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Abstract: The semantic segmentation of outdoor images is the cornerstone of scene understanding
and plays a crucial role in the autonomous navigation of robots. Although RGB–D images can
provide additional depth information for improving the performance of semantic segmentation tasks,
current state–of–the–art methods directly use ground truth depth maps for depth information fusion,
which relies on highly developed and expensive depth sensors. Aiming to solve such a problem, we
proposed a self–calibrated RGB-D image semantic segmentation neural network model based on an
improved residual network without relying on depth sensors, which utilizes multi-modal information
from depth maps predicted with depth estimation models and RGB image fusion for image semantic
segmentation to enhance the understanding of a scene. First, we designed a novel convolution neural
network (CNN) with an encoding and decoding structure as our semantic segmentation model.
The encoder was constructed using IResNet to extract the semantic features of the RGB image and
the predicted depth map and then effectively fuse them with the self–calibration fusion structure.
The decoder restored the resolution of the output features with a series of successive upsampling
structures. Second, we presented a feature pyramid attention mechanism to extract the fused
information at multiple scales and obtain features with rich semantic information. The experimental
results using the publicly available Cityscapes dataset and collected forest scene images show that
our model trained with the estimated depth information can achieve comparable performance to
the ground truth depth map in improving the accuracy of the semantic segmentation task and even
outperforming some competitive methods.

Keywords: semantic segmentation; RGB–D image; predicted depth map; fusion structure; feature
pyramid

1. Introduction

Image semantic segmentation plays a critical role in computer vision tasks, an inter-
disciplinary subject in the fields of machine learning, artificial intelligence and computer
vision and involves several computer techniques such as image recognition, image under-
standing and analysis. High–level semantic labels are assigned to each pixel in an image,
that is, each pixel is classified. Semantic segmentation is a fundamental technology for
scene understanding and plays a vital role in areas such as autopilot [1], autonomous
navigation [2], image medical treatment [3], UAV landing and daily life [4].

Traditional semantic segmentation is mainly used to extract the low–level and interme-
diate features of images, including segmentation algorithms based on the threshold, region,
watershed and graph theory [5–7]. With advancements in computing performance, seman-
tic segmentation using machine learning methods began to be included within the research
scope of many initiatives. Machine learning methods mainly use traditional classifiers
to classify images, which mainly include random decision forests (RF) [8,9] and support

Appl. Sci. 2023, 13, 9924. https://doi.org/10.3390/app13179924 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13179924
https://doi.org/10.3390/app13179924
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0314-1194
https://doi.org/10.3390/app13179924
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13179924?type=check_update&version=2


Appl. Sci. 2023, 13, 9924 2 of 17

vector machines (SVM) [10], but these methods mainly divide data into two categories. The
formal application of deep learning in the field of semantic segmentation occurred with the
emergence of fully convolutional neural networks (FCN), which can clearly distinguish
the categories of objects in an image, such as cats and dogs. FCN can learn pixel–to–pixel
mapping, and the size of the input image can be arbitrarily set [11]. This method uses
VGG–16 [12] as the basic network to extract features, replaces the fully connected layers
with a decoder consisting of deconvolution and convolution for up–sampling, and refines
low–resolution feature maps to generate a dense prediction. However, the FCN method has
two disadvantages. The first is that the output result is too small, and the spatial features of
some pixels are lost in the pooling process. The second is that the context and spatial loca-
tion information are not fully considered. Cao et al. [13] proposed a new loss, called affinity
regression loss (AR loss), to improve the training speed of the semantic segmentation model
without relying on contextual information to improve accuracy. Contextual information has
been proven to be a powerful clue in semantic segmentation [14,15]. Li et al. [14] suggested
that objects with similar appearances are one of the challenges of semantic segmentation
tasks. Therefore, they proposed a novel context–based tandem network (CTNet) to mine
spatial and channel context information to obtain better semantic segmentation results.
Liu et al. [15] argued that continuous down–sampling operations lead to a loss of spatial de-
tail information in the image. Therefore, they proposed a multi–context refinement network
(MCRNet) to fuse contextual information for pixel–level semantic segmentation. How-
ever, these related methods require the design of additional modules to extract contextual
information, which increases the complexity of the model.

