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Abstract: To address the phenomenon of color shift and low contrast in underwater images caused
by wavelength- and distance-related attenuation and scattering when light propagates in water, we
propose a method based on an attention mechanism and adversarial autoencoder for enhancing
underwater images. Firstly, the pixel and channel attention mechanisms are utilized to extract rich
discriminative image information from multiple color spaces. Secondly, the above image information
and the original image reverse medium transmittance map are feature-fused by a feature fusion
module to enhance the network response to the image quality degradation region. Finally, the
encoder learning is guided by the adversarial mechanism of the adversarial autoencoder, and the
hidden space of the autoencoder is continuously approached to the hidden space of the pre-trained
model. The results of the experimental images acquired from the Beihai Bay area of China on the
HYSY-163 platform show that the average value of the Natural Image Quality Evaluator is reduced
by 27.8%, the average value of the Underwater Color Image Quality Evaluation is improved by 28.8%,
and the average values of the Structural Similarity and Peak Signal-to-Noise Ratio are improved
by 35.7% and 42.8%, respectively, compared with the unprocessed real underwater images, and the
enhanced underwater images have improved clarity and more realistic colors. In summary, our
network can effectively improve the visibility of underwater target objects, especially the quality of
images of submarine pipelines and marine organisms, and is expected to be applied in the future
with underwater robots for pile legs of offshore wellhead platforms and large ship bottom sea life
cleaning.

Keywords: image processing; attention mechanism; underwater image enhancement; reverse
medium transmittance; adversarial autoencoder

1. Introduction

In recent years, the exploration of the oceans has been significantly facilitated by the
advancements in underwater robotics [1]. Underwater robots are commonly equipped with
visual sensing devices that capture information about the surrounding environment and
record it using images as data carriers [2]. Various underwater tasks, including submarine
pipeline cleaning and mineral exploration [3,4], rely on the analysis of underwater images.
However, the complexity of underwater environments introduces challenges such as color
deviation and low contrast in underwater images due to wavelength- and distance-related
attenuation and scattering. When light travels through water, it undergoes selective attenu-
ation, leading to varying degrees of color deviation. Additionally, suspended particulate
matter, such as phytoplankton and non-algal particles, scatters light, further reducing
contrast. Based on recent research findings, we categorize the existing underwater image
enhancement methods into three main categories: non-physical model-based, physical
model-based, and deep learning-based approaches [5].

Early non-physical model-based enhancement methods primarily focused on adjusting
the pixel values of underwater images in order to enhance image presentation. These
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methods included techniques such as histogram equalization, white balance adjustment,
and image fusion. While these non-physical model-based methods have the potential to
improve visual quality to some extent, they overlook the underlying underwater imaging
mechanism [6]. As a result, these methods often produce over-enhanced results or introduce
artificially created colors. For instance, Iqbal et al. [7] propose a UCM algorithm that initially
performs color equalization on underwater images in the RGB color space and then corrects
the contrast in the HSV color space. However, these algorithms are characterized by
their simplicity, which makes them susceptible to noise over-enhancement, as well as the
introduction of artifacts and color distortion.

The predominant methods for enhancing underwater images are based on physical
models [6,8]. These models involve specific mathematical representations of the imaging
process, enabling the estimation of unknown parameters, and subsequently producing
clear images by removing the influence of the water body. Among these methods, the Dark
Channel Prior (DCP) algorithm [9] is considered a classical approach. It establishes a rela-
tionship between land-based foggy images and the imaging model, enabling the estimation
of light wave transmittance and atmospheric light, thus facilitating the restoration of foggy
images. Given the similarity between the underwater imaging process and the fogging
process, the DCP algorithm can also be applied to correct distorted underwater images.
However, it is important to note that the application of this algorithm is limited, and the
enhancement results are prone to introducing new distortion problems. Furthermore, P.
Drews-Jr. et al. [10] introduced the Underwater Dark Channel Priority (UDCP) algorithm,
designed specifically for underwater scenarios. This algorithm considers the attenuation
characteristics of light wave transmission in water, allowing for the estimation of a more
accurate transmittance distribution. However, due to the complexity and variability of the
underwater environment, constructing a precise and universally applicable imaging model
becomes challenging. Moreover, parameter estimation is susceptible to bias, resulting in
less satisfactory enhancement results. Peng et al. [11] employed a modeling approach that
considers image blurriness and light absorption (IBLA) to recover underwater images. Song
et al. [12] utilized the underwater light attenuation prior (ULAP) information to estimate
the scene’s depth map, followed by the enhancement of the underwater images. However,
it should be noted that these methods heavily rely on specific prior conditions and may not
be effective for type-sensitive underwater image enhancement.

