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Abstract: An approach based on an artificial neural network (ANN) for the prediction of NOx
emissions from underground load–haul–dumping (LHD) vehicles powered by diesel engines is
proposed. A Feed-Forward Neural Network, the Multi-Layer Perceptron (MLP), is used to establish
a nonlinear relationship between input and output layers. The predicted values of NOx emissions
have less than 15% error compared to the real values measured by the LHD onboard monitoring
system by the standard sensor. This is considered quite good efficiency for dynamic behaviour
prediction of extremely complex systems. The achieved accuracy of NOx prediction allows the
application of the ANN-based “soft sensor” in environmental impact estimation and ventilation
system demand planning, which depends on the number of working LHDs in the underground mine.
The proposed solution to model NOx concentrations from mining machines will help to provide
a better understanding of the atmosphere of the working environment and will also contribute to
improving the safety of underground crews.

Keywords: NOx emission prediction; artificial neural network; LHD vehicles; underground mine;
safety; ventilation

1. Introduction

In underground mining, the movement of crews is realized by wheeled vehicles.
This is due to the long distances between the shaft and the mining sections where the
underground crews work. In Polish copper ore mines, almost all vehicles are powered
by diesel engines [1,2]. In addition to vehicles for transporting people, the largest part
of the mine’s fleet consists of trucks and loaders, which transport the material to be
excavated. Underground crews face mobility problems due to long distances of up to
several kilometres. One of the major ventilation problems is the transport of fresh air to
distant worksites. In the deep mines, apart from an increase in air temperature along with
the transport distance, air pollution also increases.

According to Dong et al. [3], underground mines face many natural hazards that affect
air quality. One of the most important hazards affecting air quality is the gas hazard. The
most dangerous of these to the human body are carbon monoxide (CO), methane (CH4),
hydrogen sulphide (H2S), and nitrogen oxides (NOx) [4–7]. Gases such as H2S or CH4 are
gases that are of natural sources. NOx and CO are gases whose presence in mine air is
generated mainly by technological processes.

Diesel machinery is considered the source of the highest amount of nitrogen oxides
in an underground mine [8]. The NOx emissions from vehicles have been analysed to
develop analytical tools based on ANN for their prediction. A type of Feed-Forward
Neural Network, the Multi-Layer Perceptron (MLP), has been used to develop a nonlinear
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relationship between input and output layers for predicting NOx emissions from load–
haul–dumping (LHD) vehicles in underground mines.

The obtained NOx prediction accuracy allows the use of the MLP “soft-sensor” for
estimating the environmental impact and to plan the ventilation system demand depending
on the number of operating LHDs in the underground mine. The measurement data were
analysed from the SYNAPSA system mounted on the LHD machine. This system monitors
various parameters, such as engine speed, engine acceleration, fuel consumption, oil
temperature, and oil pressure, some of which also measure NOx concentrations. Based on
these data, a prediction model was created using the MLP network, which is often used to
forecast gas emissions [9,10].

To ensure the safety of underground mining crews, it is crucial to have accurate infor-
mation about the emissions of harmful compounds from mining machinery. The prediction
model developed in this study is a valuable tool that can be used to estimate the emissions
values of mining machinery that does not have a nitrogen oxide sensor installed. Using
the prediction model to estimate emissions values, mining companies can take appropriate
measures to ensure the safety of their workers and the surrounding environment.

2. State of the Art

Ventilation in underground mines can be a costly and complex process, as it depends
on factors such as the mining technology and the geometry of the mine. Additionally, local
air quality can fluctuate, which poses a risk to miners.

Ensuring the safety of underground mining crews is of utmost importance in mining
operations. This is reflected in various regulations that impose restrictions on human
work in excavations where working conditions may pose a risk to workers’ health or
safety [11–15]. Examples of such regulations include legal acts that limit the temperature or
the concentration of harmful substances in the workplace. These acts also define different
types of natural hazards that may affect workers in underground mines [16].