Recent related work solved these problems using RGB–D data. The main advantage
is attributed to the depth of information in the scene being less affected by illumination
and other conditions, which can improve the performance of semantic segmentation tasks.
Sun et al. [16] proposed real–time RGB–D fusion semantic segmentation, called RFNet.
The model can effectively utilize complementary block modal information to meet the
requirements of automatic driving. Hu et al. [17] proposed an attention complementary
network (ACNet) that extracts weighted features from RGB images and depth maps,
respectively, and fuses them to solve the problem of unequal amounts of information
contained in RGB and depth images. Zhou et al. [18] proposed an asymmetric encoder
structure for RGB-D indoor scene understanding, which can reduce the difference be-
tween low–level and high–level features so as to better fuse features for segmentation.
Ying et al. [19] believed that the depth information obtained from sensors is not always
reliable, so they proposed the uncertain aware self–attention mechanism to achieve control
from unreliable depth information to reliable depth information flow to solve the problem
of RGB–D semantic segmentation. Huang et al. [20] proposed a new semantic segmentation
solution named LDFNet by fusing brightness, depth and color information. However,
current state–of–the–art methods [16–20] still have many problems: (a) relying on expen-
sive depth sensors, such as Microsoft Kinect or 3D LiDAR, to obtain high–quality ground
truth depth maps for RGB–D semantic segmentation [21]; (b) simply using depth maps
as the fourth channel of RGB images without fully utilizing the complementarity of RGB
and depth information (due to the significant differences in features between RGB images
and depth maps, it is necessary to fuse depth maps encoded with RGB images [22]); and
(c) there are problems such as losing multi–scale information features, which have a great
impact on the segmentation accuracy of small objects. If small receptive fields are used to
extract the features of small objects, it is difficult to extract global semantic information,
and if larger receptive fields are used to extract the background information of images, the
features of small targets will be lost. The deep learning method based on multiple scales
can combine the deep semantic information and shallow representation information of
small objects to solve the problem of feature and position information loss caused by the
increase in network layers in small object semantic segmentation [23].

To this end, inspiration from multi–modal joint training can ensure the robustness
of semantic segmentation models based on single–modal feature learning [24]. Thus, we
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improved the semantic segmentation method from the following perspective: a neural
network model for image semantic segmentation fused with predicted depth information,
which utilizes the multi–modal fusion of RGB and depth images to achieve image seman-
tic segmentation to enhance scene understanding. Specifically, our method is divided
into two stages. First, depth estimation of the input RGB images was performed using
our previous related work [25,26]. Second, after fusing the predicted depth information
with the RGB images, FCNs with encoding and decoding were further used to imple-
ment semantic labeling of the outdoor scenes. The overall contribution of our research is
summarized below:

(1) The raw RGB image and the predicted depth image were fused into a four–channel
RGB–D image using self–calibrating fusion architecture and then an encoding–decoding
model was established to output the predicted semantic image;

(2) We proposed a new feature pyramid attention structure, which integrates the fused
information at multiple scales to obtain features with rich semantic information;

(3) Our method was evaluated using the publicly available Cityscapes dataset [27] and
achieved comparable performance to the ground truth depth map, performing even better
than some competitive methods. Furthermore, our method was generalized according to
two different forest scenes to demonstrate its effectiveness.

The rest of this paper is arranged as follows: the image semantic segmentation network
model and detailed implementation process are outlined in Section 2; the experimental
comparison and analysis are shown in Section 3; and finally, the conclusions and recom-
mendations for future works are given in Section 4.

2. Materials and Methods

Image semantic segmentation is an important basis for understanding a scene, and the
final segmentation images are formed by assigning different labels to different categories
of objects. At present, a deep neural network is widely used in the field of semantic seg-
mentation; however, continuous convolution and pooling operations reduce the resolution
of the image [15], which causes the output feature maps and the original image to not have
a point–to–point correspondence. Therefore, the traditional deep neural network model
has been unable to effectively complete a high–precision semantic segmentation task.