In recent years, considerable attention has been given to the field of deep learning, as
deep learning neural networks demonstrate remarkable capabilities in solving complex
nonlinear system modeling problems. This has led to significant advancements in the
enhancement of underwater images. For instance, Li et al. [13] proposed the UWCNN
model, which utilizes distinct neural network models tailored to different types of un-
derwater images. Wang et al. [14] introduced the UIEC′′2-Net, which incorporates RGB
and HSV color spaces, as well as an attention module, to enhance underwater images.
Additionally, Li et al. [15] proposed the Ucolor network, which is based on a multi-color
space approach. They introduced reverse medium transmission (RMT) images into the
network as weight information to guide the enhancement of underwater RGB images.
In a separate work, Li et al. [16] presented the innovative WaterGAN model, a type of
Generative Adversarial Network [17] (GAN). This model generates underwater images by
taking atmospheric RGB images, depth maps, and noise vectors as inputs. Subsequently, a
convolutional neural network is trained using the synthesized images, atmospheric images,
and depth maps to achieve the enhancement of target images. However, it should be
noted that the WaterGAN model inherits the inherent drawback of GAN-based models,
namely the production of unstable enhancement results. While these methods can enhance
the visual quality of underwater images to a certain extent, they heavily rely on neural
networks to learn parameters and achieve enhanced images through nonlinear mapping.
However, this approach faces difficulties in effectively capturing the characteristics and
laws of underwater optical imaging in complex underwater environments. Consequently,



Appl. Sci. 2023, 13, 9956 3 of 17

the reliability of the results is compromised, making it challenging to address the problem
of deteriorating image quality in different underwater scenes.

The current deep learning-based models for underwater image enhancement exhibit
limited robustness and generalization ability, which is unsatisfactory. This limitation
stems from the fact that while deep learning-based methods circumvent the complex
physical parameter estimation required by traditional approaches, they often overlook the
domain knowledge specific to underwater imaging. To address this issue, we propose
an underwater image enhancement method based on Adversarial Autoencoder (AAE),
which combines the characteristics of underwater imaging. The method integrates features
extracted from three color spaces of the image (RGB, HSV, and Lab) into a unified structure
to enhance the diversity of feature representations. Additionally, the attention mechanism
is employed to capture rich features. Secondly, the extracted features mentioned above are
fused with the features obtained from the Reverse Medium Transmission (RMT) map using
a feature fusion module. This fusion process enhances the network’s ability to respond to
regions in the image that have experienced degradation in terms of image quality. Finally,
the discriminator enhances the reconstructed image by accepting positive samples from the
pre-trained model and negative samples generated by the encoder (generator). Through
this process, the discriminator guides the hidden space of the autoencoder to approach
the hidden space of the pre-trained model, contributing to the overall improvement of the
image quality.

In this paper, the proposed method demonstrates excellent performance on an experi-
mental dataset collected from the “Offshore Oil Platform HYSY-163” situated in the Beibu
Gulf area of China. Figure 1 illustrates the results of the original image and the processed
image using the three color channels (R, G, and B). The reconstructed image exhibits a more
uniform distribution in the histogram and possesses enhanced clarity.
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Figure 1. Comparison of visual effects and histogram results of R, G, and B channels before and after
image processing using our proposed method. (a) The original image and histogram of its R, G, and
B channels. (b) The reconstructed image and histogram of its R, G, and B channels.

The remaining sections of the paper are organized as follows. Section 2 presents the
details of our proposed method for underwater image enhancement tasks. In Section 3,
we present the experimental results that demonstrate the effectiveness of our approach.
Finally, Section 4 provides the concluding remarks.

2. Materials and Methods

In 2015, Makhzani et al. [18] introduced the concept of adversarial autoencoder, which
combines the adversarial generative network with the autoencoder network. The specific
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architecture of the proposed model is depicted in Figure 2. The adversarial autoencoder
(AAE) model comprises two components: an autoencoder (AE) and a generative adversarial
network (GAN). Adversarial training is incorporated into the autoencoder, enabling the
dimensionally reduced data to adhere to a specific distribution. The training process
of the adversarial autoencoder consists of two main parts. Firstly, it involves matching
an aggregated posterior q(z) with an arbitrary prior distribution p(z). To achieve this,
an adversarial network is connected to the hidden code vector of the autoencoder. This
adversarial network guides q(z) to align with p(z), ensuring that the generated samples
adhere to the desired prior distribution.

q(z) =
∫

xq(z | x)p(x)dx (1)

In the provided equation, p(x) represents the distribution of the target data from the
training set.
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Figure 2. The structural diagram of the adversarial autoencoder model.