Adhering to these regulations and taking appropriate measures to mitigate risks
is crucial for maintaining a safe work environment for underground mining crews. As
mining operations move away from the main underground excavations and intake shafts,
the risk of natural hazards in underground mines increases [17–19]. Of these hazards,
the atmospheric and gas hazards pose the greatest danger. Harmful gases can enter the
mine atmosphere naturally, such as methane and hydrogen sulphide, or as a result of
technological processes, including carbon monoxide and nitrogen oxides. In recent years,
scientists have been analysing the impact of nitrogen oxides (NOx) in underground mines,
as they are one of the most harmful gases present. In general, NOx are composed of
nitrogen oxide (NO) and nitrogen dioxide (NO2) [20,21].

All NOx gas hazards in underground mining operations can be grouped into those
that appear naturally or those that appear due to technological processes. The natural
sources of NOx in an underground mine are the emission of gas from the rock mass or
the oxidation of nitrogen from the atmosphere. However, it should be noted that the
largest volumes of NOx are generated in processes related to the technological cycle of the
mine: welding work, blasting work, and, above all, diesel-powered machinery [2]. The
primary source of NOx in the mine atmosphere is technological processes, specifically the
operation of diesel machinery [22,23]. One of the main sources of harmful compounds
that are released into the mine atmosphere is diesel-powered machinery. Diesel engines
generate many chemical compounds in liquid, solid, and, most importantly, gaseous states.
The most important of these are sulphur dioxide (SO2), carbon monoxide (CO), carbon
dioxide (CO2), hydrocarbon compounds (CHx), nitrogen oxide (NO), nitrogen dioxide
(NO2), and solid particles [24–29]. According to Stavert and Lehnert [30] and Kampa [31],
NOx is a harmful air pollutant that can have significant impacts on both the environment
and human health. Both monoxide NO and dioxide NO2 are odourless gases. Nitrogen
monoxide is a colourless gas, while nitrogen dioxide at a certain concentration can take
on a brown colour [32,33]. In the exhaust of a diesel engine, the share of nitrogen oxides is
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about 90% NO and about 10% NO2 [34]. NOx can be a danger to human health, particularly
for people with respiratory problems or heart disease. Exposure to high levels of NOx
can cause irritation of the eyes and throat, coughing, shortness of breath, and reduced
lung function. Long-term exposure to NOx can increase the risk of respiratory infections
and chronic lung diseases [35–38]. The more toxic gas is nitrogen dioxide [39], which at
1.5 ppm already causes respiratory problems, while at 5 ppm it leads to a drop in blood
pressure. When the NO2 concentration reaches about 200 ppm, it can result in human
death [40]. Due to the negative influence of NOx on humans, it is important to monitor
the concentrations of nitrogen oxides in underground mines. However, it is even more
important to predict the NOx emissions from LHD vehicles and heavy transport trucks,
depending on individual working modes. In the case of accurate NOx emissions prediction
tool development (a soft sensor), the overall performance of the ventilation system can be
optimized and the working atmosphere improved in the underground mine.

Due to the characteristics of NOx and its negative effects on human health, a lot
of research is being conducted to improve occupational safety by reducing emissions.
Currently, many researchers are working to develop an innovative method to control and
predict dangerous gases from diesel engine emissions in underground mines [41,42].

To predict the concentration of dangerous gases in underground mines, air monitoring
systems can be installed to continuously monitor the concentrations of various gases in the
mine atmosphere. Real-time monitoring of gas concentrations can help to identify potential
hazards and enable mine operators to take appropriate measures to control the release of
dangerous gases [43–45]. In addition, mathematical models can be developed to predict the
concentration of dangerous gases in the mine atmosphere. These models take into account
various factors such as ventilation rates, engine emissions, and the physical characteristics
of the mine and can help mine operators anticipate dangerous levels of gases and take
appropriate measures to mitigate risks [46].

The operation of LHD vehicles is characterized by reverse motion with frequent
changes from acceleration to deceleration and repeating cycles, as well as quick transitions
from one level of engine load to another [47]. Although the powertrain of these vehicles
usually contains a hydraulic torque converter, which reduces torque peaks [48] and smooths
torque demand to the engine, there is a big challenge to meet the environmental legislation
because of inertia in the flow rate and temperature in exhaust gas recirculation (EGR)
systems [49]. To tackle this problem, different models for NOx prediction have been
developed and tested both in the lab and real conditions.

