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Abstract: Briquetting is considered one of the pre-treatment methods available to produce raw
materials of uniform size and moisture content that are easy to process, transport, and store. The
quality of briquettes in terms of density and strength depends on the physical and chemical properties
of the raw material and the briquetting conditions. However, determining briquette quality is
difficult, very costly, and requires long laboratory studies. In this paper, an easy, inexpensive, and
fast methodology based on machine learning for the determination of quality parameters of briquette
samples is presented. Compressive resistance, one of the most important briquette quality parameters,
was estimated by machine learning methods, considering particle size, material moisture, applied
pressure value, briquette density, shatter index, and tumbler index. Extra Trees, Random Forest, and
Light Gradient Boosting regression models were used. The best estimate is seen in the Extra Trees
regression model. The R2 and MAPE values are 0.76 and 0.0799, respectively.

Keywords: briquetting; machine learning; compressive resistance; groundnut shells; quality of briquette

1. Introduction

Biomass is a renewable energy source that has garnered substantial attention in both
developing and developed countries as a source of energy. The disadvantages of biomass
energy, however, come from the competition between energy crops and food crops for
cultivable land, which is one of the fundamental obstacles to its use. A solution to this
issue can be found by using agricultural residues for the generation of energy as a means
to solve this problem. Thus, the waste problem encountered with the conversion of waste
into energy will be reduced [1,2]. A high amount of biomass energy can be generated from
agricultural residues in most developing countries, however, exploitation of these sources
in an efficient manner for energy generation is uncommon as far as energy generation from
agricultural residue is concerned. The agricultural waste that is currently being generated
is either burned instantly without any optimization of energy efficiency or control of air
pollution. Furthermore, it may release greenhouse gases and damage surface waters due to
runoff caused by decomposition on farmland or processing sites [3,4].

The direct use of raw biomass material can cause problems during storage, transporta-
tion, and processing, so various forms of biomass can be converted into secondary fuels
with better qualities than the original material through a range of techniques. One of these
techniques is biomass condensation [5,6].

The densification of biomass involves the compression of the biomass into briquettes
that are up to ten times denser than the original biomass material. Biomass bulk and
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energy density per unit volume increase as a result of this type of processing. A reduction
in storage requirements, an improvement in transportation efficiency and a reduction
in particulate emissions per unit volume of material can be achieved in this manner. In
addition, it provides uniform feed to industrial and domestic equipment, such as rural
stoves, gasifiers, and boilers. In general, fuel briquettes have superior energy properties
than raw materials, including higher density, higher calorific value (particularly per unit of
volume), and lower moisture content [7,8].

The fuel briquettes should burn for the longest amount of time feasible and should not
disintegrate or crumble when being transported, stored, or stacked. These desired qualities
are dependent on the briquettes’ quality. Briquette quality is significantly influenced by the
physical and mechanical characteristics that define briquette durability. Throughout the
manufacturing process, elements including pressure, temperature, particle size, binding
ratio, and moisture content have a considerable impact on briquette quality [8,9].

The quality of the briquettes obtained are determined with the help of tests carried out
in the laboratory according to the physical and mechanical properties of the briquettes [10].
Considering that there are too many variables affecting the quality parameters of the
briquettes, the measurement processes to be carried out in laboratory conditions involve an
expensive and laborious process, as well as being very time-consuming and labor-intensive.
At this time when energy, labor, and time are very important and expensive, non-traditional
methods can be used instead of experimental methods to accurately predict these desired
properties. In cases where it is difficult to measure in terms of time and cost, estimation
with machine learning methods is one of the methods recently used. Many studies in the
literature indicate that machine learning methods are efficient in parameter estimation with
high accuracy and the least deviation [11].

The use of the artificial neural network (ANN) technique could be a worthwhile idea due
to its high accuracy in predicting the quality performance of briquettes in a variety of biomass
energy conversion processes due to the high accuracy this technique offers. The ANN has
emerged as one of the most efficient, rapid, and accurate problem-solving methods in recent
years because of its ability to establish complex relationships between input and output values
even when there are no physical relationships involved and no system nonlinearities present.
A multi-layer feed-forward neural network has also been identified as a promising alternative
to present statistical techniques for data fitting and functional approximations [12,13]. Over
the last ten years, the application of ANN in mechanical engineering has been discussed, and
its potential uses are beginning to gain more attention.