In this paper, we present an underwater image enhancement method named UW-
AAE, which is based on the AAE model network. The overall framework diagram is
illustrated in Figure 3. The model comprises two main modules: the autoencoder and
the adversarial network. The autoencoder consists of the Color-AAE network and the
pre-training model [19] CNN-AE. The discriminator plays a crucial role in guiding the
hidden space of the Color-AAE network to progressively approach the hidden space of
the pre-training model CNN-AE. It achieves this by accepting positive samples from the
pre-training model and negative samples generated by the Color-AAE network.
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2.1. Autoencoder Module

The structure of Color-AE is depicted in Figure 4, comprising two modules: the
multi-color encoder and decoder. The multi-color encoder extracts features from both the
underwater image and its reverse medium transmittance map. These features are then
fused through the feature fusion module. The fused features are directed to the decoder
network, which generates the reconstructed output. The underwater image undergoes
a color space transformation, leading to the formation of three encoding paths: the HSV
path, the RGB path, and the Lab path. In each path, the color space features undergo
enhancement through three consecutive residual enhancement modules, resulting in three
levels of feature representations. Additionally, a 2× downsampling operation is employed
during this process. Furthermore, the features of the RGB path are combined with the
corresponding features of the HSV path and the Lab path through dense connections to
enhance the RGB path. Subsequently, the same level features of these three parallel paths
are combined to form three sets of multicolor space encoder features. These three sets
of features are then provided to their respective attention mechanism modules, which
effectively capture rich and discriminative image features from multiple color spaces.
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As the Reverse Medium Transmission (RMT) map can partially reflect the physical
principles of underwater imaging [20], regions with higher pixel values in the RMT map
correspond to more severe degradation in the corresponding underwater image regions.
Consequently, the network assigns a larger weight response to the degraded regions of
the image, acknowledging their significance in the enhancement process. The refinement
of the RMT map is achieved through 1 × 1 convolutional layers with a step size of 2.
Each convolutional layer is linked to the batch normalization layer and the Leaky ReLU
activation function. Subsequently, a maximum pooling downsampling layer is employed
to eliminate redundant repetitive information. The output of the feature fusion module
is then transmitted to the corresponding residual enhancement module. Following three
consecutive serial residual enhancement modules and two 2× upsampling operations, the
decoder features are forwarded to the convolutional layers, leading to the reconstruction of
the final result.

2.2. Residual Enhancement Module

As depicted in Figure 5, each residual enhancement module comprises two residual
blocks, each composed of three convolutions and two Leaky ReLU activation functions,
with a 3 × 3 convolution kernel size and a step size of 1. Following each residual block,
pixel-by-pixel addition is employed as a constant connection, with the purpose of enhancing
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the detailed features of the image and addressing the issue of gradient vanishing [21]. In
each residual enhancement module, the convolutional layer maintains a consistent number
of filters. Notably, the number of filters progressively increases from 128 to 512 in the
encoder network, and conversely, it decreases from 512 to 128 in the decoder network.
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2.3. Feature Attention Module

Considering the distinct characteristics of the three color space models—RGB, HSV,
and Lab—these features, extracted from the three distinct color spaces, are expected to con-
tribute differently. This study employs the channel attention mechanism and the pixel atten-
tion mechanism [22] to effectively handle the color variations in underwater images and ac-
count for the impact of different water qualities on the images. The specifics of the attention
mechanism module are illustrated in Figure 6. Let G = Ser(G1, G2, · · · , GC) ∈ RC×H×W

represent the input feature, where G denotes the nominal mapping of a certain path, C
is the number of channels of the feature mapping, Ser denotes the feature concatenation,
and H and W are the height and width of the input image, respectively. In the channel
attention mechanism, the spatial dimension of the input feature G is initially compressed.
The feature maps of each channel are then downscaled through a global average pooling
operation. This operation transforms the comprehensive spatial information along the
channel dimension into a channel descriptor denoted as m ∈ RC×1, effectively minimizing
the network’s parameter complexity. The central function of the channel descriptor is to
produce an embedded global distribution of channel features, symbolizing the holistic
significance of features within the channel. The mathematical expression for the kth term
of m is as follows:

mk =
1

H ×W

H

∑
i

W

∑
j

Fk(i, j) (2)

where k ∈ [1, C]. mk represents the compressed “squeeze” representation of the channel,
encapsulating the overarching perceptual information embedded within each channel.
Moreover, Fk denotes the weighting coefficients employed in the attention mechanism of the
channel’s “excitation” representation, enabling the targeted amplification of distinct spatial
positions within a particular channel. To fully capture individual channel dependencies, a
self-gating mechanism [23] is employed to generate a set of modulation weights f ∈ RC×1.

f = σ{W2 ∗ [δ(W1 ∗ z)]} (3)

