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Abstract: As medical technology continues to evolve, the importance of real-time feedback from
physiological signals is increasingly being recognized. The advent of the Internet of Things (IoT) has
facilitated seamless connectivity between sensors and virtual networks, enabling the integration of
thoughtful medical care with real-time feedback capabilities. This project uses cloud storage technol-
ogy and cloud software algorithms to enable data sharing and real-time feedback. Its main focus is to
provide a system for real-time feedback on physiological signals and sleep quality analysis. The sys-
tem uses smart wristbands and smart mobile devices to collect, transmit, and analyze physiological
data. During sleep, users wear these devices, which capture and analyze their physiological data. The
analyzed data are then stored in a cloud-based database. The research involves studying sleep quality
and determining optimal sleep quality parameters based on the data stored in the cloud database.
These parameters are designed to improve sleep quality. They are then transmitted to a mobile sleep
aid device to control light conditions. The sleep aid software used in previous generations of mobile
devices is the basis for expanding the integration of the sleep detection system. By combining the
software of a mobile device platform with that of a smart wearable device, data can be obtained
to monitor the wearer’s movements, such as turning over and heartbeat. The monitoring aspect
includes tracking the turning time, distance, and speed, while the heartbeat monitoring includes de-
tecting changes in heart rate, frequency, and interval using photoplethysmography (PPG) and smart
wearable devices. Subsequently, artificial intelligence methods are employed to conduct statistical
analysis and categorize the gathered extensive dataset. The system reads the data and provides the
user with assessments and suggestions to improve sleep quality and overall sleep condition.

Keywords: smart medical; smart wearable devices; sleep monitoring; dynamic sleep aid light source

1. Introduction

Sleep has always been an essential part of human life. Everyone needs sleep, whether
a head of state, scientist, politician, doctor, office worker, or anyone else. Sleep deprivation
not only affects reaction speed, emotional control, memory, vitality, and physiological
lesions [1–4], but also has a significant impact on the occurrence of traffic accidents and
crew deployment [5–7]. In 2018, a study by David Hillman et al. indicated that inadequate
sleep can also lead to additional workplace accidents, increasing the cost of medical care,
accident investigations, and lawsuits to over USD 2.48 billion [8].

The quality of sleep is intricately intertwined with the standard of sleep, and the
characterization of sleep quality [9] can be delineated by four specific criteria: (1) achieving
sleep within 30 min of lying down; (2) experiencing ≤ 1 episode of waking up in the middle
of the night, defined as waking up for over 5 min; (3) returning to sleep within 20 min after
waking up in the middle of the night; and (4) achieving a sleep efficiency of ≥85%, which
denotes the percentage of sleep time divided by the time spent lying in bed. In recent years,
research on sleep quality has encompassed several focal points, including stress [10,11],
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physical activity [12,13], noise [14,15], and light [16–18]. Light, known to positively impact
humans, significantly influences the functioning of cells within the human body. In 2002,
American scientists discovered a distinct type of light-sensitive cell [19] termed “intrinsic
photosensitive retinal ganglion cells” (IPRGC). Unlike the traditional cone and rod cells
responsible for light perception, IPRGC employs melanopsin to sense external light stimuli.
The interaction between IPRGC cells and external light governs various physiological
adaptations and responses, including melatonin secretion, circadian rhythm phase shifts,
and sleep duration adjustments [20,21]. Furthermore, IPRGC shares commonalities with
cone and rod cells while exerting distinct effects across different wavelengths. IPRGC
exhibits heightened sensitivity to short-wavelength blue light, yielding a pronounced
physiological response in the human body following exposure [22]. Extensive research
indicates that exposure to short-wavelength blue light disrupts the physiological secretion
of melatonin and cortisol, leading to significant issues such as sleep disorders [23–25].

