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Featured Application: The improved Dijkstra algorithm proposed herein can be effectively ap-
plied to rail-mounted robots to distribute goods in large workshops, especially in ultra-clean
semiconductor chip production workshops. The algorithm can plan the shortest route for the
robots to distribute goods, adjust to conflicts in real time, and complete multiple distribution
tasks for multiple robots.

Abstract: With the upgrading of manufacturing production lines and innovations in information
technology, logistics robot technology applied in factories is maturing. Rail-mounted logistics robots
are suitable for precise material distribution in large production workshops with fixed routes and
over long distances. However, designing an efficient path-planning algorithm is the key to realizing
high efficiency in multi-robot system operations with rail logistics. Therefore, this paper proposes an
improved Dijkstra algorithm that introduces real-time node occupancy and a time window conflict
judgment model for global path planning and conflict coordination in multi-robot systems. More
specifically, the introduction of real-time node occupancy can determine the shortest feasible routes
for each task, and the introduction of the time window conflict judgment model can avoid the route
conflict problem in the execution of multiple tasks, planning the shortest route without conflict.
For the robot UBW positioning module, a Chan algorithm based on TDOA is proposed to realize
the accurate positioning of rail-mounted logistics robots during their operation. Compared with
the traditional Dijkstra algorithm, the results show that the algorithm proposed herein can plan a
conflict-free and better path and dynamically adjust the on-orbit conflict in real time to avoid track
congestion and efficiently complete multiple distribution tasks.

Keywords: orbit-mounted robot; dynamic path planning; improved Dijkstra algorithm; time window;
Chan algorithm

1. Introduction

Rail-mounted logistics robots are suitable for complex material distributions in large
production workshops with fixed routes and long distances. The goal of robot path planning
is to find the shortest path from the starting point to the target point without conflict.
The application scenario of this paper is for large-scale workshop material distribution,
especially in ultra-clean semiconductor chip production workshops. The walkable track of
the logistics robot is laid on the top of the workshop, and the robot can reach all the cargo
stations and workstations in the workshop along the track. When each workstation needs
a certain material, it passes the out-of-stock information to the system. After receiving
multiple out-of-stock notifications, the system starts the robot from the material station,
distributes the goods to the corresponding workstation along the track, and then returns to
the goods station. There may be one or more cargo stations inside the workshop. Based
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on the calculation of the optimization algorithm, multiple logistics robots cooperate to
complete all the material delivery tasks, which can reduce labor costs and improve the
efficiency of material delivery to a large extent. However, overlapping path regions occur
when multiple robots perform distribution tasks along the track. Therefore, to avoid robot
on-orbit conflicts and invalid waiting, we need to consider the coordination method for
robot on-orbit conflicts.

In the field of computer science, according to the definition of the deterministic Turing
machine model and non-deterministic Turing machine model, the traveling salesman
problem (TSP), graph coloring problem (GCP), vertex cover, and other classical problems
are defined as non-deterministic polynomial problems (NP), NP-hard (NPH), and NP-
complete (NPC) [1,2]. A problem is said to be NP-hard if all the NP-class problems are
reduced to a single problem. NP-hard problems are more general than NP-complete
problems, and it is difficult to find exact solutions in polynomial time.

The resources in this paper include the number of parallel tracks, payloads, and robots.
The MD-MTSP problem dealt with by the algorithm proposed in this paper has discrete
time, and it is relatively easy to find a feasible solution within the resource condition, but
the optimal solution is almost impossible to find within an acceptable time. However,
beyond the resource conditions, it is an NP-hard problem, which cannot be solved in
polynomial time.

In this paper, the path-planning problem of the rail-mounted logistics robot is modeled
as a multi-depot multiple traveling salesman problem (MD-MTSP); that is, the robot is
abstracted as a traveling salesman, and the material station and work station are abstracted
as a city. A number of traveling salesmen depart from many different cities, each of
which must be visited by at least one salesman, and only once, except for the origin
and destination cities. Under this condition, the shortest path traversing all the cities is
found. The multi-depot multiple traveling salesman problem is a kind of multiple traveling
salesman problem. The multiple traveling salesman problem is an extension of the famous
traveling salesman problem (TSP). It is an NP-hard problem and has a strong engineering
background and application value.