In the equation, W1 ∈ R C
r ×C and W2 ∈ RC× C

r represent the weights of the two
fully connected layers. σ denotes the Sigmoid activation function, δ represents the ReLU
activation function, and ∗ denotes the convolution operation. The number of output
channels for W1 and W2 is equal to C

r and C, respectively. The hyper-parameter r defines
the dimensionality relationship between the two fully connected layers, allowing control
over the proportion of dimensionality reduction for the channel weights, thus influencing
the model’s performance and computational efficiency. For computational purposes, r is
set to 16; comprehensive details can be accessed in [23]. These weights are subsequently
applied to the input features G to produce the output channel features Gc. Moreover, to
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mitigate the issue of vanishing gradients and retain valuable information about the original
features, we handle the channel attention weights in a similar mapping manner:

Gc = G⊕ G⊗ s (4)

where ⊕ represents pixel-by-pixel addition, and ⊗ denotes pixel-by-pixel multiplication.
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The channel attention mechanism primarily concentrates on the allocation of weights
across distinct channels. As a complementary technique to the channel attention mech-
anism, the pixel attention mechanism is centered on weight distribution across various
pixel locations within a singular feature map, enabling the network to focus on regions
with varying turbidity levels underwater. Illustrated in Figure 6, the pixel attention layer
consists of two convolutional layers, each incorporating a ReLU activation function and a
Sigmoid activation function:

Wc = σ{Conv[δ(Conv(Gc))]} ⊗ Gc (5)

Conv represents the convolution operation, σ denotes the Sigmoid activation function,
and δ denotes the ReLU activation function. A pixel-by-pixel multiplication of the input
feature Gc with the weights Wc obtained from Equation (5) is performed:

G′c = Gc ⊗Wc (6)

2.4. Feature Fusion Module

Considering the need to perform underwater image enhancement with a focus on
regions containing severe image degradation areas [24], we have designed a feature fusion
module capable of adaptively selecting image features. This module processes both RGB
image features and RMT image features by employing convolutional layers with different
receptive fields. The selective utilization of these diverse features enhances the network’s
ability to identify and address regions with significant image degradation, contributing to
more effective underwater image enhancement. The RMT image serves as a representation
of the physical laws governing underwater optical imaging. Higher pixel values within the
RMT image indicate more severe degradation in the corresponding positions of the RGB
image, necessitating a greater emphasis on the enhancement process. Leveraging the RMT
image to guide the RGB image enhancement enables differentiation in the significance
of various regions, thereby facilitating adaptive enhancement with varying degrees of
emphasis. Training deep neural networks for RMT map estimation poses a challenge due to
the unavailability of practical ground truth RMT maps for the input underwater images. To
address this issue, we adopt the commonly used underwater image restoration algorithms’
image imaging model [25], which represents the quality-degraded image as follows:
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Ic(x) = Jc(x)⊗ T(x)⊕ Ac(x)⊗ (1− T(x)) (7)

Let x represent the coordinate of any pixel in the color image, where c ∈ (R, G, B)
refers to the three color channels R, G, and B, respectively. Ic corresponds to the image
captured directly underwater, while Jc denotes the ideally clear image. Ac represents
the ambient background light intensity in the R, G, and B channels. T(x) represents the
medium transmittance of each pixel point, which signifies the percentage of radiation that
arrives at the camera after reflection in the medium, relative to the scene radiation. This
value indicates the degree of quality degradation in different regions.

Drawing inspiration from the dark channel prior [9], the DCP (Dark Channel Prior)
method seeks the minimum value in the RGB channel for each pixel x within the local

region Ω(x) centered at x. In other words, we have JRGB
DCP(x) = min

y∈Ω(x)

[
min

c∈(R,G,B)
Jc(y)

]
.

For an unfogged image of an outdoor ground surface, JRGB
DCP(x) typically approaches zero

because, in the local facets (represented by units of Ω(x)), at least one of the three color
channels generally contains a low-intensity pixel. In the context of Equation (7), the term
involving Jc is rounded off due to its proximity to zero, and this enables the estimation of
the medium transmittance, denoted as follows:

∼
TRGB(x) = 1− min

y∈Ω(x)

[
min

c∈{R,G,B}

Ic(y)
Ac

]
(8)

Additionally, it can be expressed as follows:

∼
TRGB(x) = max

c,y∈Ω(x)

[
1− Ic(y)

Ac

]
= max

c,y∈Ω(x)

[
Ac− Ic(y)

Ac

]
(9)

According to the Beer–Lambert law of light attenuation, the transmittance is commonly
expressed as an exponential decay term.

∼
T(x) = e−βd(x) (10)

where d ≥ 0 is the distance from the camera to the radiating object, and β is the spectral

volume attenuation coefficient, ensuring that
∼
T ≥ 0. In cases where Equation (10) results in

a negative number (i.e., Ac < Ic(y), ∀y ∈ Ω(x)), the value of
∼
T becomes negative, making

the use of Equation (8) inaccurate. To address this issue, an estimation algorithm [26] based
on prior information is employed to obtain the influence of the medium transmittance map.
In this paper, the medium transmittance is estimated as follows:

∼
T(x) = max

c,y∈Ω(x)

[
|Ac− Ic(y)|

max(Ac, 1− Ac)

]
(11)

The estimated medium transmittance map, denoted as
∼
T, represents a local region

of size 15 × 15 centered on Ω(x). Here, c denotes the color channel, and the medium
transmittance estimate is related to the uniform background light Ac.