A simplified physics-based model of the engine is proposed in [50] to predict NOx
emissions by narrow-range inputs. However, fuel combustion in diesel engines is a sig-
nificantly nonlinear process. Physics-based models cannot account for all influencing
parameters due to certain assumptions and simplifications. Therefore, data-driven ap-
proaches are also widely used in this domain. The Hammerstein–Wiener model is applied
in [51] but for a small region of operation parameters. In work [52], NOx emissions from a
diesel engine are modelled with a nonlinear autoregressive with exogenous input (NARX)
model. Experimental results show that NOx emissions can be estimated with a reduced set
of regressors in order to be more stable and robust.

In [53], the authors proposed a combined grey-box modelling approach with numer-
ical identification of static maps, while the main factors are accounted for by physical
assumptions. This model showed a wide range of validity and high accuracy, but the fitting
performance in highly dynamic conditions is insufficient.

To capture memory effects, Volterra polynomials were employed in [54] for identifi-
cation of nonlinear models of diesel engine emissions. An increasing number of inputs
and the degree of polynomials increases the set of estimated parameters and makes this
approach difficult for practical application. In work [55], the authors give a model for NOx
and soot emissions in the form of local linear regression models where the parameters
are represented in tables. Then, using the β-spline function, they find the parameters of a
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globally optimal model by solving a linear least-squares problem. However, this work is
evaluated only for steady-state engine operations.

The authors of work [56] estimated NOx emissions of a heavy-duty diesel engine with
engine speed and pressure measurements. Principal component analysis (PCA) and L2
regularization techniques are used to derive a simple and reliable estimator. The developed
estimator shows sufficient performance in steady-state regimes but improvements are
required for transient cycles of engine loading.

An ANN is employed in [57] to estimate emissions of CO2, NOx, and PM of a Common-
Rail Diesel Injection (CRDI) engine. It was shown that increasing the number of hidden
layers and neurons causes over-fitting and decreases the generalization of the model.

In the work [58], to solve the engine optimization problem, a multi-layer perception
(MLP) neural network followed by multi-objective optimization including a non-dominated
sorting genetic algorithm II (NSGA-II) and strength Pareto evolutionary algorithm (SPEA2)
were used. This study allowed the authors to decide which algorithm is preferable for opti-
mizing engine emissions and fuel consumption. As an alternative to complicated physics-
based models, a multidimensional data-driven approach is proposed in [59] to estimate
NOx emissions. Using Deep Neural Networks (DNNs), separate models were developed:
engine-out NOx and tailpipe NOx emissions. Two datasets were used from the onboard
diagnostic system, namely, an engine dynamometer and a chassis dynamometer. Both the
cold/hot Federal Test Procedure (FTP) and the Ramped Mode Cycle (RMC) were applied.
The authors proved that high precision of the DNN models (R2 = 0.92–0.95 up to 0.99) can
be achieved by utilizing minimal engine and exhaust gas after-treatment parameters.

Another factor affecting diesel engine emissions in articulated heavy-duty under-
ground loaders is the depth of the mine. In [60], engine emissions were determined by a
portable gas analyser at various depths from the surface (up to 7000 feet below sea level).
Based on the measurement results, the authors concluded that carbon monoxide (CO) and
diesel particulate matter (DPM) emissions decrease with depth because of the higher air
density and air/fuel ratio for the same parameter set in the vehicle Electronic Control Unit
(ECU). Instead, NOx emissions increase with depth. The authors related this to the effect
of pressure on in-cylinder NO formation. The influence of ambient air temperature and
humidity on NOx emissions is investigated in [61], which noted that an increase in intake
air humidity (in the range of 31–80%) causes a 3–14% reduction in the NOx emissions at a
constant temperature of 26 ◦C. The influence of intake air temperature on engine torque
and emissions is analysed in [62]. They obtained accurate regression models (RMSE 72.38
and accuracy 99.2%) and discovered that the ambient temperature in the range 5–30 ◦C has
a great influence on both the torque and the prediction of NOx. Nevertheless, since the
temperature and humidity at a certain depth and geological conditions of underground
mines are approximately constant, these factors can be neglected in the prediction model.