As a result of the literature studies, it has been determined that the use of ANN in
renewable energy studies has become widespread in recent years and the research on these
issues has increased rapidly [14–31]. However, studies on briquetting/pelletizing and their
quality in biomass energy with ANN are quite new and few. The ANN structure combines
and deduces the impact of the process element on the output function to simulate linear and
non-linear systems. In contrast to complex models that were physically related, it regarded
a quick and easy way to anticipate the performance of various processes [20]. Kumar et al.
developed an ANN model to predict the performance of millet bran briquettes [11]. With
the capacity of the developed multilayer ANN, the effects of moisture content, temperature,
and applied pressure on density, durability, and impact strength were estimated. At the end
of the study, it was emphasized that the physical parameters were estimated efficiently with
high accuracy and the least deviation. Machine learning is mostly used to anticipate the
production of renewable energy sources. Making predictions using historical data is one of
the operations of artificial intelligence [15]. Yatim et al. created new models based on the
final analysis using linear regression and artificial neural network (ANN) to predict biomass
waste’s higher heating value. The study found that ANN is one of the most applicable and
widely used software in the field of energy from waste conversion [17]. Kartal and Özveren
emphasized that in their study, the ANN model provided slightly better performance than
the Adaptive Neuro-Fuzzy Inference System (ANFIS). The results show that the developed
ANN model is a useful tool to obtain the desired torrefied biomass [18]. In a study by
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Fracik et al. [32] ANN was used to determine the relationship between individual parame-
ters of the briquette production process. They designed a decision support system in the
form of a web application to be opened in a web browser that can be used on all kinds
of devices and is modular, with the help of ANN to allow modification and expansion of
the application in the future. Zafari et al. [33] reported that the relationships between the
variables related to the density of the biomass pellets are very complex and non-linear,
which makes it almost impossible to develop a single, general, and accurate mathematical
model, and that one of the most suitable methods for solving such problems is intelligent
methods. The ANN model was determined to have a higher predictive ability than the
statistical model. As a result, they announced that a properly trained neural network can
be used to predict the effect of an input variable on pellet density. Mungale et al. [34]
presented a model formulation for the briquette-making process by analyzing the Total
Briquette Weight after mixing. The entire weight of the briquettes after mixing is taken into
account in the model, along with optimization, sensitivity, reliability, and ANN simulation.
Genetic algorithms (GA) and artificial neural networks (ANNs) were effectively employed
by Shankar et al. [35] to comprehend and improve an extrusion process. It is emphasized
that the work carried out shows how the combination of RSM and GA can be successfully
used for precise optimization of extrusion process variables within experimental limits.

For a better knowledge of the extrusion palletization process, they combined response
surface methodology (RSM) and GA in their investigations. In another study, Mancini et al. [36]
studied a methodology based on the classification of pellet spectra using machine learning
techniques, which can be used along the entire supply chain for a rapid and cost-effective
assessment of pellet quality. They examined the results of many changes proposed to lessen
the scattering effect, which is a well-known issue with near-infrared data and trained various
machine learning algorithms on real-world data to validate the methodology.

Determining the quality of briquettes, which have gained popularity among other
biofuels in recent years due to their low storage costs and excellent combustion efficiency and
monitoring them throughout the entire supply chain is a very challenging, costly, and critical
issue. This study, aims to determine the compression resistance, which has an important
place among briquette quality parameters, by using machine learning techniques for fast and
cost-effective determination instead of costly and time-consuming laboratory research.

2. Materials and Methods
2.1. Briquetting Procedure

The study was carried out at the Akdeniz University Vocational School of Technical
Sciences, Department of Machinery. All of the trials in this study used groundnuts that had
been gathered in 2022 from neighborhood farmers in Mersin’s Anamur area. In order to
obtain the desired moisture content values for the groundnut shells collected for briquetting,
the shells were sun dried under normal conditions according to EN 14774-1. Dry groundnut
shells were briquetted using a prototype PTO-driven mobile hydraulic piston briquetting
machine with a briquette pressure range of 0–190 MPa, which included a crusher and
grinder (Figure 1). The main steps of briquetting are given in Figure 2.
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Figure 2. The main steps of briquetting.