Sleep has become an essential factor in the development of civilization. Studies show
that excessive exposure to blue light inhibits melatonin secretion and impairs sleep, while
adequate exposure can promote good sleep. In scientific research, some people believe
that it is best to sleep in a completely dark environment [26–31], but studies on sleeping in
bright environments have indicated that different light environments have different effects
on sleep. For example, the research results of scientists such as Kozaki in 2005 showed that
sleep in an environment with an illumination of 10 lx and a color temperature of 3000 K lasts
longer than sleep in an environment with an illumination of 10 lx and a color temperature
of 6700 K [32]. In 2013, the results of researchers such as CgellappaSL also showed that the
use of 3000 K and 6500 K lamps with color temperature and illumination of 40 lx two hours
before bedtime causes melatonin to be inhibited, while alertness, happiness, and comfort
are increased. In addition, the period of rapid eye movement and N1 are reduced [22]. In
2017, Smolders’ research results also revealed that people with sleep deprivation showed
effects after being irradiated with 6000 K and 500 lx light in both subjective and objective
tests [33]. According to the latest article published by scientist Yingjian Lu in 2020, light and
sound are combined into one product, and brain waves are detected via the ARM module
and Wi-Fi module to determine sleep quality. Light and sound are appropriately used to
support sleep, a method which has been recognized by users and professional doctors in
research and has a specific effect [34].

Sleep health monitoring has been achieved by upgrading hardware equipment and
continuously updating physiological information analysis methods. Daily sleep informa-
tion and physiological data can be stored with simple hardware equipment, and the stored
sleep information and physiological data are then sent to medical centers via the Inter-
net. By analyzing the sleep data, more accurate results can be obtained, and appropriate
feedback and suggestions for medical care can be given to users. Thus, the way in which
they come to know their physical conditions has changed greatly. In the past, assessing
sleep quality required orchestrating a hospital admission, where polysomnography (PSG)
equipment needed to be affixed, followed by completing and monitoring subjective ques-
tionnaires. PSG equipment entailed the intricate connection of multiple cables to capture
the subject’s physiological metrics, encompassing brain waves, electrocardiogram readings,
electromyography signals, eye movements, respiration patterns, etc. This comprehensive
data set was subsequently juxtaposed with the subjective questionnaire responses to glean
insights into the subjects’ sleep patterns and behaviors. However, contemporary advance-
ments have introduced diverse analytical approaches to enhance the arsenal of evaluation
techniques. In addition to subjective questionnaires, smart wear devices are used to monitor
physiological data using small devices such as watches and headphones, which reduces the
inconvenience of wearing PSG cables, and similar results can be obtained. In 2015, Jensen,
H.I., and other researchers studied the sleep quality of shift workers using dynamic lighting.
Using an ActiGraph sleep wristband, sleep latency, wake times, and overall sleep efficiency
were assessed with the help of a sleep diary and saliva samples. Even without PSG equip-
ment, the results showed no significant correlation between melatonin and sleep efficiency,
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but in the subjective test evaluation, workers in the dynamic control light environment
felt better than those in the typical light environment [16]. In 2017, Saad, W.H., along
with fellow researchers, delved into the impact of the environment on sleep quality. They
employed a multifaceted approach encompassing environmental measurements, video
recordings, and the utilization of wristbands to capture variables such as physical activity,
body temperature, and heart rate. The study’s findings unveiled a significant correlation,
demonstrating that lower body temperature and a decreased heart rate indicated improved
sleep quality in settings characterized by darkness and cooler temperatures [35]. Due to
devices such as smart wearable devices and environmental sensors [36–39], assessment
methods other than PSG that need to be connected to a large number of biological signal
measurement devices have been provided, which can help users to improve their sleep
quality more quickly by obtaining the results of sleep condition analysis through simple
wearable devices without having to go to the hospital to be examined for a long time, which
increases the medical burden.