3. Measurements

NOx emissions measurements were carried out on a KGHM ZANAM vehicle—more
precisely, the LHD LKP-1701 operated in the underground copper ore mine of KGHM
Polska Miedź (Poland). This vehicle is depicted in Figure 1, and its general technical
specifications are given in Table 1.

Figure 1. LKP-1701: the LHD vehicle (KGHM ZANAM) [63].
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Table 1. Technical specification of LKP-1701 [63].

Parameter Value Units

Length 11,500 mm
Width 3380 mm
Height 2350 mm

Gross weight 48,600 kg
Bucket capacity 8.6 m3

Lifting capacity 172 kN
Engine power 390 kW
Driving speed:

1st gear 5.0 km/h
2nd gear 9.0 km/h
3rd gear 15.0 km/h
4th gear 20.0 km/h

The equipment is specifically designed to operate in the confined spaces of low tunnels
and is equipped with a DEUTZ TCD 12.0 V6, which is a turbocharged diesel engine and SCR
system, as shown in Figure 2. The relationship between diesel engine power and torque
can be found in Figure 3, while a comprehensive list of engine parameters is provided
in Table 2. It is important to note that the parameters listed are taken directly from the
manuals provided by the diesel engine manufacturer, and the best point consumption
refers to diesel fuel with a density of 0.835 kg/dm3 at 15 °C.

Table 2. The power and torque functions of diesel engine DEUTZ TCD 12.0 V6 [64].

Parameter Value Units

Power output as per ISO 14396 390 kW
at speed 2100 rpm

Max. torque 2130 Nm
at speed 1400 rpm

Min. idling speed 600 rpm
Specific fuel consumption 194 g/kWh

Figure 2. The DEUTZ TCD 12.0 V6 diesel engine with its SCR system [64].

Diesel engines are usually operated with an overstoichiometric air-to-fuel ratio to
provide the full combustion of soot and to restrict exhausting unburnt fuel. Excess air
leads to high NOx emissions. This engine produces 390 kW of power and contains a
BlueTec system for exhaust gas after-treatment. This process of NOx emissions reduction is
carried out by selective catalytic reduction (SCR) with an ammonia slip catalytic converter
and diesel oxidation catalytic converter (DOC). SCR uses Diesel Exhaust Fluid (DEF), or
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AUS 32 (Aqueous Urea Solution 32%) by ISO 22241. DEF from a special tank is injected
into the exhaust pipeline to decompose it to ammonia by the exhaust heat. Inside the
SCR catalyst, the ammonia reduces NOx into non-polluting water and nitrogen, which
is then released into the atmosphere. The exhaust gas after-treatment unit reads signals
from the sensors and transmits them via CAN bus to the engine management control unit:
temperature upstream of the SCR catalytic converter; temperature downstream of the SCR;
NOx downstream of the SCR; pressure (fluid level) and temperature in the AdBlue/DEF
tank; and intake air humidity and temperature.

Figure 3. The power and torque functions of diesel engine DEUTZ TCD 12.0 V6 [64].

Table 3 presents the standard parameters of the NOx sensor. However, under cur-
rent regulations, NOx mass measurements must have a minimum accuracy of ±20% or
±0.1 g/bhp-h [65], which most NOx sensors cannot achieve under transient load condi-
tions. The causes of this include cross-sensitivity to ammonia (NH3), exhaust gas flow rate,
mass air flow (MAF), or sensor position. Additionally, many sensors have noise levels as
low as 10 ppm due to residual amounts of NOx in the exhaust system even when the NOx
concentration is zero [66].

Table 3. Parameters of the NOx sensor.