The commonly used path planning algorithms include the A* algorithm [3,4], Dijkstra
algorithm [5,6], particle swarm optimization (PSO) [7], Floyd algorithm [6], PRM algo-
rithm [7], RRT algorithm [8], genetic algorithm (GA) [8–10], and ant colony optimization
(ACO) [11,12]. These methods should be further improved when considering the path
allocation, energy allocation, and global shortest path, thereby ensuring the robustness and
fault tolerance of the multi-machine system.

PSO, GA, and ACO are heuristic algorithms, which generally have shortcomings, in-
cluding susceptibility to falling into a local optimum, premature convergence, and limited
scope of application. GA is based on natural selection and heredity, producing optimal
solutions from the previous generation. Recently, Abdel-Nasser Sharkawy’s team [13]
used a genetic algorithm to find the high-performance position of a task with the goal of
realizing the efficient collaborative operation of a human arm and a robotic arm. Although
the genetic algorithm has been widely used to solve MTSP, most of the solutions involve
transforming MTSP into TSP. The focus of this research is on how to express MTSP via chro-
mosome coding, and how to improve the genetic algorithm by changing the chromosome
coding method. Due to the limitation of its improvement method, the role that the genetic
algorithm can play in solving this problem is limited.

The A* and Dijkstra algorithms are graph search algorithms that directly find a path
in a graph. The A* algorithm is a heuristic search algorithm, which needs to decompose the
operating environment into raster data during the working process for computing the cost
function. However, the A* algorithm has high requirements for the operating environment
of a robot, and when the operating environment is complex, this decomposition takes a
long time. Additionally, when the running environment changes, the decomposition needs
to be done again, which affects the efficiency of the A* algorithm.
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Among these, Edsger Wybe Dijkstra’s method [14] is a traditional approach that was
put forth in 1956 to address the problem of finding the shortest path between any two
points on a map. Dijkstra’s algorithm, which has been used extensively to solve the optimal
path issue [15,16], has the advantages of a simple structure, good convergence, and high
practicability compared to Floyd’s algorithm, the A* algorithm, and other global path
planning algorithms. The efficiency of the technique is extremely low because it must
explore every point in space, which requires a significant amount of computation and
memory. Numerous complicated issues, including navigational lines, dynamic planning,
logistics scheduling, etc., can be resolved by improving and optimizing Dijkstra’s algorithm.

Sunita et al. [17] improved Dijkstra’s algorithm by using the traceable priority queue
data structure to achieve dynamic and effectively reduce the running time and running
memory, but the performance of the solution may be somewhat less than the best resource
bounds known so far. Huang Yihu et al. [18] enhanced Dijkstra’s algorithm by adding a
time window conflict judgment model, which is appropriate for multi-robot path planning
and may avoid conflicts. In order to achieve the shortest distance and shortest time path
planning for AGV (Automated Guided Vehicle) under rectangular environment graphs,
Qing Guo et al. [19] suggested an improved Dijkstra method with the addition of running
time. In order to accelerate the path-planning process, Zhou et al. [20] integrated the
ant colony method and Dijkstra’s algorithm for the airport AGV path-planning scenario.
Durakli et al. [21] modified the Dijkstra method by including the Bezier curve to realize
route optimization, made the path smoother, and could track the obstacles in the way
in real time and update the path. They performed this while taking into account the
continuity of the path. To address the fuzzy shortest path problem in graphics, Akram
et al. [22] suggested an adaptive Dijkstra method based on trapezoidal image blur numbers.
The dynamic window algorithm (DWA) and Dijkstra’s algorithm were integrated by Liu
et al. [23] and applied to intelligent cars, which performed well in path-planning navigation
and obstacle avoidance.

Additionally, the traditional Dijkstra method can be used for network communication’s
shortest route selection, but not for paths with limited resources or continuity. In the context
of optical networks, Ireneusz Szczesniak et al. [24] recently proposed a general Dijkstra
algorithm that effectively finds the shortest path using a network of discrete resources with
continuity and continuity requirements. Ireneusz Szczesniak and colleagues rectified the
flaw of the general Dijkstra algorithm, which only sorted the tags in the priority queue
according to the ascending order of cost, and demonstrated the soundness of the method
by induction by introducing the Bellman optimality principle.

While our current research and the work conducted by Ireneusz et al. both aim to
enhance the traditional Dijkstra algorithm and utilize it for the purpose of finding the
shortest path, it is important to note that the approaches employed and the specific contexts
in which they are applied differ. Currently, we propose the implementation of a real-time
occupancy and time window conflict judgment model for each site. This model addresses
the limitation of the traditional Dijkstra algorithm, which does not account for the time
factor. Additionally, it enables multi-robot on-orbit anti-collision capabilities, thereby
enhancing the efficiency of the algorithm. Ireneusz et al. proposed an enhancement of
the Dijkstra algorithm that addresses the limitation of the traditional Dijkstra algorithm
in searching for the shortest path in networks with discrete resources and continuous
constraints [24].