As per the 2019 research report by Zhu, Jianxiong, et al., wearable devices are being
highlighted not only for their significance in the medical field, but also for their role in
enhancing the immersion of AR, VR, and various forms of human–machine interaction [40].
Surveys conducted by IDC and the report titled “DIGITAL 2020: Global Digital Overview”
have unveiled compelling insights into mobile phone and internet user data. Notably, the
statistics indicated a remarkable surge in wearable device shipments, from 178 million
units in 2018 to an impressive 336.5 million in 2019. This staggering growth rate stands at
an impressive 89% [41]. Furthermore, a survey of global internet usage in 2020 indicated a
7% growth in user count, rising from 4.22 billion to 4.54 billion, with an average internet
usage time of 6 h and 43 min per individual [42].

The insights derived from IDC market research and the DIGITAL 2020 survey allow
us to grasp the inseparable relationship between modern individuals and smart mobile
devices. This underscores the escalating importance and indispensability of smart mobile
devices as they continue to evolve.

2. Materials and Methods
2.1. Cloud System

A cloud system is a system service that integrates software and hardware and provides
users with various services with different requirements via the Internet. Through system
models created by developers, users can use any devices and cloud system services in
other places. Currently, three leading operators offer cloud system services: Google Cloud
Platform, Amazon Web Services, and Microsoft Windows Azure. The architecture of cloud
service systems can be divided into three types, namely, infrastructure services, software
services, and platform services. Infrastructure as a Service (IaaS) provides online hardware
equipment for business rental, such as CPU, GPU, and temporary backup of files. Software
as a Service (SaaS) refers to the creation of enterprise software packages by developers
and the provision of user services through leasing. Users can use the applications or web
browsing services by paying for subscriptions or time of use, such as renting audio and
video streaming services and purchasing single-album audio media. Platform as a Service
(PaaS) provides a network software service platform for software vendors and provides
basic APIs for enterprise users to design, develop, and test information systems online.

2.2. Sleep State Analysis Algorithm

Sleep can be categorized into two main phases: rapid eye movement (REM) and non-rapid
eye movement (NREM) [43]. Typically, a nocturnal sleep cycle encompasses 4 to 5 distinct
stages, beginning with the wakeful state and progressing through the rapid eye movement
phase, followed by the non-rapid eye movement phase. Subsequently, the cycle reenters the
rapid eye movement stage, transitioning into the unconscious phase before once again entering
the non-rapid eye movement phase. This cyclical pattern eventually culminates in returning
to the wakeful state. The non-rapid eye movement period can be further partitioned into
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four stages: N1, characterized by shallow sleep; N2, representing deep sleep; and N3 and N4,
signifying extended periods of deep slumber [44,45]. An 8 h nightly sleep usually includes
4–5 sleep cycles, a sleep cycle generally lasts 90 to 120 min [45], and a good sleep cycle usually
occupies 15–20% of the total sleep during deep sleep. During deep sleep, the body is completely
relaxed and rested and the brain begins to reorganize its memory, incorporating pre-sleep
information into deep memory and other important tasks. Figure 1 shows a typical diagram of
the nocturnal sleep cycle [46].
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Figure 1. Normal night sleep cycle [46].

Distinguishing various sleep states relies on EMG analysis during REM and non-REM
(NREM) sleep, as well as the collection of other physiological signals such as brainwaves,
heart rate fluctuations, and the frequency and intensity of body movements. Physiological
data are collected through brainwave analysis to differentiate between sleep states and
assess sleep quality. Conductive adhesive electrodes are placed externally on the cerebral
cortex, allowing for the recording and analysis of the user’s brainwave energy distribution
before, during, and after sleep using a physiological signal device. This analysis facilitates
the evaluation of sleep state and quality. Electrocardiogram (ECG) measurements capture
heart potential signals, enabling the recording and quantitative analysis of physiological
parameters such as heartbeat intensity and frequency. This data acquisition provides insight
into the subject’s relaxed and excited sleep states.