The rich geometric cues contained in the depth map can be used as supplementary
information to improve the semantic segmentation accuracy of RGB images [14]. In most
circumstances, the cost of acquiring a ground truth depth map in real–world scenarios is
expensive, limiting the massive growth of datasets. Therefore, we proposed a new semantic
segmentation model that fuses depth information from a depth estimation model without
relying on depth sensors. First, we fused the RGB images with predicted depth maps and
then input them into a semantic segmentation model to achieve accurate segmentation of
RGB images. To this end, we showed the overall structure of the RGB–D image semantic
segmentation neural networks and described each module in detail. Second, we introduced
data augmentation methods to improve the generalizability and robustness of our semantic
segmentation model. Third, we used a cross–entropy function in the field of semantic
segmentation as the loss function to measure the difference between the real and predicted
probability distributions.

2.1. Semantic Segmentation Model

We mainly investigated the expansion of color images with the corresponding pre-
dicted depth in improving the performance of semantic segmentation. The learning–based
depth estimation method is divided into two domains: supervised and unsupervised
learning methods. The depth estimation models used in this paper originate from our
previous related work [25,26]. Figure 1 outlines a summary of our semantic segmentation
model with an encoding−decoding structure fusing depth information. For the encoder,
the representative features of the RGB and predicted depth images were automatically
extracted using our backbone network model, which was based on the improved residual
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network—IResNet [28]. The effective fusion of image and depth information was imple-
mented as the input of the next layer followed by a fusion module. For the decoder, a
series of up–sampling structures were used to gradually restore the resolution of the output
feature map. The feature pyramid attention (FPA) network builds a bridge between the
encoder and decoder modules, which mainly extracts multiscale information from the
features output by the encoder module as the input to the decoder module. Some shortcut
connections (red arrows) were also added between the corresponding layers in the encoder
and decoder to enhance the information flow.
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2.1.1. The Encoder Module

The backbone network of the encoder module was mainly composed of improved
residual blocks, which improved the raw residual block and the preactivated residual
block [29], as shown in Figure 2.

Conv1×1 and Conv3×3 were the convolution operations with kernel sizes of 1× 1 and
3 × 3, respectively. BN represents batch normalization (BN), and the rectified linear unit
(ReLU) was the activation function. The raw residual block was added a ReLU function
to the main path to return the negative signal to zero. However, in the early stage of
convolutional neural network (CNN) training, there may have been more negative signals
that may have had a negative impact on information propagation. To solve this problem, a
preactivation residual block was proposed. The BN and ReLU functions were placed before
the convolution operator, and the feature map was directly output after Conv1×1, which
led to a lack of nonlinear characteristics between the modules and limited the learning
ability of the CNN. In addition, the raw residual and preactivation residual blocks were
not added to be the BN function on the main path, which also means that the feature maps
added channel–by–channel were not normalized, increasing the difficulty of CNN training.

We proposed an improved residual network structure as the backbone network for
semantic segmentation, which is mainly divided into three parts: the start block, middle
block and end block, as shown in Figure 3.
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BN* indicates that the BN was not added to the first middle block because the BN
function is already included in the auxiliary path of the start block. Maxpool (3, 2) is a
3 × 3 max pooling layer with a stride of 2. For the nonlinear activation function, we used
the parametric rectified linear unit (PReLU) [30] to replace ReLU.

ResNet was the first choice for the semantic segmentation tasks [31–34]. In the process
of training ResNet, stochastic dropping of hidden nodes or connection layers (the most



Appl. Sci. 2023, 13, 9924 6 of 17

common is the dropout method [35]) did not affect the convergence of the algorithm,
showing that ResNet had good redundancy. We used an improved ResNet, called IResNet,
which contains the start, main and end stages. There are four main stages, including
three, four, six and three blocks, respectively. Each main stage includes a start block and
an end block, and the rest are middle blocks. The entire IResNet network only contains
the activation function PReLU [30] in the main path of the end block in the main stage,
which reduces the adverse effects of the nonlinear function in information propagation and
makes use of the advantages of nonlinear mapping. At the same time, the network adds
a regularization term to the main path of the end block to regularize the output features
added channel–by–channel. The end block of each main stage is connected with the start
block of the next stage. The auxiliary path of the start block plus the regularization term
and the main path parameters are added channel–by–channel to normalize all the features.
Adding regularization items and activation functions to the main path of the end block can
stabilize the signal entering the next stage, which is in preparation for the next stage of
feature processing. The network can effectively control the flow of information without
increasing the network parameters and only changing the layout.

