation
shown in Figure 14b, which had a surface shape rms of 129.1 nm. After the force was
compensated for, the surface correction was performed again, and the first 40 orders of
bending modes were also used. The results are shown in Figure 14c. The rms of the surface
shape in Figure 14c was 12.4 nm, which was less than the λ/30 (λ = 632.8 nm) requirement.
A comparison of Figure 14a,c showed that compensating for the force on the hardpoints
played an important role in improving the accuracy of the corrected primary mirror surface
shape, with the rms of the surface shape reduced from 50.4 nm to 12.4 nm. This result
also preliminarily proved the effectiveness of the surface shape correction based on the
bending modes.
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Figure 14. Correction of gravity deformation of the primary mirror using the first 40 orders of
bending modes at an elevation angle of 45◦. (a) Surface shape correction result (force on hardpoint
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shape correction result (force on hardpoint compensated).

4.3. Relationship between the Orders of Bending Modes and the Correction Effect

For the 4m SiC primary mirror and the designed support system, there were 51
available bending modes. If only the first few orders of the bending modes were used
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to calculate the correction force, the amplitude of the force could be reduced. To ensure
a good accuracy was attained for the corrected primary mirror shape, the order of the
bending modes used in the correction had to be determined. Therefore, we conducted a
series of simulations at elevation angles of 90◦, 45◦, and 0◦, and the gravity deformation of
the primary mirror was corrected using different orders of bending modes. The corrected
primary mirror shape and the amplitude of the correction force are shown in Figure 15,
where the horizontal axis represents the order of the bending modes used for the surface
correction, the vertical axis on the left represents the rms of the corrected primary mirror
shape, and the vertical axis on the right represents the amplitude of the correction force.
Figure 15 shows that as the orders of the bending modes used increased, the rms of the
primary mirror shape gradually decreased, and the amplitude of the correction force
gradually increased. Therefore, if too many orders of bending modes was used, the
amplitude of the correction force could not be reduced. If too few orders were used, the
corrected surface shape accuracy would be poor. After comprehensive considerations, we
believe that using the first 30 orders of bending modes for the surface shape correction
was the most reasonable. This not only effectively reduced the amplitude of the correction
force, but also ensured a good accuracy was achieved for the corrected primary mirror
surface shape.

The corrected surface shapes using the first 30 orders of bending modes are shown
in Figure 16, and the relevant data before and after the surface shape correction are listed
in Table 3. A comparison of Figures 13 and 16 revealed that the corrected primary mirror
surface was significantly improved. According to Table 3, the rms values of the corrected
surface shape under the three elevation angles were less than 16 nm, which met the
requirement of being less than λ/30 (λ = 632.8 nm). The above results indicated that
using the first 30 orders of bending modes was sufficient to effectively correct the gravity
deformation of a 4m SiC primary mirror.

Table 3. Relevant data of the primary mirror surface shape before and after correction for gravity
deformation.

Elevation Angle
Primary Mirror Surface Shape rms/nm Amplitude of the

Correction Force/N
Maximum Von Mises Stress of

the Primary Mirror/MPaBefore Calibration After Correction

90◦ 64.8 14.8 51.3 0.51
45◦ 165.3 14.5 59.6 0.96
0◦ 211.0 15.8 57.2 1.18

The Zernike polynomial was used to fit the surface shape before and after the correc-
tion, as shown in Figure 17. Due to space limitations, only the results at the elevation angle
of 90◦ were given. The main components of the surface shape error before the correction
were defocus and spherical aberration. The corrected surface shape significantly improved.

4.4. Correction of the Primary Mirror Surface Shape Errors Caused by Thermal and Wind Loads

In addition to gravity, thermal and wind loads could deform the primary mirror,
thereby affecting its surface accuracy and the imaging quality of the telescope. This section
analyzes the effects of the thermal and wind loads, and corrects the corresponding surface
shape errors.
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Figure 15. Results of correcting gravity deformation of the primary mirror using different orders of
bending modes. (a) Results at elevation angle of 90◦; (b) Results at elevation angle of 45◦; (c) Results
at elevation angle of 0◦.
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Figure 17. Zernike distributions of surface before and after correction (elevation angle of 90◦).