The categorization of sleep stages is rooted in brainwave analysis, which involves
examining the transformation of potential brain energy from time to frequency through
Fourier transform. When transitioning from wakefulness to sleep, changes in brainwave
frequencies occur. During the awake state, alpha (8–13 Hz) and beta (13–30 Hz) brainwaves
are more active. The rapid eye movement (REM) phase exhibits significant low-frequency
brainwave signals (2–7 Hz) and heightened EMG activity. In non-REM (NREM) sleep, deep
sleep phases (N3 and N4) are characterized by the presence of delta (0.5–4 Hz) and theta
(4–7 Hz) waves, which constitute a substantial portion of the overall energy distribution.
Notably, deep sleep stage N4 is dominated by delta waves [47].

Analyzing heartbeats during sleep involves the recording of each heartbeat cycle using
physiological signal devices. These cycles begin with the electrical impulse of the sinoatrial
node, leading to atrial and ventricular contractions. Electrocardiogram (ECG) results are
subjected to three methods of analysis: time, frequency, and nonlinearity. Time domain
analysis includes metrics such as the mean, standard deviation, and percentiles of the
R-wave interval (refer to Figure 2). Frequency domain analysis involves Fourier or wavelet
transform to distinguish energy distribution between sympathetic and parasympathetic
nervous activities at both low (0.04–0.15 Hz) and high (0.15–0.4 Hz) frequencies. The
nonlinear analysis encompasses graphical and parameter-based methods, with graphical
analysis presenting ECG scatter plots that reveal trends in heart rate variability (HRV) [48].
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2.3. Data Analysis

The algorithm model of data analysis consists of designing the sleep stages in a step-
wise manner based on the data results of human brain waves, heartbeat, and turnover
measured in the previous step. The collected brainwave activity information is filtered,
segmented, and tagged, and the active high-frequency response and gentle low-frequency
brainwave activity are quantitatively distinguished to determine the user’s actual sleep
cycle. Combined with the data results regarding turnover and heartbeat, the sleep stage
is divided into three phases: awake, REM, and not REM. The model analyzes each phase
of sleep. To confirm the sleep stage by spectral analysis and marking brainwave signals,
turnover information is added; the turnover time and intensity recorded by the accelerome-
ter of the Apple Watch are analyzed; and the sleep stages with different power and turnover
times are marked. As an illustration, REM sleep typically involves rapid eye movements
and muscle paralysis, resulting in a heightened frequency of body movements and position
changes. Conversely, during the transition to deep sleep stages within NREM sleep, the
frequency of these movements diminishes, reflecting reduced turnover activity. In heartbeat
analysis, the frequency and timing characteristics of heart rate variability are extracted by
frequency spectral analysis and other processing, then matched with brain wave results
to build a sleep stage model. For example, during REM sleep, the Beta and Alpha brain
waves are more active, and the analysis results of heart rate variability are also excitatory,
while during NREM sleep, the analysis results are relaxed. When the cloud sleep stage
analysis algorithm model is updated, the sleep data are uploaded to the system by the user,
the sleep stages are analyzed, and the analysis results are sent back to the user.

2.4. Brain Wave Analysis

Within the realm of frequency domain analysis, the initial time series data are trans-
formed into the frequency domain by utilizing fast Fourier transform (FFT). This trans-
formation enables the examination of the power spectral density (PSD). FFT enhances the
computational efficiency of discrete Fourier transform calculations, expediting the overall
process. In this context, x[k] represents the PSD resulting from the conversion from the time
domain to the frequency domain, while x[n] signifies the discrete Fourier transform of the
signal at n data points. This relationship is represented as follows:

X[k] =
N−1

∑
n=0

x[n]e−j( 2π
N )kn, k = 0, 1, . . . , N − 1 (1)
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Using Formula (1), brain waves can be divided into beta, alpha, theta, and delta waves,
and the periodic changes of N1, N2, N3, and N4 from REM and REM can be distinguished
by calculating and classifying the characteristic wave generation time of each interval.