Parameter Value Units

Measuring range (NOx) 0–1500 ppm
Accuracy ±10(20) %

Operating temperature −40...105 °C
Exhaust temperature <800 °C

Development and validation of a vibration-based virtual sensor are conducted in [67]
for real-time monitoring of NOx emissions from a diesel engine. The virtual NOx sensor is
validated on a single-cylinder diesel engine bench. The prediction error was less than ±10%
for the steady-state mode and below ±20% for transient conditions. The NOx prediction
model is based on principal component regression (PCR). Unfortunately, in this approach,
an additional sensor is required to reconstruct the in-cylinder pressure from the vibration
signal. The application of this virtual NOx sensor for multi-cylinder engines probably
requires more sensors or advanced signal processing techniques.



Appl. Sci. 2023, 13, 9965 7 of 19

The onboard monitoring system obtains parameters of LHD vehicle operation and
the diesel engine via CAN bus, stores them locally, and uploads data to the enterprise
server via a wireless connection once per working shift (about 6 h). Almost all monitored
parameters are sampled with a time interval of 1 s and are given in Table 4.

Table 4. Parameters of LHD operation taken from the onboard monitoring system for NOx emis-
sion analysis.

No. Parameter Description Units

ENGNOX NOx Emissions ppm

1 ENGCOOLT Coolant temperature ◦C
2 ENGOILT Oil Temperature kPa
3 ENGRPM Engine rotations rpm
4 ENGTPS Engine acceleration %
5 FUELUS Fuel consumption L/h
6 GROILP Gear oil pressure kPa
7 GROILT Gear oil temperature C
8 HYDOILP Hydraulic oil pressure MPa
9 INTAKEP Intake air pressure kPa

10 INTAKET Intake air temperature ◦C
11 SPEED Vehicle speed km/h
12 SELGEAR Selected gear −4...0...4

4. Methodology of NOx Prediction
Multi-Layer Perceptron (MLP) Network

One of the most popular ANNs frequently used in engineering, medicine, and math-
ematical modelling applications is a Multi-Layer Perceptron (MLP) network [68,69]. A
Multi-Layer Perceptron (MLP) network is a type of neural network that consists of multiple
layers of interconnected nodes (or neurons) arranged in a feedforward manner. It is a
supervised learning algorithm used for classification and regression tasks. The structure
of an MLP neural network is composed of input units, hidden units, and output units
(see Figure 4). Inputs are multiplied by weights and added to bias conditions to form a
weighted sum. The activation level of each unit is calculated by applying a transfer function
to the weighted sum and bias condition. The MLP is deployed in a layered feed-forward
topology in which information flows in only one direction from the input layer through the
hidden layers to the output layer. This structure is commonly referred to as a Feed-Forward
Neural Network. Each layer has several processing units and is fully interconnected with
weighted connections to units in the subsequent layer. The MLP transforms n inputs to l
outputs through some nonlinear functions [70–72].

In our case, multiple inputs (LHD working parameters) and only one output (NOx
value) are considered.

xt = At−1xt−1 + qt
yt = Htxt + rt

(1)

Based on a dataset with input parameters obtained from the LHD monitoring sys-
tem, this ANN was trained. Then, tests were conducted to validate the accuracy of the
NOx prediction.

The ANN created for solving the NOx emission prediction problem consists of 1 input
layer, 1 hidden layer, and 1 output layer. For inputs, 11 parameters are used, and the
output is only 1 − NOx emission level. In the hidden layer, 20 neurons are used. Input
data are normalized to the range [−1, 1], and the transfer functions used are hyperbolic
tangent sigmoid for the hidden layer and linear for the output layer. As a loss function,
MSE was chosen. Data are split using random sampling into 3 datasets—training data
(70%), validation data (15%), and test data (15%).
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Figure 4. The structure of a Multi-Layer Perceptron (MLP) network.

5. Data Analysis
5.1. Preliminary Analysis and Input Variable Selection

The time series of the LHD operation parameters and the corresponding NOx emission
amounts are represented in Figures 5 and 6. Both graphs have grid lines of time equal to
60 s. To make the graphs more suitable for comparison, time series are re-sampled by a
linear moving average filter (5 points or 5 s). In this way, the sharp changes of operational
parameters are equalized to the NOx sensor output and the intake pressure signal INTAKEP
(kPa), which is originally sampled with a 5 s period by the onboard monitoring system.