When the scales of the input and output features in the start block do not match, a
down–sampling operation needs to be added to the main path to maintain the same scale
as adding by the channel. ResNet–50 [29] uses a 1 × 1 convolution with a stride of 2 to
adjust the scale of the feature map. However, the 1 × 1 convolution with a stride of 2 will
cause a significant loss of information and introduce noise, which will have a negative
impact on the main path information. A 3 × 3 max pooling layer with a stride of 2 was
used in IResNet–50 to change the size of the feature map, which helped select the most
active elements for retention, and a convolution operation was used to change the number
of channels. The 3 × 3 convolution operation in the auxiliary path adjusted the feature
map to help preserve the spatial context. The max pooling kernel was the same as the
convolution kernel in the auxiliary path to ensure that the channel–wise addition was
performed between the elements computed in the same window. This operation does not
add any other parameters to the model.

2.1.2. Self–Calibrating Fusion Architecture

The depth map contained more contour and position information, which is helpful
for RGB image semantic segmentation [16,17]. Identifying ways that can effectively utilize
depth information complementary to RGB images to promote semantic segmentation accu-
racy is an important research hotspot in the field of RGB–D image semantic segmentation.
We proposed a self–calibration module (Figure 4) to learn fusion information from an RGB
image and predicted depth maps. The self–calibration module can enhance the diversity of
the output features by expanding the size of the receptive field.
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In the figure, Avg pool represents the global average pooling operation; Cov3×3 is
the 3 × 3 convolutional layer; “+” and “×” represent channel–by–channel addition and
multiplication, respectively; x′1, x′′1 and y1 are the output features of the intermediate layers;
and y is the final output of the fusion structure.

When general convolution is used for feature extraction of spatial locations, the size
of the receptive field is set to a fixed size, resulting in the inability to extract higher–level
semantic information. To extract the effective context information of each spatial location,
our proposed self–calibration fusion structure fused the image and depth features to achieve
self–calibration of the RGB image features and then added them with a channels–wise
deep map. Each branch in the self–calibrated fusion structure nonuniformly divided
the convolution filter into multiple parts, and the filters of each part were used in a
heterogeneous form. The specific execution process is as follows:

T1 = avg pool(x1)
x′1 = up(c1(T1))
x′′1 = c2(x1)·σ(x′1 + x1)
y1 = c3(x′′1 )
y = c4(x2) + y1

. (1)

where up is the up–sampling operation and σ( ) is a sigmoid function.
First, the RGB image was down–sampled using a 3 × 3 average pooling layer to

obtain T1 (see Equation (1)) and then bilinear interpolation was used to restore T1 to the
size of x′1, which was added with input x1 to obtain the attention feature map of the
spatial domain. After processing the sigmoid activation function, the output features were
multiplied channel–by–channel with the feature map after a c2 transformation to obtain
feature map x′′1 , which was finally output as y1 using a 3 × 3 convolutional layer. The
self–calibrating operation described above allows each spatial location to adaptively treat
its surrounding information environment as an embedding from the low–resolution latent
space and also model the dependence between the channels. Therefore, the receptive field
of self–calibrating convolution can be effectively expanded.