Ultrawideband (UWB) positioning technology encompasses many methods that can
be categorized based on distinct positioning criteria, namely Time Difference of Arrival
(TDOA), Time of Arrival (TOA), and Angle of Arrival (AOA). The Chan method and
Taylor algorithm are two well-established location algorithms that rely on Time Difference
of Arrival (TDOA) measurements. The Chan algorithm aims to determine the posterior
probability distribution function with the highest value, whereas the Taylor algorithm is
computed based on the Hessian matrix. The approach proposed by Chan, which utilizes



Appl. Sci. 2023, 13, 9955 4 of 18

the Time Difference of Arrival (TDOA), has gained significant popularity because of its
computational efficiency and superior location accuracy [25].

This study utilizes the enhanced Dijkstra algorithm to address the challenges asso-
ciated with global path planning and conflict coordination in a multi-robot system. The
efficiency of the traditional Dijkstra algorithm can be enhanced by addressing the limitation
of disregarding the time component through the introduction of the node real-time occu-
pancy and time window judgment conflict model. The enhanced Dijkstra algorithm, which
incorporates real-time node occupancy, enables the identification of all feasible shortest
routes across various tasks. Additionally, the integration of the time window conflict
judgment model mitigates route conflicts during the execution of multiple tasks, facilitating
the planning of conflict-free shortest routes. Simultaneously, an innovative algorithm
utilizing the Time Difference of Arrival (TDOA) and Channel (Chan) is implemented to
enable real-time positioning of rail-mounted logistics robots within the workshop. The
algorithm presented in this study aims to optimize path planning for multiple robots in
large workshops, with the objectives of minimizing travel distance, reducing travel time,
and minimizing the number of turns. Additionally, the algorithm is designed to effectively
handle conflicts and efficiently complete multiple distribution tasks. The ultimate goal is to
achieve automation and unmanned operations in material distribution within these large
workshop settings.

2. Materials and Methods

In this section, we analyze the steps of the traditional Dijkstra algorithm and specif-
ically how to improve it. In order to prevent conflicts between robots more effectively,
we formulate priority rules and coordination methods when encountering conflicts. In
addition, the robot UWB positioning module uses the Chan algorithm based on TDOA,
which has better performance than the Taylor algorithm.

2.1. The Improved Dijkstra Algorithm
2.1.1. Dijkstra Algorithm Analysis

The fundamental concept underlying Dijkstra’s algorithm is that of a greedy algorithm.
This procedure involves selecting a designated starting point and generating an array that
captures the shortest distances from this starting point to all other points. Subsequently, the
algorithm iteratively identifies the closest point to the current position, updates the current
point to the closest point, and recalculates the distances from the starting point through the
current point to all other points. This process continues until the shortest distance data are
updated appropriately. The selected points are those that are identified as determining the
shortest path and are not included in subsequent calculations. The ultimate outcome is the
most concise route from the initial location to each of the remaining nodes.

The flow of the traditional Dijkstra’s algorithm is as follows:

1. Define the set sum S and H, perform initialization, let S = {V0}where S is the shortest
path target node set, H is the set of nodes excluding S, V0 is the initial node, and VP
is the target node.

2. Select the node Vk closest to the initial node V0 in set H, so that

L[Vm, Vn] = min{L[Vm, Vk] + L[Vk, Vn]} (1)

where L[Vm, Vn] is the distance matrix, and then the distance between any two nodes
can be expressed as

L[Vm, Vn] = lmn(m, n = 1, 2, 3 · · · ) (2)
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3. Update set S and H as
S = S + {Vk}, Vk ∈ H (3)

H = H − {Vk}, Vk ∈ H (4)

4. Correct path length if

L[Vm, Vn] > L[Vm, Vk] + L[Vk, Vn] (5)

Then, L is amended as

L[Vm, Vn] = L[Vm, Vk] + L[Vk, Vn] (6)

5. Judge whether all the target nodes are added to the shortest path set S; if not, jump to
step 2; otherwise, output the shortest path node set S.

The traditional Dijkstra algorithm has the disadvantage of ignoring the time factor
and is prone to in-orbit conflicts. To solve this problem, the real-time occupation of the site
is introduced into the path weight function of the Dijkstra algorithm.