2.5. HRV Analysis

When delving into the analysis of HRV concerning sympathetic and parasympathetic
nervous activity within the time domain, one crucial metric is the standard deviation of NN
intervals (SDNN). NN intervals correspond to the intervals between successive R-waves in
the ECG signal. The calculation of SDNN can be outlined as follows:

SDNN =

√√√√ 1
N − 1

N

∑
i=1

(
RRi − RRi

2
)

(2)

In this context, where RRi represents the RR period in milliseconds, N denotes the
total count of RR periods, the calculation for SDNN can be presented as:

RMSSD =

√√√√ 1
N

N

∑
i=1

(RRi+1 − RRi)
2 (3)

pNN50 =
nn50

TatalNN
∗ 100% (4)

The frequency domain analysis of HRV involves transforming each change in heart-
beat interval into the frequency domain, then enabling the evaluation of sympathetic and
parasympathetic nerve activities. This information is then expressed as the power fre-
quency density, allowing for the exploration of physiological states across different time
intervals. The calculation procedure is illustrated in Formula (1). By employing specific
frequency ranges, the indices for sympathetic nerve activity (0.04–0.15 Hz, considered the
low-frequency band) that signify wakefulness and heightened activity; parasympathetic
nerve activity (0.15–0.4 Hz, categorized as the high-frequency band), which is representa-
tive of relaxation; and the sympathetic-to-parasympathetic activity balance index (LF-to-HF
power ratio, denoted as LF/HF), which indicates the equilibrium between hyperactivity
and relaxation, are derived.

2.6. Sleep Turn-Over Analysis

The analysis of sleep turnover states involves the capture of turnover data using an
accelerometer, which is worn as a sleep bracelet. The accelerometer can discern move-
ment and acceleration along the X, Y, and Z axes. It records these motion patterns over
an extended period during sleep, enabling the inference of the frequency and extent of
various sleep stages. Mathematician Leonard Euler introduced the notion that a rigid
body’s position can be described within a three-dimensional space [49]. The definition and
computation of this three-dimensional space involve three angles, represented as R (ϕ, θ,
ψ), which are outlined as follows:

R = X(ϕ) ∗ Y(θ) ∗ Z(ψ) (5)

After the coordinate system is decomposed into a single rigid body, in turn, the gap
between the current turned position and the original position can be calculated, and the
combined calculation is as follows:

R =

cosθ ∗ cosϕ sinψ ∗ sinθ ∗ cosϕ − cosψ ∗ sinϕ cosψ ∗ sinθ ∗ cosϕ + sinψ ∗ sinϕ
cosθ ∗ sinϕ sinψ ∗ sinθ ∗ sinϕ + cosψ ∗ cosϕ cosψ ∗ sinθ ∗ sinϕ − sinψ ∗ cosϕ

−sinθ cosθ ∗ sinψ cosψ ∗ cosθ

 (6)
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In this study, software services were adopted. Through the hybrid cloud architecture
of Microsoft Windows Azure, according to the functions of data analysis and data storage,
Azure Active Directory, Azure Blob Storage, Azure Databricks, and Azure SQL Data
Warehouse were established for data integration. They provided users with structured
tasks such as an access verification security mechanism, data access, and data analysis and
return. Figure 3 shows an architectural diagram of the cloud data analysis system.
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2.7. Experimental Equipment

There were three types of equipment utilized for gathering information on physiologi-
cal characteristics. The first was the MP150, manufactured by the Biopac Student Lab in
the United States. The second was the wGT3X-BT wrist monitor produced by ActiGraph.
Lastly, there is the Apple Watch Series 5, developed by Apple Inc., Cupertino, CA, USA.
Among these, the MP150 by the Biopac Student Lab boasts multi-channel physiological
recording capabilities. It can capture and record physiological signals like brain waves,
electrocardiograms, electromyography, and electrooculograms. These signals can be ana-
lyzed using the jointly developed AcqKnowledge®5.0 software, either within the software
itself or via externally developed software (refer to Figure 4). The wGT3X-BT wrist monitor
is designed for monitoring daily activities and sleep-related physiological data, including
movement thresholds and turnover patterns. The accompanying ActiLife 6.0 software
facilitates the analysis and normalization of movement patterns and intensity during wear.
It can also assess the turnover frequency and swing during sleep, yielding results such
as sleep cycles, latency, and sleep efficiency (as depicted in Figure 5). The Apple Watch
Series 5 is a commercial-grade smart wearable with features like news updates, conference
alerts, and message notifications. It incorporates advanced optical technology for heart rate
recording using the optical volume variation method (Figure 6).
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2.8. Data Identify