2.1.3. Feature Pyramid Attention Mechanism

Although the pyramid structure [33] can extract multiscale feature information and
effectively increase the size of the receptive field, it lacks global context prior attention and
cannot select features in the dimension direction. On the other hand, the channel–based
attention mechanism is not sufficient to extract multiscale features effectively, lacking
pixel–level information [23]. To increase the size of the receptive field and improve the
segmentation accuracy of small objects, we fused the attention mechanism and spatial pyra-
mid structure to construct the FPA mechanism and extract accurate and dense multiscale
features. We also used the convolution kernels of different scales (3 × 3, 5 × 5 and 7 × 7)
to extract the contextual information of the input feature map, and the FPA structure to
fuse the features of different scales layer–by–layer. After the 1 × 1 convolution layer, the
original features were multiplied by the multiscale features pixel–by–pixel to efficiently
capture the context information of the multiscale image. The specific structure of the FPA
module is shown in Figure 5.

After the 3 × 3 convolution operation, the size of the output feature map was 1/8 of
the input feature. In the figure, “up” is the deconvolution operation, the purpose of
which is to increase the scale of the feature map for channel–by–channel fusions with
high–resolution features. The 1 × 1 convolution on the main path was used to reduce the
number of channels. High–level features were not conducive to pixel–level classification,
so we performed average pooling of the high–level features, which then underwent a
1× 1 convolutional layer to obtain a 1× 1× C vector with global information to weight the
channels of the low–level features. The context features of different scales can be fused with
the FPA module to expand the feature representation range of advanced feature maps. The
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context information was multiplied with the original feature map pixel–by–pixel without
introducing excessive computation.
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2.1.4. The Decoder Module

The function of the decoder module was to gradually restore the resolution of the
output feature map, including three up–sampling structures, the detailed structure of
which is shown in Figure 6. Inspired by ReNet [29], we used skip connections to take the
input features (the red arrow in Figure 1) and the output features from the previous layer
as inputs to our up–sampling structure so that the model could learn the residual and
avoid the loss of information. We applied a 1 × 1 convolution operation and a bilinear
interpolation operation on the two branches, with the upper branch containing a BN layer
and a PReLU [30] layer. Finally, we summed the results of the two branches and output
the feature map through a BN layer, a PReLU layer and a 3 × 3 convolutional layer. We
must clarify that the third up–sampling module in the decoding module was different from
the first two, mainly using four–time interpolation to keep the same size of the input RGB
images as the output semantic segmentation result.
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2.2. Data Augmentation

A large quantity of training data was a prerequisite for achieving an accurate model.
To improve the generalizability and robustness of our semantic segmentation model, we
transformed the training data using random operations performed spontaneously. The
augmentation methods are described as follows [25,26]:

• Random horizontal flip. Input images and the target ground truth are both horizon-
tally flipped with a 0.5 probability.

• Random rotation. Input images and the target ground truth are both rotated with a
random value.

• Scale. Input images and the target ground truth are both scaled by a random number
u ∈ [0.5, 2].

• Random crop. Input images and the target ground truth are both center–cropped and
then restored to the original size.
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2.3. Loss Function

We applied the most commonly used cross–entropy function in the field of semantic
segmentation as the loss function, which was used to measure the difference between the
real and predicted probability distributions [16,17]. The segmentation problem can be
viewed as a multiclassification problem. Therefore, similar to the classification task, we
used the sigmoid function to output a probability value representing the probability of a
positive sample at the last layer of the semantic segmentation model. The probability that
the network outputs positive samples is:

∧
y = P(y = 1|x) (2)

The probability of outputting negative samples is:

1− ∧y = P(y = 0|x) (3)

From the perspective of maximum likelihood, we integrated Equations (2) and (3)
to obtain

P(y|x) = (
∧
y)

y
·
(

1− ∧y
)1−y

(4)

To avoid changing the monotonicity of Equation (4), we took the logarithms at both
ends of Equation (4):

log P(y|x) = log
(
∧
y

y
·
(

1− ∧y
)1−y

)
= y log

∧
y + (1− y) log

(
1− ∧y

)
. (5)

The greater the probability of the positive samples, the higher the accuracy of object
segmentation in the foreground. Finally, we obtained the cross–entropy equation as follows:

L = − 1
N

N

∑
i=1

y(i) log
∧
y
(i)

+
(

1− y(i)
)

log
(

1− ∧y
(i)
)

. (6)

For the multiobjective segmentation problem, the cross–entropy loss function can be
expressed as [18–20]:

L = −
M

∑
c=1

N

∑
o=1

yo,c log(po,c) (7)

where N is the total number of pixels, o is a pixel index, M is the total number of categories,
yo,c is the probability that ground truth pixel o belongs to category c, and the value is 0 or 1,
and po,c is the probability that pixel o is predicted to be true category c, which is the output
of the semantic segmentation model.