2.1.2. Introducing the Real-Time Node Occupancy into Dijkstra’s Algorithm

The steps are as follows:

1. The traditional Dijkstra algorithm is used to plan the initial distribution path for
the robot, and the initial distribution path is decomposed in real time. The driving
frequency KVi of each robot on each node is recorded, and the real-time occupancy of
this node is calculated according to

f (Vi) = KVi /

k=0
p

∑ KVk (7)

2. The real-time node occupancy is introduced into the weight function of the traditional
Dijkstra algorithm, and the impact factor and real-time node occupancy of the tra-
ditional Dijkstra algorithm are considered at the same time. In this case, the weight
function of Dijkstra’s algorithm is as follows:

L′
(
V0, Vp

)
=

i=0
p

∑(1 + f (Vi)) · L
(
V0, Vp

)
(8)

where the initial factor of the path node is 1, L
(
V0, Vp

)
is the original length of the path,

and L′
(
V0, Vp

)
is the weight after considering the real-time occupancy of the node.

The process of Dijkstra’s algorithm considering the real-time occupation of the nodes
is shown in Figure 1:
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2.1.3. Introducing the Time Window Model into Dijkstra’s Algorithm

In order to carry out path planning for multiple rail-mounted logistics robots in a
global dynamic environment, the time window model [26] is introduced. The time from
entering a station to leaving the station is taken as the time window of the station.

The time window model is specified as follows:

1. The traveling speed of the robot in orbit is 1 m/s;
2. The maximum number of on-orbit robots in the same section of the track is 4;
3. The start and stop times and reversing time of the robot are not considered;
4. Each station can only be entered by one robot at the same time, and the other robots

can only enter after occupying the right to contact.

The established time window model is as follows:

Ti =
{

ti =
[
tin
i , tout

i

]}
(9)

where Ti is the time window occupied by the I-th site, ti is the time window occupied by
site Vi, tout

i is the start time of the time window, and tin
i is the end time of the time window.

Assuming that the linear speed of the rail-mounted logistics robot in the orbit is vs,
the turning speed is vg, the interval between adjacent stations is Ln, and the length of the
robot itself is La, the specific calculation of the time window of the robot at each node is
divided into the following cases as shown in Figure 2:
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Figure 2. The driving situation of the robot in different sites. (a) Driving out of the initial site;
(b) going straight through a station; (c) turning to pass a station; (d) pulling into the target station;
(e) driving straight into Vk from Vj; (f) turning into Vk from Vj.

The time window of the robot’s starting point from the initial site is set as t0, the time
window of the straight line passing through the site is ts, the time window of the turning
time is tg, the time window of entering the site is te, the time window of driving from site
Vj to site Vk is tjk, and the time window of passing through the compound path is tjk. Then,
they can be listed as shown in Table 1:

Table 1. Calculation of time window.

Types of Time Window Calculation

Drive out of the initial site t0 = La+Ln
2vs

Go straight through a station ts =
La+Ln

vs

Turn to pass a station tg =
La+(π/2Ln)

vg

Pull into the target station te =
La−Ln

2vs

Drive straight into Vk from Vj tjk =
L(Vj ,Vk)−La−Ln

vs

Turn into Vk from Vj tjk = tjg + tg + tgk
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Therefore, the mathematical model for introducing the time window is as follows:
minL′

(
V0, Vp

)
=

i=0
p

∑ (1 + f (Vi)) · L
(
V0, Vp

)
minT =

a=1
n

∑ ra

(
ts

ji + tg
i g + ts

ik + tw

) (10)

where L′ is the distance the robot runs in orbit, T is the time the robot runs in orbit, g is the
number of turns the robot makes, and tw is the waiting time.

If the time window of the robot ra through the path Ljk is ta
jk =

[
tain

jk , taout
jk

]
, then the

constraints in the time window ta
jk are as shown in Table 2.

Table 2. Constraints of time window.

Constrained Object Constraints

Number of robots from site Vj to site Vk N
ta

jk

jk = Ljk ·
i=1

q

∑ x
ta

jk
ri

Number of robots from site Vk to site Vj N
ta

jk

jk = Ljk ·
i=1

q

∑ z
ta

jk
ri

The number of robots on the path from site Vk
to Vj must not exceed the maximum capacity N

ta
jk

kj + N
ta

jk

jk ≤ Ljk/Ln

No robot driving conflicts from site Vk to site Vj N
ta

jk

kj · N
ta

jk

jk = 0

Where N
ta
jk

kj is the number of robots from site k to site j in the time window tm
jk on the

path Ljk.

x
ta
jk

ri stands for whether the robot ri has passed through the path Ljk in the time window

ta
jk, and z

ta
jk

ri stands for whether the robot ri has passed through the path Ljk in the time
window ta

jk.