This study validated the electrocardiogram (ECG) data, which were measured through
the Biopac MP150 system. A two-stage data filtering process was employed to prevent
the detection of motion artifacts caused by abnormal heartbeats. For each dataset, the
R-R interval was compared to the average of the adjacent data points. If the average
difference exceeded 30%, the data point was excluded. Subsequently, the remaining data
points underwent a comprehensive average analysis, and a comparison was made with
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the remaining dataset. If the difference also exceeded 30%, the previous data exclusion
process was repeated iteratively until the overall average of the remaining data points no
longer differed by more than 30%. If the percentage of excluded data points exceeded 5%
of the total dataset, the data for that particular user were entirely excluded and not used
for analysis [51,52].

2.9. Experiemental Environment

In this study, we arranged a designated sleeping area for conducting the sleep experi-
ments. The sleeping environment entailed a dimly lit room with black flannel fabric devoid
of lighting fixtures. A bed measuring 1.8 m in length and 0.6 m in width was provided
within the sleeping space. Adjacent to the bed, a Biopac MP150 apparatus was positioned
to gather brain wave and electrocardiogram data, as illustrated in Figure 7.
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3. Results and Discussion
3.1. Analysis Results and Discussion of Sleep Data

As shown in Figure 8, the total duration of the sleep analysis was 60 min, and statistical
analysis was conducted once every 30 s. A total of 120 pieces of data were obtained,
which captured the results of Delta, Theta, Alpha, and Beta brain waves, as well as the
accelerometer Gyro. The horizontal axis of the graph was divided into 120 intervals, with
each interval representing 30 s of physiological information.
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Figure 9 shows the HRV analysis results during sleep. Sleep was divided into 11 sections.
The first 3 min constituted the baseline, followed by 10 min as the first section. Then, each
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analysis street continued the previous section of data for 5 min and overlapped for the next
5 min until the end of sleep, for a total of 11 units. The findings revealed that during the initial
10 min of sleep, sympathetic nerve activity surpassed parasympathetic nerve activity. However,
a shift occurred approximately 30 min into sleep, with the parasympathetic nerve activity
beginning to outweigh the sympathetic nerve activity. When the sympathetic nerve activity
was higher, the subject’s physiological condition was more focused and excited, meaning that
they had not yet entered sleep at this time. On the contrary, the higher the parasympathetic
nerve activity was, the closer became is to the situation during sleep. The analysis results
demonstrated a positive correlation between brain waves, heartbeat, and gyroscope during
sleep. As the sleep duration extended, the analysis outcomes for heart rate variability post-sleep
exhibited a greater sense of relaxation. Moreover, there was an elevation in the presence of
Delta waves in the brain wave patterns, coupled with a decrease in the recorded gyroscope
response when the body underwent turnovers.
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3.2. Cloud Data Analysis System

The cloud sleep staging system quantified the brain wave, heartbeat, and gyro infor-
mation through the sleep data of previous research, converted them into a database, and
then introduced machine learning to establish a new data analysis model. The function of
uploading background data was added by extending the mobile phone Sleep Assist App,
developed in the early stages of this research. After the user agreed to collect, analyze, and
post-process the physiological data, the data were uploaded and returned to the user’s app
through online system analysis so that the user could obtain their sleep status results. As
shown in Figure 10, the function flow of the sleep aid app and cloud analysis was followed.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 14 
 