Figure 5. The time series of recorded signals: NOx emission ENGNOX (ppm); engine rotations
ENGRPM (rpm); and engine acceleration ENGTPS (%).

Looking at the graphs in Figure 5, we can conclude that engine rotations expectedly
follow the engine acceleration (operator’s pedal), and both signals are well-correlated with
NOx sensor output and a certain delay in its reaction, i.e., such a natural logical sequence
of signals exists: “acceleration–rotations–emission”.

During every period of idle engine rotations (pointed out by the arrows in the graph) at
about 855 rpm without acceleration (stable value of 2%), the NOx emission signal gradually
falls to a minimum value (about 68 ppm) and then rises. The maximum value of the
NOx signal observed in the given whole dataset is equal to 1650 ppm. Hence, the NOx
sensor output is non-linearly dependent on the idle mode duration. This effect is difficult
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to account for in the ANN-based model. These periods of time can be excluded from
model training by the logical condition: (ENGTPS = 2% and ENGRPM < 860 rpm). By
comparison, the logical condition (ENGTPS = 2% and ENGRPM = 0 rpm) corresponds to a
fully stopped engine. In this case, engine acceleration remains non-zero (2%), too, which is
probably related to signal bias in the monitoring system.

Figure 6. The time series of recorded signals: NOx emission ENGNOX (ppm); intake air pressure
INTAKEP (kPa); selected gear (−4. . .0. . .4); and hydraulic oil pressure HYDOILP (MPa).

The graphs in Figure 6 have the same time axis as in Figure 5 but show parallel to the
NOx sensor output other signals potentially suitable for ANN-based model training.

The value of the selected gear SELGEAR (−4. . .0. . .4) reflects the operator’s control
of the engine load and its rotations (output torque), including reverse motion (negative
values). As previously, the same periods of idle rotation of the engine are presented in this
graph when SELGEAR = 0. Therefore, this logical condition can be added to exclude data
points in the ANN-based model training of NOx prediction.

Hydraulic oil pressure HYDOILP (MPa) corresponds to the “load–haul–dump” cycles
of the LHD vehicle and reaches maximum values at the beginning of every cycle when
the operator fills the bucket by digging into the hill of blasted bulk rock. These peaks in
hydraulic pressure are well-correlated with the maximum engine acceleration rate (100%)
at a rotation speed of 1700 rpm and the lowest selected gear (1). However, during the
transportation period, the NOx emission signal is almost uncorrelated with this parameter,
demonstrating more frequent oscillations of small amplitude around a certain value until
the moment of unloading.

The intake air pressure signal INTAKEP (kPa) is responsible for the fuel combustion
process and is well-correlated with NOx emission. Even having a lower sampling frequency
(5 s), this signal can be a good candidate for inclusion into input parameters for ANN-based
model training and further NOx prediction.

The correlations of the most-dependable parameters are shown in Figure 7 and are
constructed from the data subset without idle modes. The ENGNOX (ppm) non-linear
relation with ENGTPS (%) has R2 = 0.2298, and the linear relation with INTAKEP (kPa) has
R2 = 0.5278, which are not satisfactory for NOx prediction in practice.
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Figure 7. The correlation of LHD operational parameters.

Over the selected dataset, the calculated average value of NOx emissions is about
122 ppm over all the working cycles of the LHD. The standard deviation from the average
value is 47 ppm. The upper limit is 428 ppm, while the lower values (at the idle engine
rotation speed without load) are about 68 ppm. The NOx value for the stopped engine is
56 ppm. This value is more likely to be due to bias of the sensor or a result of the gas action
that still remains in the exhaust system. It should be noted that the measuring sensor is
installed in the exhaust pipe of the tested machine. The harmful gases that escape into the
mine atmosphere from the machine are diluted with air; for example, NO values should
not exceed 2.6 ppm in Poland [73].