The values of Ljk, x
ta
jk

ri , and z
ta
jk

ri are as follows:

Ljk =

{
1, The path from site Vj to Vk exists
0, The path from site Vj to Vk does not exist

(11)

x
ta
jk

ri =

{
1, ri passes through path Ljk in time window ta

jk
0, ri does not pass through path Ljk in time window ta

jk
(12)

z
ta
jk

ri =

{
1, ri passes through path Ljk in time window ta

jk
0, ri does not pass through path Ljk in time window ta

jk
(13)

To summarize, Sections 2.1.2 and 2.1.3 considered the minimum travel distance and
travel time of the rail-mounted logistics robot, established a multi-objective dynamic
programming mathematical model of the rail-mounted logistics robot, and optimized the
robot’s travel path by solving the total distance and total time.

2.1.4. Priority Rules and Conflict Coordination Strategy

Setting priorities can effectively prevent robots from colliding in orbit. When two
in-orbit robots collide, conflict coordination is first carried out according to the priority. The
priority rules are as follows:

1. The on-orbit priority of the robot is determined by the system, and it is not allowed to
reset the priority for the robot performing material distribution.
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2. The priority of the robot with a fault in orbit is the highest, and the track section is
forbidden to pass, so its priority is 0. The priorities of the other robots performing
tasks are set in advance.

After the path is planned, the path conflict problem must be considered to prevent
multiple robots from colliding in orbit. The conflict types can be divided into several
categories: node conflict, opposite direction conflict, placeholder conflict, etc.

• Node conflict: Multiple robots coming from different directions to the same site at the
same time.

• Opposite direction conflict: Two robots are driving opposite each other on the same
road at some point.

• Occupying conflict: The node that one robot will occupy the next moment is the node
that the other robot is currently occupying.

A conflict coordination strategy is developed as follows:

1. It is determined whether there is a common site for other orbiting robots on the initial
path. If not, it will follow the initial planned path, or if there is a common station, then
the priority of the robot is judged.

2. The robot with high priority has a driving priority and passes according to the
established route.

3. The robot with low priority calculates the time required for waiting and replanning,
choosing the strategy with a shorter time.

2.2. UWB Positioning

In the UWB positioning part, the signal arrival time difference algorithm (TDOA)
is used to complete the distance calculation, and the Chan optimization algorithm is
introduced to optimize the location of TDOA positioning.

2.2.1. Chan Algorithm Based on TDOA

The specific ranging and positioning process of TDOA is as follows:
The label node sends a pulse signal at time t, and the 3 base stations receive the signal

at time t1, t2, t3, respectively, with r1, r2, and r3 indicating the distance between the label
node and the three base stations. Then, the distance formula is as follows:

di =
(

ti
r − ts

)
× c (14)

dj =
(

tj
r − ts

)
× c (15)

Let the coordinates of 3 base stations be (x1, y1), (x2, y2), and(x3, y3). If the coordinate
of the label node is (x, y), the difference in distance between base station 1 and base station
2 is r21 = r2 − r1, and the difference in distance between base station 1 and base station 3 is
r31 = r3 − r1. Then, the following equation can be listed as:r21 =

√
(x2 − x)2 + (y2 − y)2 −

√
(x1 − x)2 + (y1 − y)2

r31 =
√
(x3 − x)2 + (y3 − y)2 −

√
(x1 − x)2 + (y1 − y)2

(16)

After the introduction of the Chan optimization algorithm, the distance difference
between each base station and the reference base station 1 can be expressed as ri1, and then
Equation (16) can be simplified as:

r2
i1 + 2ri1r1 = Ki − 2xi1x1 − 2yi1y1 − K1 (17)

where Ki = x2 + y2, xi1 = xi − x1, yi1 = yi − y1.
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Further, Equation (17) can be simplified as Equation (18):{
x = p1 + q1r1
y = p2 + q2r1

(18)

p1 =
y21r2

31 − y31r2
21 + y31(K2 − K1)− y21(K3 − K1)