during the initial 10 min of sleep, sympathetic nerve activity surpassed parasympathetic 
nerve activity. However, a shift occurred approximately 30 min into sleep, with the para-
sympathetic nerve activity beginning to outweigh the sympathetic nerve activity. When 
the sympathetic nerve activity was higher, the subject’s physiological condition was more 
focused and excited, meaning that they had not yet entered sleep at this time. On the con-
trary, the higher the parasympathetic nerve activity was, the closer became is to the situ-
ation during sleep. The analysis results demonstrated a positive correlation between brain 
waves, heartbeat, and gyroscope during sleep. As the sleep duration extended, the analy-
sis outcomes for heart rate variability post-sleep exhibited a greater sense of relaxation. 
Moreover, there was an elevation in the presence of Delta waves in the brain wave pat-
terns, coupled with a decrease in the recorded gyroscope response when the body under-
went turnovers. 

 
Figure 9. HRV analysis data results. 

3.2. Cloud Data Analysis System 
The cloud sleep staging system quantified the brain wave, heartbeat, and gyro infor-

mation through the sleep data of previous research, converted them into a database, and 
then introduced machine learning to establish a new data analysis model. The function of 
uploading background data was added by extending the mobile phone Sleep Assist App, 
developed in the early stages of this research. After the user agreed to collect, analyze, and 
post-process the physiological data, the data were uploaded and returned to the user’s 
app through online system analysis so that the user could obtain their sleep status results. 
As shown in Figure 10, the function flow of the sleep aid app and cloud analysis was 
followed. 

 
Figure 10. Sleep Assist App expands the functions of cloud analysis. 

Figure 10. Sleep Assist App expands the functions of cloud analysis.



Appl. Sci. 2023, 13, 9921 11 of 14

Figure 11 shows the HRV analysis results of the heartbeat data uploaded by the users.
The data analysis results demonstrate that the results of professional physiological signal
equipment acquisition analyses were similar to the analyses of wearable devices after
sleeping for 15 min until waking up.

According to the HRV analysis results in Figures 9 and 11, the tendency of the subjects
to relax grew stronger and stronger at 10–20 min, and after sleeping for 45 min, the relaxed
states began to slowly end and the subjects gradually returned to an awake state. The
analysis results of the professional physiological signal equipment showed sensitivity,
with evident relaxation and excitement alternating in the trend, while the analysis results
of physiological signals captured by wearing devices changed slightly and tended to be
relaxed. The analysis results of intelligent wearable devices were inconsistent with the
results of professional physiological signal acquisition equipment before waking up and
falling asleep for 20 min. Still, they were highly compatible with the analysis results of
professional physiological signal equipment after sleeping for 20 min.
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4. Conclusions

Prior research has shown that collecting physiological data via polysomnography can
lead to wearer discomfort during sleep [53–55]. In light of this, our study introduces an
algorithmic analysis module tailored for the interpretation of physiological data harnessed
from intelligent wearable devices. This module harmonizes the acquired physiological
data from smart wearables with closely correlated data derived from polysomnography,
thereby delineating sleep stages. The primary focus of this investigation revolves around
the enhancement of sleep quality, encompassing the following key facets:

1. A novel sleep state algorithm is proffered for interpreting sleep stages using physio-
logical signals from smart wearable devices. The primary objective is to mitigate the
reliance on conventional physiological signal acquisition instruments that necessitate
direct physical contact with the body.

2. Through a comprehensive analysis of cloud-based databases and the uploading of
personalized physiological data, our study presents an iterative updating mechanism
for personalized and precise sleep algorithms. Each set of individual physiological
data is subjected to a secondary analysis compared to the original dataset, facilitating
the calibration of individual physiological data algorithms. These refinements con-
sider variations in physiological markers during periods of inactivity as well as the
frequency of bodily movements.

3. Our research extends beyond prior endeavors in dynamic sleep-inducing illumina-
tion [50,56–58], aiming to minimize undue physiological data acquisition and re-shape
the paradigm of physiological data analysis from smart wearable devices. Prospective
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work entails utilizing physiological data harnessed by wearable devices to conduct
sleep state analyses, enabling refinements to dynamic sleep-inducing illumination,
and amplifying users’ sleep efficiency.
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