The schematic diagram of the proposed feature fusion module is illustrated in Figure 7,
where G′c ∈ RC×H×W and V ∈ RC×H×W represent the input features and output features in

the feature fusion module, respectively. The RMT map T(x) = 1 −
∼
T(x), with T ∈ RH×W ,

represents the reverse medium transmittance map in the range of [0, 1]. This map acts
as a feature selector, assigning weights to different spatial locations of the features based
on their respective importance. High-quality degraded pixels, represented by larger RMT
values, are assigned higher weights. To extract RMT features and obtain rich local area
features, a dilated convolution with a dilation rate of 2, a convolution kernel size of 3 × 3,
and a convolution step of 1 are employed. Additionally, a convolution with a convolution
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kernel size of 3 × 3, a padding of 1, and a step size of 2 is used to extract RGB image
features. The RMT features act as auxiliary information for feature selection of RGB image
features, allowing the network to adaptively select regional features with severe image
degradation.
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2.5. Loss Function
The loss function of the proposed UW-AAE model in this study comprises two main

components: the Color-AE module L f and the adversarial network module LGAN. L f is a
linearly optimized combination of the reconstruction loss function L1 and the perceptual loss
function LVGG, utilized to train the Color-AE module. The final loss L f is expressed as follows:

L f = L1 + λLVGG (12)

The hyperparameter λ is used as a trade-off factor to balance the weights of the loss
functions L1 and LVGG. In this study, λ is set to 0.05. L1 represents the difference between the
reconstructed result K̂ and the corresponding true data K, and can be expressed as follows:

L1 =
H

∑
m=1

W

∑
n=1

[
K̂(m, n)− K(m, n)

]2 (13)

To enhance the visual quality of the image, the VGG19 pre-training model [27] is
incorporated into the framework. The perceptual loss, denoted as LVGG, is computed based
on the disparity between the reconstructed image response from the convolutional neural
network and the feature mapping of the target image. Here, φk represents the high-level
feature extracted from the kth convolutional layer. The distance between the reconstructed
result K̂ and the feature representation of the ground truth image K is defined as follows:

LVGG =
H

∑
m=1

W

∑
n=1

∣∣φk
(
K̂
)
(m, n)− φk(K)(m, n)

∣∣ (14)

This formula delineates the establishment of a perceptual loss at each pixel position
(m, n) through the computation of the absolute disparity between the feature representa-
tions of the reconstructed image and the truth image at feature layer k. This perceptual loss
is computed as the disparity between the reconstructed image and the truth image. This
metric of disparity serves to gauge the semblance between the reconstructed image and the
truth image within the feature space. This methodology offers the advantage of proficiently
steering the optimization of the reconstructed image, circumventing the necessity for real
data, which can be arduous to acquire.

The generator G in the adversarial network serves as the encoder of Color-AE, gen-
erating negative samples denoted as z _. In other words, z_ = En(x). The discriminator
receives both the positive samples z+ from the encoder of the pre-trained CNN-AE and the
negative samples z _. The loss function of the discriminator in the adversarial network is
given as follows:

LGAN = min
G

max
D

Ez+∼pz+
[logD(z+)] + Ex∼Pdata [log(1− D(En(x)))] (15)
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where pz+ represents the hidden space distribution of the pre-trained model CNN-AE,
and Pdata is the training data distribution. Through adversarial training, pz+ is enforced to
approach the hidden space of Color-AEE.