2(x21y31 − x31y21)
, q1 =

y21r31 − y31r21

x21y31 − x31y21
(19)

p2 =
x21r2

31 − x31r2
21 + x31(K2 − K1)− x21(K3 − K1)

2(x21y31 − x31y21)
, q2 =

x21r31 − x31r21

y21x31 − y31x21
(20)

If Equations (19) and (20) is incorporated into Equation (18), the following is obtained:

Ar2 + Br1 + C = 0 (21)

where A = q2
1 + q2

2 − 1, B = −2[q1(x1 − p1) + q2(y1 − p2)].
In sum, two solutions for r can be obtained. One of the solutions can be eliminated

based on prior information. The position coordinate (x, y) of the label node can be found
by plugging the valid solution into Equation (18).

2.2.2. Performance Comparison Experiment between Chan Algorithm and
Taylor Algorithm

In the white Gaussian noise environment, the MATLAB2018b simulation is used
to verify the impact of different base station numbers and different TDOA errors on
the positioning performance of the Chan algorithm and Taylor algorithm. The standard
deviations of the TDOA error are 0.1 µs, 0.2 µs, 0.3 µs, 0.4 µs, and 0.5 µs, and the simulation
radius is 200 m.

Figure 3 shows that in the Gaussian noise environment, the positioning accuracy of
the Chan positioning algorithm increases with an increase in the number of base stations
involved in positioning, which is due to the increase in the number of TDOA measurements
that can be utilized. However, it can also be seen that when there are more than 5 base
stations, the positioning accuracy does not change much, and the positioning performance
reaches an optimal level. When the number of base stations is more than 4, the positioning
performance of the Taylor algorithm reaches a better level, but it is inferior to that of the
Chan algorithm. Therefore, the number of positioning base stations of the rail-mounted
robot material distribution system in this paper is selected as 4.
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Next, the positioning performance of the Chan algorithm and Taylor algorithm is
compared based on 4 base stations. Figure 4 shows the performance comparison of the
algorithm with the standard deviation of TDOA error as 0.1 µs, 0.2 µs, 0.3 µs, 0.4 µs, and
0.5 µs; the simulation radius of 200 m; and the mean of 100 positioning errors.
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Figure 4. Comparison of error curves between the Chan algorithm and Taylor algorithm in four base
stations.

Figure 4 shows that the performance of the Chan algorithm is superior to that of the
Taylor algorithm when four base stations are used in the positioning system in the Gaussian
noise environment. The Chan algorithm can use all TDOA information to obtain a more
accurate solution, so it can adapt to different measurement environments.

3. Results and Discussion

In this section, we introduce the experimental environment and robot configuration.
The accuracy of the UWB positioning module is tested. The experiment of the improved
Dijkstra algorithm in dynamic programming and conflict coordination is carried out, and
its results are compared with the results of the traditional Dijkstra algorithm.

3.1. Experimental Scenarios

The physical object of the rail-mounted logistics robot designed in this paper is shown
in Figure 5, which is composed of three parts: material storage bin, power supply bin, and
control bin. The control bin of the robot includes a control device, a data acquisition device,
a driving device, etc. The internal layout of the robot control bin is shown in Figure 6,
which mainly includes the main controller RK3588, the co-controller STM32F1, the power
module, the UWB positioning module, etc. Figure 7 shows the application scenario of a
rail-mounted logistics robot.

3.2. UWB Positioning Accuracy Test
3.2.1. The Ranging Test

The ranging experiment tested the error of ranging between a label node and a base
station node. The test distance range of this test was 200–300 m. After the base station and
the label were placed, the real distance was measured and recorded using a laser ruler, and
then 20 measured values were obtained using UWB ranging. The average value of one
measured value was calculated, and the distance between the base station and the label
was changed after a test. A total of 10 groups of tests were completed, and the results are
shown in Table 3.
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Table 3. The results of the UWB ranging test.

Serial Number The Mean Value of the
UWB Measurements (m) Actual Distance (m) Error (m)

1 206.41 206.27 0.14
2 211.37 211.23 0.13
3 222.12 222.33 0.21
4 231.99 231.80 0.19
5 246.87 246.69 0.18
6 248.52 248.67 0.15
7 261.80 261.62 0.18
8 271.59 271.44 0.15
9 281.71 281.54 0.17
10 284.03 284.13 0.10

As calculated from Table 3, the average ranging error is ±0.11 m. Therefore, the UWB
positioning system in this paper can measure stable distance information and provide a
reliable data source for the robot’s accurate positioning.