3. Experimentation

In this section, we evaluate our method based on the common metrics and protocols
used for prior methods and compare them with existing semantic segmentation approaches.
Since this paper mainly addresses the semantic segmentation of outdoor scenes, we used
the publicly available Cityscapes dataset [27] as a benchmark to train our model. The
dataset is commonly used to evaluate semantic segmentation performance for outdoor
scenes. In addition, we conducted relevant experiments in real forest scenes to further
demonstrate the effectiveness of our approach. Our method was implemented using the
PyTorch [36] framework, which is a machine learning toolkit released by Facebook that can
run on GPUs to achieve acceleration.

3.1. Brief Overview of Depth Estimation Methods

The depth estimation methods used in this paper were derived from our previous
research results [25,26]. We mainly used two different schemes to train the depth estimation
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model. The first scheme uses a supervised learning approach, and since the training dataset
contains RGB images and corresponding depth images, we proposed an encoder–decoder
structure with the feature pyramid to predict the depth map from a single RGB image [25].
The second scheme uses an unsupervised learning method. Since the training dataset only
contains rectified stereo pairs without corresponding depth images, we considered the
depth prediction problem as a regression problem of the disparity map based on the basic
principle of binocular stereo vision [26].

3.2. Training Dataset

We conducted related experiments on the autonomous driving outdoor dataset,
Cityscapes, which is large in scale and covers 50 cities in Germany and nearby coun-
tries, including street scenes in the spring, summer and autumn, and is widely used in
RGB–D semantic segmentation research. It contains 5000 densely annotated images, which
are officially divided into 2975 training sets, 500 validation sets and 1525 testing sets. The
resolution of the images is 2048 × 1024. The finely annotated objects in this dataset can
be divided into 19 categories, including road, sidewalk, building, wall, fence, pole, traffic
light, traffic sign, vegetation, terrain, sky, pedestrian, rider, car, truck, bus, train, motorbike
and bicycles. This dataset does not provide the ground truth segmentation images of the
test set, so we use the validation set as the test set to test the experimental effect of the
network model.

3.3. Training Details

We trained the semantic segmentation model on 2975 training data using the Adam [37]
optimizer with a batch size of 4 and set the learning rate to be 1 × 10−4. In addition, we
used a polynomial decay strategy to adjust the learning rate of the model, and the formula
is as follows:

lr = r ·
(

1− t
T

)power
(8)

where lr is the current learning rate, r is the initial learning rate, which is set to 1 × 10−4,
power is the attenuation coefficient, generally set to 0.9, t is the number of current iterations
and T is the maximum number of iterations. Due to the limitations of the semi–global
matching algorithm, the left and bottom halves of the depth images are not applicable, so
these pixels needed to be cropped, and bilinear interpolation up–sampling was used to
adjust the image to the original resolution. To accelerate the training, the input images were
down–sampled to 768 × 768 to remove the blank boundaries or invalid regions caused by
data augmentation. Our semantic segmentation model was trained on one NVIDIA Titan
Xp GPU for approximately 200 epochs.

We show the detailed visual results of the Cityscapes datasets in Figure 7. We found
that our method was more accurate in the segmentation of large target objects such as cars,
trees, and buildings, and worked well in the segmentation of smaller object categories such
as billboards and poles.

3.4. Evaluation Criteria

The evaluation criteria are an important basis for a quantitative evaluation of the
model performance. For the image semantic segmentation task, there are several categories:

I. Pixel accuracy (PA): PA =
∑k

i=0 pii

∑k
i=0∑

k
j=0 pij

,

II. Intersection over union (IoU): IoU =
k

∑
i=0

pii

∑k
j=0 pij+∑k

i=0 pji−pii

,
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III. Mean intersection over union (mIoU):

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

i=0 pji − pii

,

IV. Frequency weighted intersection over union(FWIoU):

FWIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

i=0 pji − pii

.

where k is the total number of categories, pii indicates that the predicted category is
i and the real category is also i and pij indicates that the predicted category is j and the real
category is i.
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Figure 7. Qualitative results of our approach using the Cityscapes dataset. (a) RGB images;
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result. Note that the brightness of the colors in the depth maps represents the distance of the camera
to the object.