3. Experimentation and Analysis
3.1. Experimental Environment and Parameter Design

To validate the effectiveness of the algorithm, this experiment was implemented on
the Pycharm simulation platform, and the network was trained using the PyTorch deep
learning framework. The UW-AAE model was executed on a computer equipped with
an Intel(R) Core(TM) i5-7300HQ CPU @ 2.50 GHz and a GTX 1080 Ti GPU. The network
training process took approximately 42 h, while the testing time was approximately 6 min.
Random rotation and horizontal flipping were employed for data augmentation during
UW-AAE training. Additionally, all input images in the training set were resized to
256 × 256 pixels. The model parameter batch was set to 16, the learning rate to 0.0002, and
the hidden vector dimension to 128. To determine an appropriate value for the number
of epochs, Figure 8 illustrates the evolution of validation loss and training loss functions
during the training process of the method proposed in this study. As the number of epochs
increases, the loss function values exhibit a consistent decline. Around epoch 120, the loss
value shows a tendency to stabilize, indicating the onset of convergence of the loss function.
This observation suggests that our method demonstrates a favorable fitting performance.
During adversarial training, the generator and discriminator are trained alternately. The
discriminator is trained once, and the generator is updated twice in each iteration. Both the
generator and discriminator use the Adam optimizer, with β1 set to 0.5 and β2 set to 0.999.
The adversarial learning rate (lr) is set to 0.0002. To mitigate overfitting during the training
process, a dropout technique is applied to the autoencoder (with a dropout ratio of 0.3).
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The training set used in this experiment consists of 5200 real underwater images and
their corresponding clear images, which were obtained from Underwater-ImageNet [28].
Due to the varying attenuation of different wavelengths of light in seawater, real underwater
images often exhibit blue-green color tones. Similarly, the dataset provided by Underwater-
ImageNet also exhibits these blue-green attenuation characteristics. The test set is divided
into two subsets: test set A, containing 60 real underwater images without reference, and
test set B, containing 45 underwater images with reference images for evaluation.

3.2. Subjective Evaluation

The enhanced results of the UW-AAE model that we proposed are compared with six
existing traditional algorithms and deep learning-based underwater image enhancement
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methods, namely UDCP [10], HE [29], Fusion-based [27], ULAP [12], Ucolor [15], and Funie-
GAN [27], respectively. Representative images with greenish, bluish tints, as well as cloudy
and dark lighting conditions are selected for analyzing the contrast and color restoration
performances of each algorithm from a subjective visual perspective. Figures 9 and 10
present a comparison of the aforementioned algorithms on the unreferenced underwater
image test set A and the fully referenced underwater image test set B, respectively. While
the UDCP algorithm exhibits a favorable performance in handling more turbid images,
it tends to reduce the brightness of the image and is less effective in restoring images
with greenish and bluish tones. The HE algorithm exhibits some ability to restore color
in different types of images, but it tends to produce oversaturation. On the other hand,
Ucolor enhances the contrast and brightness of the image but falls short in effectively
removing turbidity. FunieGAN and ULAP do not perform well in recovering the original
color of heavily bluish-greenish images, and in low-light situations, they introduce other
colors. The Fusion-based method effectively recovers the color distortion of the image, but
it may occasionally suffer from color deviation. In contrast, the algorithm we proposed in
this study successfully enhances the image’s brightness and contrast while preserving the
structural information and accurately recovering the color of degraded underwater images.
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3.3. Analysis of Objective Indicators
3.3.1. Objective Metrics Analysis on Test Set A

To further validate the effectiveness of our proposed method, two non-reference image
evaluation metrics, namely Natural Image Quality Evaluator [30] (NIQE) and Underwater
Color Image Quality Evaluation [31] (UCIQE), were used to objectively analyze and com-
pare the enhancement effects of the aforementioned seven algorithms on the images from
test set A.

NIQE is a non-reference image quality evaluation metric based on Multivariate Gaus-
sian (MVG) modeling. It involves obtaining a collection of features from the original image
using a highly regular Natural Scene Statistic (NSS) model. These features are then fitted
to an MVG model. In the underwater image evaluation process, the quality of the image
being evaluated is expressed as the distance between the multivariate Gaussian fitting
parameters of the NSS features extracted from the image and the parameters of the image
model being evaluated. A lower value of NIQE indicates higher quality of the enhanced
image. It is computed as follows:

D(v1, v2, Σ1, Σ2) =

√√√√((v1 − v2)
T
(

Σ1 + Σ2

2

)−1

(v1 − v2)

)
(16)

where v1, v2, Σ1, and Σ2 represent the mean vector and covariance matrix of the natural
MVG model and the distorted image MVG model, respectively.
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The underwater color image quality evaluation metric UCIQE, used for images in the
CIELab space, is a linear combination of underwater image color concentration, saturation,
and contrast. It is designed to quantitatively assess the non-uniform color bias, blurriness,
and low contrast of an image, and is defined as follows:

UCIQE = c1 × σc + c2 × µs + c3 × conl (17)

where σc represents the standard deviation of chromaticity, conl denotes the contrast of
luminance, and µs is the average value of saturation. The parameters c1, c2, and c3 are
the weighting coefficients, which are set to 0.4860, 0.2576, and 0.2745, respectively. A
higher value of UCIQE indicates that the image contains more details, and a more desirable
enhancement effect has been achieved.