5.2. MLP Training, Validation, and Testing

The results of MLP network training, validation, and testing over separate datasets
along with the Mean Squared Error (MSE) and the Root Mean Squared Error (RMSE) are
represented in Figures 8–11. The correlation of original data with predicted data is also
shown in those graphs.

In the following, the results of the proposed methodology are presented for two differ-
ent cases: (1) modelling in the presence of the outliers and (2) modelling after removing
the outliers. The condition NOx > 3 × STD (standard deviation) was used as a criterion to
reject outliers from the dataset. In this research, as was noted before, 70% of the data were
used as the training dataset, 15% for validation, and the remaining 15% for testing.

Figure 8. Training data.

5.2.1. Results with Outliers

Figures 8–11 show the results for training data, validation, testing, and all data with
outliers. In Figure 8, results of the proposed methodology for the training dataset in the
presence of outliers are presented. As seen in the training data panel of this figure, the
proposed approach could predict the data correctly. However, we can see some areas
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around the 3800 and 5200 samples that have been overestimated. Furthermore, the R2 and
error for the training data are presented.

In Figure 9, the results of the proposed methodology for the validation data in the
presence of outliers are presented. As seen in the validation data panel of this figure, the
proposed approach could predict the data with acceptable results. However, as in the
previous one, we can see some areas around the 800 and 1200 samples that have been
overestimated. Furthermore, the R2 and error values are presented for the validation data.

The results of the proposed approach are shown in Figure 10. As seen in the test data
panel of this figure, the results are acceptable. However, we can see some areas around
samples 800 and 1200 that have been overestimated. Furthermore, the R2 and error values
are presented for the test data.

In the end, all data results are presented in Figure 11. As expected, based on the
previous plots in this figure, we can see some areas around the 5800 and 7800 samples that
have been overestimated.

Figure 9. Validation data.

Figure 10. Test data.
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Figure 11. All data with outliers.

5.2.2. Results without Outliers

Figures 12–15 show the results for training data, validation, testing, and all data after
outlier removal. In Figure 12, results are presented of the proposed methodology for
the training dataset with outliers removed. As can be seen in the training data panel of
Figure 12, the proposed approach could predict data precisely. Also, in some areas, we can
see some overestimated data; however, compared with the previous case, there are fewer
errors.

Figure 12. Training data.

The results of the proposed approach for the validation and test data are presented in
Figure 13 and Figure 14, respectively. Finally, the result for all data is presented in Figure 15.
Also, as we expected, these results had fewer errors than in the previous case with outliers.
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Figure 13. Validation data.

Figure 14. Test data.

Figure 15. All data.
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6. Discussion

The accuracies of the NOx emissions prediction achieved in the training, validation,
and testing datasets are given in Table 5. To check the robustness of the developed ANN-
based model, different statistical metrics are used.

Table 5. Errors of NOx emission prediction for datasets.

Errors Training Validation Testing All Data Units

Mean Average Error (MAE) 12.8827 13.6737 13.6737 13.1139 ppm
Mean Squared Error (MSE) 290.6143 317.3026 330.2508 300.558 —
Root Mean Squared Error (RMSE) 17.0474 17.813 18.1728 17.3366 ppm
Coefficient of determination (R2) 0.86757 0.85498 0.84919 0.86293 —

The cumulative error of the NOx prediction over time is shown in Figure 16 for all
data. The coefficient of determination seems high—up to 0.86757—and the total deviation
of NOx emissions is moderate during half of the working shift (about 3 h).

Using the ANN-based MLP model for the prediction of NOx emissions allows the
estimation of the environmental impacts of LHD vehicles working in the underground
mine and equipped with the monitoring system. Since not every LHD has a NOx sensor,
the results obtained can easily be implemented on a large number of working machines.

Figure 16. Cumulative NOx emissions: original measured data and predicted (a); error of MLP
prediction (b).

The main problem in NOx prediction is to account for the transient modes of LHD
bucket filling, acceleration, and deceleration when the engine is subjected to maximum
loading and fuel combustion. However, following the analysed dataset, which represents
many working cycles, the duration of several outliers in NOx emission is very short (several
seconds) compared to the entire time; therefore, the amount of NOx is less than 1%. There-
fore, before ANN training, those samples can be rejected, which greatly improves prediction
accuracy (up to 85%). The criterion for outlier rejection from the dataset can be a condition
of NOx > 3 × STD (standard deviation), i.e., beyond the Gaussian distribution range.