3.2.2. The Positioning Test

The positioning test was conducted in an indoor space with dimensions of 200 m ×
200 m. The coordinates of the four base stations were (0, 0), (0, 200), (200, 0), and (200, 200),
and the coordinate unit was a meter. Ten known coordinate points were selected in the
above space, 50 data points were tested by UWB for each point, and the mean value was
obtained. The test results are shown in Table 4.

Table 4. The results of the UWB positioning test.

Serial Number
The Mean Coordinates

of the UWB
Measurements (m)

Actual Coordinates (m) Error (m)

1 (101.22, 101.22) (101.10, 101.10) (0.12, 0.12)
2 (100.31, 131.64) (100.01, 131.48) (0.03, 0.16)
3 (121.76, 111.51) (121.59, 111.36) (0.17, 0.15)
4 (128.70, 128.63) (128.83, 128.77) (−0.13, −0.14)
5 (141.89, 171.22) (141.71, 171.10) (0.18, 0.12)
6 (151.99, 151.38) (151.80, 151.25) (0.19, 0.13)
7 (161.52, 111.61) (161.02, 111.45) (0.50, 0.16)
8 (171.75, 181.52) (171.58, 181.37) (0.17, 0.15)
9 (190.98, 151.46) (190.89, 151.32) (0.09, 0.14)

10 (181.55, 181.75) (181.40, 181.58) (0.15, 0.17)

From Table 4, it can seen that the positioning errors of the UWB positioning coordinates
in the x-axis and y-axis can be calculated as ±0.19 m and ±0.17 m, respectively, which meet
the requirements of practical applications.

3.3. Dynamic Test Experiment

In order to verify the feasibility of the aforementioned path-planning algorithm, Matlab
is used to verify the algorithm combined with an example. Figure 8 shows the simulation
diagram of the running environment of the rail-mounted robot. The workshop map layout
is created using the raster method. Among them, the white grid represents the track,
which is a passable path. The black grid represents the impassable path. The orange
grid represents the material station in the workshop. The grid number represents the
workstation number. The mode of operation of the robot in orbit is a two-way single lane.
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Figure 8. Grid diagram of robot operating environment.

At one time, there were three machines on the track moving to three different target
nodes. Figure 9a shows the path initially planned by the traditional Dijkstra algorithm,
and Figure 9b shows the path dynamically adjusted by the improved Dijkstra algorithm.
In the figures, the three lines with different colors represent the planned paths of the three
robots, respectively. A triangle represents the starting point, and a circle represents the
ending point. The line colors are blue, red, and green in order of robot priority from highest
to lowest. Figure 9c,d show the spatio-temporal graphs of the planned path before and
after dynamic adjustment, respectively. Table 5 shows relevant parameters before and after
dynamic adjustment.

Table 5. Relevant parameters before and after dynamic adjustment.

Robots
Serial

Number
Priority Initial

Site
Target

Site

The Planned Path
before the Dynamic

Adjustment

The Planned Path
after the Dynamic

Adjustment

Blue r1 P1 116 231 77-76-206-204-243 77-76-206-204-243
Red r2 P2 168 236 233-27 233-206-204-74-76-27

Green r3 P3 274 102 149-134 149-214-200-135-134

Comparing Figure 9a with Figure 9b, it can be observed that the blue robot with the
highest priority during the initial path planning did not change the planned trajectory
after the dynamic adjustment, whereas the red robot and the green robot made dynamic
adjustments. Since the blue robot traveled according to the established route, its traveling
time did not change. Comparing Figure 9c with Figure 9d, it can be observed that in order
to prevent an on-orbit collision, the running time of the red robot and green robot increased
by 30 s and 40 s, respectively, but the on-orbit collision and congestion problems of the
robots are avoided.
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Figure 9. (a) The path initially planned by the traditional Dijkstra algorithm. (b) The path is dynam-
ically adjusted by the improved Dijkstra algorithm. (c) The spatio-temporal graph of the planned
path before the dynamic adjustment. (d) The spatio-temporal graph of the planned path after the
dynamic adjustment. Three lines with different colors represent the planned paths of the three robots,
respectively.

3.4. Formatting of Mathematical Components

The following considers the on-orbit collision of two robots as an example to conduct a
simulation test and analysis. Table 6 shows the relevant parameter settings for the on-orbit
operation of the robots.

Table 6. The relevant parameter settings for the on-orbit operation of the robots.