4.4.1. Thermal Load

SiC has a high specific stiffness and good thermal stability, making it an ideal mirror
material. The main indexes of RB SiC (reaction-bonded silicon carbide) are as follows:
density 3050 kg/m3, Young’s modulus 392,000 MPa, Poisson’s ratio 0.25, thermal expansion
coefficient 2.5 × 10−6/K, and thermal conductivity 185 W/(m·K) [30]. Due to SiC having
a large thermal expansion coefficient, a primary mirror composed of SiC is sensitive to
changes in the environment’s temperature, and analyzing this thermal deformation is
necessary [31,32]. The designed active support system could actively correct the thermal
deformation of the 4m SiC primary mirror to reduce the deformation of the mirror surface
and improve the imaging quality of the telescope.

Regarding the thermal load of the 4m SiC primary mirror, three representative tem-
perature cases were considered: the axial, radial, and transverse temperature differences
of the primary mirror. Figure 18 shows the temperature fields in the three situations for a
temperature difference of 0.2 ◦C. The three temperature fields were applied to a 4m SiC
primary mirror; the deformation of the mirror surface is shown in Figure 19.
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Figure 18. Three temperature fields corresponding to three types of temperature differences.
(a) Temperature field of 0.2 ◦C axial temperature difference; (b) Temperature field of 0.2 ◦C radial
temperature difference; (c) Temperature field of 0.2 ◦C transverse temperature difference.
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Figure 19. The 4m SiC primary mirror surface shape caused by three types of temperature differences.
(a) Axial temperature difference of 0.2 ◦C; (b) Radial temperature difference of 0.2 ◦C; (c) Transverse
temperature difference of 0.2 ◦C.

The first 30 orders of bending modes were used to perform an active optics correction
on the above surface shape, and the results are shown in Figure 20. The rms values of the
primary mirror surface shape before and after the correction are listed in Table 4. Under the
axial temperature difference of 0.2 ◦C, the rms decreased from 1026.7 to 14.9 nm, indicating
a significant correction effect. The rms of the other two cases also decreased significantly
after the correction. The designed support system had a good correction effect on the
thermal deformation of the primary mirror.
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Table 4. Relevant data of the primary mirror surface shape before and after correction for thermal
load deformation.

Temperature Field
Primary Mirror Surface Shape rms/nm Amplitude of the

Correction Force/N
Maximum Von Mises Stress
of the Primary Mirror/MPaBefore Calibration After Correction

Axial temperature
difference of 0.2 ◦C 1026.7 14.9 303.8 0.34

Radial temperature
difference of 0.2 ◦C 196.2 16.4 60.7 0.15

Transverse temperature
difference of 0.2 ◦C 58.7 17.7 125.3 0.15
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The Zernike polynomial was used to fit the surface shape (axial temperature difference
of 0.2 ◦C) before and after the correction, as shown in Figure 21. The surface correction
eliminated the defocus and spherical aberration.
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Figure 21. Zernike distributions of surface before and after correction (axial temperature difference
of 0.2 ◦C).

In addition, we performed surface corrections for the other temperature differences.
The first 30 orders of bending modes were again used, and the results are shown in
Figure 22. Setting the rms to <λ/30 (λ = 632.8 nm) as the standard, the results indicated
that the designed active support system could effectively correct the 4m SiC primary mirror
surface shape error caused by an axial temperature difference of 0.25 ◦C, radial temperature
difference of 0.25 ◦C, and transverse temperature difference of 0.2 ◦C.
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Figure 22. Results of correcting the thermal load deformation of 4m SiC primary mirror with the first
30 orders of bending modes.

4.4.2. Wind Load

The primary mirrors of modern large telescopes are often directly exposed to air
during operation, resulting in a wind load deformation. The wind load exerted on the
primary mirror can be divided into two parts: static and dynamic wind load. The static
wind load remains static or changes very slowly, whereas the dynamic wind load changes
over time with a frequency that can reach several hertz [33].

Unlike adaptive optics, which corrects for atmospheric turbulence, active optics is
used to correct the errors of the telescope itself. The correction object of active optics is the
large-aperture primary mirror with a large mass, rather than the small-aperture deformable
mirror used in adaptive optics. Therefore, the correction frequency of active optics is
generally very low, which is clearly different from that of adaptive optics, whose correction
frequency reaches several hundred hertz. Active optics is used to correct manufacturing
errors in the primary mirror, surface errors caused by gravity and temperature, and surface



Appl. Sci. 2023, 13, 9966 23 of 27

errors caused by telescope movements. The frequency of these errors is below 1 Hz [34].
The calibration frequency of the designed active support system is 1 Hz; therefore, it could
not correct the deformation caused by dynamic wind loads. In summary, only the influence
and correction of a static wind load were analyzed.