For longer distances of delivery, i.e., fewer LHD cycles per working shift, the accuracy
of predictions is expected to be higher due to more-stable modes of diesel engine loading
with fewer transient periods. Pieces of blasted material with bigger sizes create a greater
load on the engine when the LHD bucket penetrates the hill; hence, heterogeneous material
will reduce the accuracy of NOx prediction.
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Future research is directed toward improving the prediction of NOx emissions in
transient modes of operation of LHD vehicles (e.g., excavation of bulk material and reverse
motion). This ANN-based “soft-sensor” can be utilized in ventilation power demand
estimation in certain geological conditions of underground mining, which accounts for
material granulation after blasting, road inclination, and distance of delivery to dumping
points. In addition, trend analysis in NOx emission of certain LHD vehicles can be used
for the assessment of individual operator driving qualifications. Further, trends of NOx
emissions in certain LHD vehicles over all operators can demonstrate malfunctions in fuel
injection or after-treatment systems as well as supplied fuel quality.

7. Conclusions

Based on the real data of LHD vehicle operations and conducted research for NOx
emission prediction, the following conclusions can be derived:

1. The MLP models analysed in this article were developed based on the selected in-
put parameters. The decision was made to include 11 parameters that were measured
using the SYNAPSA system. The selection of parameters was based on their impact
on the emission of NOx.

2. ANN-based models can be an efficient tool for NOx emission prediction of heavy-
duty diesel engines installed in the powerful underground LHD vehicles working
in transient modes of loading and speeds. The environmental conditions in which
mining machinery operates are hard. The solution presented in the article aims to
improve the safety of underground crews. Since most industrial vehicles with diesel
engines are not equipped with sensors that measure the concentrations of harmful
gases, the proposed solution for modelling NOx concentrations will provide a better
understanding of the atmosphere of the working environment. The coefficient of
determination is 0.86293, which the authors consider a satisfactory result for such
complex industrial data. The ability to predict average exhaust emissions will allow
for controlling gas hazards in underground mine work.

3. The created ANN-based model should be tested and adapted over bigger datasets
for different geological conditions (blasted material, road inclination, surface wa-
tering, and transportation distances) and operator experience with different driv-
ing manners. In further research, the model proposed in the article should be ex-
panded to include more parameters. It is also necessary to test the operation of
machines under different geological and hydrogeological conditions. This activity
will make it possible to create appropriate models for predicting NOx from mining
machines operating under specific geological and mining conditions.

4. Data prediction values of NOx emission concentrations in mine work can be the
basis for manoeuvring the ventilation airflow. By incorporating this information
into the ventilation system power demand and capacity planning, the ventilation sys-
tem can be optimized to ensure safe working conditions for the miners. The statistical
method proposed in the article provides a way to estimate NOx concentrations that
will be present in the mine atmosphere based on various factors such as production
plans, a fleet of vehicles, and transportation routes. Knowing this information, venti-
lation services can adjust the ventilation system accordingly, which can help reduce
the risk of health problems caused by high concentrations of NOx in the workplace.
Increasing the air volume flow is just one example of how the ventilation system can
be adjusted to manage NOx concentrations, and there may be other strategies that
can be used as well.

The aim of this study was to develop an ANN-based method (estimator or “soft
sensor”) applicable in practice for NOx emissions prediction based on LHD monitoring
parameters. This aim was achieved, and the developed procedure is intended for implemen-
tation as an additional function (module) in the SYNAPSA system. Following studies will
be devoted to the investigation of other underground vehicles (hauling trucks) equipped
with different diesel engines and working in other mines and geological conditions.
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4. Strumiński, A.; Madeja-Strumińska, B. Mine ventilation practice in Polish copper mines. In Mining in the New Millennium

Challenges and Opportunities; CRC Press: London, UK, 2020; pp. 173–179.
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