Robots
Serial Number Priority Initial

Site
Target

Site
The Planned Path before the Dynamic

Adjustment

r5 P1 222 51 222-141-76-80-51
r6 P2 12 168 12-11-76-168

Based on the task parameters listed in Table 6, Figure 10a shows the initial path
planned by the distribution system for robots r5 and r6. In Figure 10a, the initially planned
paths of robot r5 and robot r6 overlap between sections 76-141-168 of the station, resulting
in an on-orbit collision between the two robots. Since robot r5 has a higher priority than
robot r6, the path of the robots needs to be adjusted. The time taken and distance traveled
by robot r6 are calculated to take delay waiting and replanning respectively, and the results
are shown in Table 7.
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Figure 10. (a) Robot route planned before the dynamic adjustment. (b) Robot route planned after 
the dynamic adjustment. The two lines with different colors stand for the planned paths of the two 
robots, respectively. 
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station 76. When the delay waiting strategy is adopted, the total traveling time of the 
robot is 221.4 s, the waiting time is 75.7 s, and the traveling distance remains un-
changed. After the robot adopts the delay waiting strategy, the time of executing the 
distribution task increases by 48.62%, and the driving path does not change. 
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Table 7. Comparison of different dynamic adjustment strategies.

Adjusting Policies Path Travel Time (s) Distance (m)

Initial planning 12-11-76-168 155.7 140
Delay waiting 12-11-76-168 231.4 140

Replanning 168-143-141-12-13-78 197.1 160

• Delay waiting: As shown in Table 7, if the robot chooses to wait for a delay at station 60
before a conflict occurs, the robot can continue to pass when it passes through station
76. When the delay waiting strategy is adopted, the total traveling time of the robot is
221.4 s, the waiting time is 75.7 s, and the traveling distance remains unchanged. After
the robot adopts the delay waiting strategy, the time of executing the distribution task
increases by 48.62%, and the driving path does not change.

• Replanning: As shown in Table 7, after the replanning strategy is adopted, the robot’s
traveling time is 197.1 s and its traveling distance is 150 m. After replanning, the deliv-
ery time and driving distance increase by 25.59% and 14.28%, respectively. Therefore,
adopting the replanning strategy to solve the conflict between two robots can improve
the efficiency of distribution.

To sum up, in this case, when the robots encounter conflict in opposite directions,
the replanning strategy takes 14.28% longer driving distance than the delayed waiting
strategy, but the replanning strategy takes 17.82% less time than the delayed waiting
strategy. Therefore, the replanning strategy was chosen to improve the efficiency of material
distribution. After replanning, the driving paths of the two robots are shown in Figure 10b.

4. Conclusions

This paper presents an enhanced version of the Dijkstra algorithm for the purpose of
path planning in rail-hung logistics robots. The proposed algorithm incorporates a real-
time node occupancy and time window conflict judgment model to facilitate global path
planning and conflict coordination in multi-robot systems. One of the key contributions
is the incorporation of real-time node occupancy, which enables the identification of all
the shortest feasible routes across various tasks. Additionally, the introduction of a time
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window conflict judgment model effectively mitigates route conflicts that may arise when
executing multiple tasks. This model, in conjunction with system priority setting and
conflict coordination strategies, facilitates the achievement of optimal path planning for the
system. A Chan algorithm utilizing the Time Difference of Arrival (TDOA) was presented
as a means to achieve Ultra-Wideband (UBW) placement, with the objective of accurately
locating rail-mounted logistics robots.

Compared with the traditional Dijkstra algorithm, the algorithm proposed herein can
not only plan the shortest path when executing multiple tasks but also determine whether
the path of each task is in conflict and the type of conflict. According to the priority of the
task and the conflict coordination strategy, the task path is either replanned or delayed.
The results show that although the travel distance after replanning is 14.28% more than
that after delay waiting, the travel time of the former is reduced by 17.82%. Therefore,
choosing to replan when encountering path conflicts can improve the efficiency of executing
multi-tasks. In the section on the UWB positioning algorithm, we compared the Chan
algorithm based on TDOA with the Taylor algorithm based on TDOA. When the number of
positioning base stations was four, the performance of the former was significantly better
than that of the latter. In the accuracy test, the error in the former was within the allowable
range. Therefore, the Chan algorithm based on TDOA was selected, which can provide
accurate positioning information for the robot.

Based on the above-mentioned experimental results, our proposed algorithm can plan
a conflict-free optimal path and dynamically adjust the on-orbit conflicts in real time to
avoid track congestion when multiple robots execute the job.
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