To verify the segmentation effect of our method using different objects within the
Cityscapes dataset, we first reported the classification results of the different objects on the
IoU. Then, we compared the IoU performance of our method with other classical semantic
segmentation algorithms using different targets in detail. Finally, the comprehensive
performance of our method was compared with that of classical semantic segmentation
algorithms in detail to systematically illustrate the segmentation effect of our method.
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3.4.1. IoU Results for Different Object Classifications within the Cityscapes Dataset

Figure 8 shows the detailed IoU results for different object classifications within the
Cityscapes dataset. The IoU results are close to 90%, and more than 90% have five categories,
namely, road, building, vehicle, sky and car. This shows that the segmentation method is
effective in large target segmentations. The object categories with IoU results of more than
80% include the sidewalk, bus and train. More than 70% of the object categories have walls
and fences, indicating that these objects achieved good segmentation results. However, the
segmentation effect for terrain, person, truck, motorcycle and bicycle was general, and the
IoU of the other objects was less than 60%. The main reason is that the Cityscape dataset
was mainly captured using corresponding sensors installed on autonomous driving devices.
This means that the image contained more categories, such as the sky, road and cars, and
fewer categories such as poles, traffic lights and bicycles. The final mIoU of our method
was approximately 73%.
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Table 1 summarizes the IoU results of our method on different objects. Our method sig-
nificantly outperformed SwiftNet [38] and RFNet [16] on the sidewalk, wall, fence, terrain
and train categories and could achieve comparable performance on the road, vegetation,
sky and bus categories.

Table 1. Comparison of the proposed method with other semantic segmentation methods using
different objects.

Method SwiftNet [38] RFNet [16] Our Method

Road 94.9 96.1 94.8
Sidewalk 54.9 61.6 82.3

Wall 47.3 56.9 74.1
Fence 57.7 60.4 75.3

Vegetation 90.8 91.1 89.7
Terrain 57.1 57.1 69.1

Sky 91.9 91.8 91.7
Bus 80.6 83.4 82.4

Train 60.4 73.9 82.0

3.4.2. mIoU Results for the Cityscapes Dataset

Table 2 summarizes the comparison of our results with results obtained using other
semantic segmentation methods. Compared with the segmentation algorithms without
fusion depth information, our method had a higher mIoU, more accurate segmentation
results and a good overall performance. At the same time, we also concluded that semantic
segmentation results with estimated depth information could achieve comparable perfor-
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mance for the ground truth depth map and even outperformed some competitive methods.
In addition, the PA and FWIoU of our method were 93.1% and 87.9%, respectively.

Table 2. The comparison of our results with results obtained using other methods for the Cityscapes
dataset. “N” denotes methods without fusion depth information, “G” denotes methods with ground
truth depth information and “P” denotes methods with predicted depth information.

Network RGB–D mIoU

FCN8s [11] N 65.3%
DeepLabV2–CRF [39] N 70.4%

ENet [40] N 58.3%
ERFNet [41] N 65.8%

ERF–PSPNet [41] N 64.1%
SwiftNet [38] N 70.4%
ARLoss [13] N 71.0%
LDFNet [20] G 68.48%
RFNet [16] G 72.5%

ESOSD–Net [42] P 68.2%
Our method P 73.0%

Although the fusion of RGB images and depth maps with the self–calibrating fusion
architecture and feature pyramid attention mechanism raised the computational cost, our
semantic segmentation model ran at an average speed of 10.43 FPS (frames per second)
on a single Nvidia Titan Xp Gpu for input images with a quantity of 1525 and size of
768 × 768. Training approximately 200 epochs on 2975 training sets, the trainable pa-
rameters were about 444.9 M. Overall, our multimodal semantic segmentation method
incorporating predicted depth information achieved the best results while maintaining
real–time performance, which also demonstrated that utilizing predicted depth information
could improve the efficiency of semantic segmentation.