As observed in Table 1, our method demonstrates a substantial improvement in the
reconstructed images, with an average reduction of 27.8% in the NIQE value compared to
the unprocessed real underwater images. The average NIQE value is lower than that of
the other six algorithms. Lower NIQE values correspond to higher image quality, which
suggests that the reconstructed image quality is the most desirable among all the evaluated
effects. As depicted in Table 2, our method shows a notable improvement in the processed
images, with an average increase of more than 28.8% in the UCIQE value compared to the
unprocessed real underwater images. This increase indicates a significant enhancement
in color concentration, saturation, and contrast, suggesting that the images have been
significantly improved in these aspects. However, it is worth noting that the average score
is lower than that of some traditional algorithms, and the excessively high UCIQE scores
may result from the image exhibiting phenomena of oversaturation and unnatural effects,
such as those produced by the HE algorithm. In summary, our method demonstrates strong
performance in visualization and achieves superior enhancement of underwater images.

Table 1. Comparison of the NIQE evaluation index results on test set A. Bold indicates the minimum
value of NIQE for each group, and lower NIQE values indicate higher image quality.

Image Input UDCP HE Ucolor Fusion FunieGAN ULAP Ours

image1 7.142 5.985 3.977 4.774 3.900 5.784 6.532 3.229
image2 5.138 5.149 3.650 4.139 4.256 4.844 4.824 3.383
image3 3.716 3.344 3.011 3.486 2.981 3.682 3.937 3.403
image4 7.360 5.172 4.864 6.200 4.334 5.325 5.305 4.122
image5 4.640 5.295 3.355 4.508 3.381 3.934 6.442 3.266
image6 3.436 3.571 3.377 3.507 3.329 3.510 3.387 3.249
image7 4.704 4.125 3.899 4.092 3.969 4.316 4.590 4.105
Image8 3.576 3.411 2.956 3.117 2.883 3.393 3.294 3.100
Image9 3.770 3.822 3.290 3.574 3.278 4.046 3.520 3.471

Image10 4.604 4.138 8.281 8.875 3.496 4.309 4.565 3.386
average 4.809 4.401 4.066 4.627 3.581 4.314 4.640 3.471

Table 2. Comparison of UCIQE evaluation index results on test set A. Bold indicates the maximum
value of each group of UCIQE, and higher values of UCIQE indicate higher image quality.

Image Input UDCP HE Ucolor Fusion FunieGAN ULAP Ours

image1 0.476 0.469 0.491 0.517 0.469 0.492 0.538 0.543
image2 0.513 0.633 0.534 0.550 0.541 0.583 0.566 0.466
image3 0.341 0.449 0.460 0.449 0.436 0.370 0.537 0.580
image4 0.355 0.496 0.526 0.448 0.565 0.555 0.486 0.427
image5 0.338 0.429 0.476 0.378 0.443 0.435 0.455 0.443
image6 0.351 0.450 0.450 0.406 0.430 0.460 0.462 0.483
image7 0.327 0.549 0.492 0.435 0.445 0.538 0.350 0.582
Image8 0.384 0.456 0.579 0.473 0.569 0.450 0.491 0.484
Image9 0.357 0.521 0.506 0.447 0.476 0.503 0.483 0.494

Image10 0.376 0.565 0.558 0.557 0.524 0.385 0.371 0.422
average 0.382 0.502 0.507 0.466 0.490 0.477 0.474 0.492
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3.3.2. Analysis of Objective Metrics on Test Set B

To quantitatively evaluate the performance of different algorithms on test set B, two
full-reference evaluation metrics, namely Structural Similarity (SSIM) and Peak Signal-to-
Noise Ratio (PSNR), are employed. SSIM assesses the similarity between the enhanced
image and the reference image in terms of structure, contrast, and brightness. A higher
SSIM score indicates that the enhanced result bears greater similarity to the true image
as a whole. On the other hand, PSNR measures the level of distortion in the enhanced
image with respect to the reference image. A higher PSNR score suggests that the enhanced
image has undergone less distortion in comparison to the true value image. Tables 3 and 4
present the scores of the different algorithms based on SSIM and PSNR metrics. When
compared to both the input underwater image and the other six algorithms, our method has
attained optimal scores. These results indicate that the enhanced image exhibits minimal
distortion and preserves image content and structural information closely resembling the
reference image.

Table 3. Comparison of SSIM evaluation index results on test set B. Bold indicates the maximum
value of each group of SSIM, where a higher SSIM value indicates that the image is more similar to
the true reference image.

Image Input UDCP HE Ucolor Fusion FunieGAN ULAP Ours

image1 0.343 0.405 0.918 0.734 0.801 0.384 0.442 0.929
image2 0.639 0.445 0.810 0.839 0.983 0.642 0.757 0.806
image3 0.716 0.602 0.814 0.838 0.780 0.778 0.679 0.937
image4 0.773 0.651 0.618 0.741 0.778 0.824 0.741 0.860
image5 0.751 0.709 0.857 0.859 0.840 0.791 0.796 0.872
image6 0.645 0.589 0.713 0.748 0.739 0.712 0.712 0.938
image7 0.176 0.045 0.349 0.184 0.256 0.153 0.069 0.364
Image8 0.811 0.721 0.599 0.778 0.648 0.693 0.689 0.883
average 0.607 0.521 0.710 0.715 0.728 0.622 0.611 0.824

Table 4. Comparison of PSNR evaluation index results on test set B. The values in bold indicate the
maximum PSNR score in each group. A higher PSNR score indicates less distortion in the enhanced
image compared to the reference image.