The effect of the wind load is transmitted through wind pressure [35], which could be
expressed as

P =
1
2

ρv2 (29)

where P is the wind pressure, ρ is the air density, and v is the wind speed. The wind load
force could be expressed as

FW = PCD A =
1
2

ρv2CD A (30)

where FW is the force exerted by the wind load on the structure, CD is the wind-resistance
coefficient, and A is the windward area of the structure.

An observation station at the National Astronomical Observatory of the Chinese
Academy of Sciences was considered as an example. The altitude of the observation station
is 900 m. According to the wind speed data from 2007 to 2014, the wind speed was mostly
less than 15 m/s, with an average wind speed of approximately 2 m/s [36]. Therefore, in
this analysis, the wind speed was set to 15 m/s. The density of air was 1.29 kg/m3, and the
wind pressure was calculated as 145.13 Pa, according to Equation (29).

In addition, according to Equation (30), the effect of the wind load calculation had to
consider the windward area. The angle between the wind direction and the optical axis
was set as θ, as shown in Figure 23. The windward area was inversely proportional to θ; θ
was sequentially set to 0◦, 30◦, and 60◦, and the tests were conducted. The surface shape of
the 4m SiC primary mirror under the wind load is shown in Figure 24. The first 30 orders
of bending modes were used to correct the surface shape, and the results are shown in
Figure 25. The surface shape data before and after the correction are listed in Table 5. The
rms of the corrected surface shape was less than 2 nm, indicating that the designed system
could effectively correct the static wind load deformation of the primary mirror.
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Figure 25. Correction results for the deformation of the primary mirror under static wind load using
the first 30 orders of bending modes. (a) θ = 0◦; (b) θ = 30◦; (c) θ = 60◦.

Table 5. Relevant data of the primary mirror surface shape before and after correction for static wind
load deformation.

θ
Primary Mirror Surface Shape rms/nm Amplitude of the

Correction Force/N
Maximum Von Mises Stress of

the Primary Mirror/MPaBefore Calibration After Correction

0◦ 741.2 1.8 596.0 0.061
30◦ 656.3 1.6 631.3 0.092
60◦ 440.4 1.6 522.9 0.126

The Zernike polynomial was used to fit the surface shape (θ = 0◦) before and after the
correction, as shown in Figure 26. The surface correction eliminated the defocus, trefoil
aberration, and spherical aberration.
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5. Conclusions

This study designed an active support system for a 4m SiC primary mirror, which
could effectively reduce the surface error caused by various loads on the primary mirror
and improve the imaging quality of the telescope. Firstly, the principle and structure of
the designed system were explained. Then, a method for calculating the correction force
through bending modes was derived, and the primary mirror pose correction based on
the six-hardpoint positioning mechanism was verified. In response to the problem of
protrusions and dents on the primary mirror surface caused by the force on the hardpoints,
a method to compensate for the force on the hardpoints was proposed, reducing the rms
of the corrected primary mirror surface from 50.4 nm to 12.4 nm. To achieve better results
in the surface shape correction based on the bending modes, the relationship between
the order of the bending modes used in the surface shape correction and the correction
effect was studied. The results showed that using the first 30 orders of bending modes
could effectively reduce the amplitude of the correction force and ensure a good surface
shape accuracy. Finally, a performance evaluation was conducted on the designed system.
We used the first 30 orders of bending modes to correct the deformation of the primary
mirror under gravity, thermal load, and wind load. Under these three working conditions,
the primary mirror surface error met the criterion of rms <λ/30 (λ = 632.8 nm) after the
correction. In summary, the designed active support system could meet the surface shape
accuracy index of the primary mirror. This study not only verified the application of active
optics technology based on the eigenmode in large-aperture SiC mirrors, but also improved
the relevant theoretical research of active optics and bending modes. The research has
innovation and engineering significance.

There are two main aspects for future work planning. We plan to study the impact of
dynamic wind loads on the primary mirror surface shape in a future work and to attempt
to correct the low-frequency components. In addition, we also plan to conduct research on
the thermal control system of the 4m SiC primary mirror.
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