3.5. Experimental Results for the Forest Scene

We also conducted related experiments using two different forest scenes, which
further demonstrated the effectiveness of our method. We first used the image labeling
tool—labelme to manually label the forest images in the Make3D [43] dataset. The images
were mainly divided into four categories, namely, blue trees, red sky, purple bushes and
black background. A previous related work [25] was then used to predict the depth map
of the forest image. Finally, the depth and RGB images were fused as the input for the
semantic segmentation network.

First, we conducted experiments using a public dataset containing images of the forest
areas, and the detailed experimental results are shown in Figure 9. From Figure 9d,e, it
can be seen that the result of semantic segmentations without depth information fusion
produced large errors, while the segmentation results with depth information fusion were
more accurate. In the area marked with the red box in the fourth row of Figure 9, a distant
tree could be segmented using the RGB–D semantic segmentation network model.

Second, we conducted experiments using 1k forestry images collected at the Beijing
Olympic Forest Park. In fact, there were many trees in the forest scene, with a small
DBH (diameter at breast height) and light color, and the branches were blocked from
each other. When manually labeling, we only labeled the trunks in the foreground and
divided the branches and trees in the background into the background without labeling.
The experimental results are shown in Figure 10. The accuracy of our method for real forest
scene segmentations was higher than that of the model without depth information.

Furthermore, we evaluated our method using two different forest datasets since
previous related works [11,39–41] did not provide evaluation results on forest scenes. In
order to compare fairly with relevant methods, we used the work by Hu et al. [17] and
our method to evaluate the results using the two different forest datasets. Table 3 shows a
comparison of the results.
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Furthermore, we evaluated our method using two different forest datasets since pre-
vious related works [11,39–41] did not provide evaluation results on forest scenes. In order 
to compare fairly with relevant methods, we used the work by Hu et al. [17] and our 
method to evaluate the results using the two different forest datasets. Table 3 shows a 
comparison of the results. 

Figure 10. The visual effect on an actual forest scene. (a) Input images; (b) predicted depth maps
by [26]; (c) ground truth images; (d) results without fused depth information; (e) our approach.
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Table 3. Baseline comparison of the two forest datasets. Performance evaluation by Hu et al. [17] and
our method using the two datasets. P denotes the public dataset containing images of forest areas
and M denotes the images collected at the Beijing Olympic Forest Park.

Method Dataset RGB–D mIoU PA

Hu et al. [17]
P Yes 69.87% 93.67%
Y Yes 71.17% 94.42%

Our method
P Yes 73.94% 96.95%
Y Yes 75.11% 97.45%

4. Conclusions

In this paper, we proposed a self–calibrating RGB–D semantic segmentation neural
network model based on an improved residual network for the semantic segmentation
of multimodal information. First, we used IResNet [6] to extract features from RGB
and predicted depth images. Then, our designed self–calibration network performed
multimodal fusion of the depth information and RGB image features and utilized the
feature pyramid attention structure to fuse multiscale semantic information. Finally, we
presented a bilinear interpolation structure as a decoder module to generate segmentation
results with high resolution and rich semantic information. The experimental results for
the publicly available Cityscapes dataset [27] and collected forest scene images show that
our method outperformed the competitive methods.

Our model trained with the estimated depth information could achieve comparable
performance to the ground truth depth map in improving the accuracy of the semantic seg-
mentation task. However, the reasoning process of our semantic segmentation was divided
into two parts; that is, it first predicted the depth map and then performed3semantic seg-
mentation. Although our method improved the prediction accuracy, it also correspondingly
increased the time of single image segmentation. Second, the fusion of RGB images and
depth images with the self–calibrating fusion architecture and feature pyramid attention
mechanism increased the computational cost of the model.

In future work, we will focus on semantic segmentation of 3D objects to solve funda-
mental problems such as unmanned driving, smart healthcare and 3D object recognition.
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