Image Input UDCP HE Ucolor Fusion FunieGAN ULAP Ours

image1 16.127 13.932 24.210 23.789 24.330 16.764 17.941 24.979
image2 16.688 10.048 21.723 23.549 36.612 16.083 17.653 26.808
image3 17.381 11.494 28.295 21.171 21.582 18.506 15.907 29.935
image4 18.383 16.138 15.345 21.065 21.843 24.191 24.051 27.226
image5 18.125 19.828 23.999 23.334 25.080 26.781 23.672 28.045
image6 19.768 11.895 20.546 20.126 19.965 20.795 19.828 27.230
image7 8.958 7.803 13.534 9.399 10.586 10.646 9.184 11.648
Image8 27.830 26.484 14.875 19.192 23.601 22.528 14.692 28.765
average 17.908 14.703 20.316 20.203 22.950 19.537 17.866 25.580

3.4. Ablation Studies

To assess the effectiveness of the proposed UW-AAE network and its key module,
the attention mechanism, ablation experiments were conducted. Figure 11 illustrates
the comparison between the results obtained with the canny operator [32] processing the
original image, without the inclusion of the attention module, and the results obtained using
this paper’s algorithm after enhancement. It is evident that the regions with significant
visual quality improvement are marked in red on the matrix.
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proposed methodology.

As depicted in Figure 11, when compared with the original unprocessed image,
the colors of the image have been noticeably corrected, leading to an improvement in
overall image clarity. Additionally, the results obtained through the proposed method
exhibit enhanced edge detection capabilities, indicating that the image retains more content
information and possesses a superior ability to enhance image details.

SSIM and PSNR were selected as the objective evaluation indices for the ablation
experiments, and the corresponding results are presented in Table 5. It is evident from the
table that the algorithm proposed by us, equipped with the attention mechanism module,
achieves the most favorable results among all the variations.

Table 5. Objective evaluation index results of ablation study.

Methodologies SSIM PENR

Original Image 0.343 16.127
De-attentioning Mechanisms 0.910 23.774

Ours 0.929 24.979

3.5. Running Time

We recorded the time consumed by various algorithms to process images of size
640 × 480 and listed the results in Table 6. It is observed that the HE algorithm exhibits
the fastest processing speed, while our algorithm is not the fastest. This disparity can be
attributed to the more complex structure of the proposed algorithm, which yields favorable
results when confronted with diverse water quality scenarios.

Table 6. Average processing time per image of algorithms.

Arithmetic t/s Arithmetic t/s

UDCP 6.756 FunieGAN 15.960
HE 0.024 ULAP 0.823

Ucolor 3.986 Fusion 0.371
Ours 2.786

4. Conclusions

In this paper, to address the challenges of color deviation and low contrast in un-
derwater images, we present an underwater image enhancement method based on the
attention mechanism and adversarial autoencoder. By incorporating positive samples from
the pre-trained model and negative samples generated by the encoder, the discriminator
guides the autoencoder’s hidden space to approximate that of the pre-trained model. Fur-
thermore, the encoder features, extracted using the attention mechanism, are fused with
the features from the reverse medium transmittance map in the feature fusion module.
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This enhances the network’s ability to respond to regions with degraded image quality.
The comparison experiments demonstrate that the reconstructed images outperform the
existing six algorithms. When compared with the unprocessed real underwater images,
the average Natural Image Quality Evaluator value is reduced by 27.8%, the average Un-
derwater Color Image Quality Evaluation value is improved by 28.8%, and the average
Structural Similarity and Peak Signal-to-Noise Ratio values are enhanced by 35.7% and
42.8%, respectively. The method exhibits excellent visual effects, effectively restoring the
real scene of underwater images and enhancing the visibility of underwater target objects.
It holds the potential to be utilized by underwater robots in future applications such as
exploring marine resources and cleaning the bottoms of large ships.

Our proposed method is not without limitations. Primarily, our approach emphasizes
underwater image color correction and contrast enhancement, but it may fall short in
addressing the enhancement challenges posed by extremely turbid underwater images. To
address this limitation, future research endeavors could focus on expanding the dataset
to enhance the accuracy of transmission map estimation and bolster the model’s overall
robustness. In the future, we will continue to explore the combination of traditional
methods with deep learning-based approaches to develop more innovative interaction
designs. Moreover, we aim to generalize our algorithms to various other domains.
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