The process of briquetting did not require the use of any binder. The briquetting
process was carried out by compressing the raw material with an average moisture content
of 6.44% and a particle size of 3.64 mm at an average pressure of 180 MPa and briquettes
with a diameter of 55 mm and a length of 45 to 50 mm were produced (Figure 3).
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2.2. Experimental Measurements of Briquettes Quality

The moisture content of the briquettes was measured according to the European
standard EN 13183-1 and was determined to be 6.44%.

The stereometric method, which is based on measuring the dimensions (such as
diameter—55 mm and length—45 of 50 mm) and allowing the briquettes to stay dry, was
used to calculate the density. A digital caliper gauge was used to measure the diameter and
height of the briquettes in two perpendicular directions (0.01 mm), and a digital balance,
accurate to 0.001 g, was used to measure the mass of the briquettes.

ρ =
m(

π.d2/
4
)

.l
(1)

where ρ is the density of the briquette (kg m−3), m is the mass of an individual briquette (kg),
and d is the diameter of the briquette (m).

Compression tests were carried out according to ASTM E9-89, taking into account some
aspects of UNE EN12504-1. A universal testing machine YKM-C205 of 3 kN (minimum load
resolution of 0.001 N and data sampling rate of 8 kHz) consisting of two compression plates
was used, applying a load at a constant application rate of 5 mm min−1 in accordance with
the standards [8]. The compressive resistance of the fuel briquettes was determined as N.

The fuel briquette Tumbler index and Shatter index were evaluated using ASTM D
440-86 and ASAE S269.4 standards, respectively.
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In the tumbler resistance test, the fuel briquette samples were weighed for each
replicate and placed in the test machine, and then the fuel briquettes were rotated in the
drum at 40 min−1 for 3 min. After the tumble was completed, the fuel briquettes were
removed from the testing machine and weighed again. Tumbler resistance was determined
as the percentage weight lost during the test.

A shatter index is defined as the percentage of weight lost as a result of fractures.
During the test, each briquette was dropped on a concrete floor 10 times from a height of
one meter. Prior to and following the test, each briquette was weighed. According to the
weight loss recorded during the drop test, the shatter index is calculated as a percentage.
The particle sizes of the raw material obtained by crushing and grinding the peanut shells
were determined by sieve analysis.

2.3. Data Collection

The properties of the briquettes obtained from groundnut shells and the results of
some quality tests constitute the dataset. Here, the input parameters include density,
moisture content, pressure, particle size, shatter index, and tumbler index. The compressive
resistance would be the results of the models. The statistical information of this dataset is
given in Table 1.

Table 1. Statistical information of the data used in this study.

Density (kg m−3) Moisture Content (%) Pressure (MPa) Particle Size
(mm)

Shatter Index
(%)

Tumbler Index
(%)

Compressive
Resistance (N)

count 270.00 270.00 270.00 270.00 270.00 270.00 270.00
mean 1125.08 6.44 180 3.64 94.08 88.08 3348.78

std 152.79 1.80 10.02 1.51 3.87 3.91 722.60
min 731.15 4.22 170 1.78 84.28 77.98 1964.66
25% 1009.16 4.22 170 1.78 91.38 85.25 2826.33
50% 1125.23 6.48 180 3.66 94.96 88.08 3304.27
75% 1227.59 8.63 190 5.47 97.24 90.974 3871.97
max 1493.01 8.63 190 5.47 99.99 98.95 5017.30

2.4. Machine Learning Models

Machine learning is the modeling of systems that draw conclusions from data using
computational mathematical and statistical methods. Various machine learning algorithms
were used to model the experimental data collected. The machine learning neural network
diagram is given in Figure 4. To estimate the compressive resistance of briquettes, which is
an important parameter of their quality, we employed Extra Trees, Random Forest, Light
Gradient Boosting, Gradient Boosting, Extreme Gradient Boosting, Decision Tree, Linear
Regression, Ridge Regression, AdaBoost, and K-Neighbors machine learning (ML) methods.
The dataset obtained from the experimental data was divided into two groups as training
(70%) and testing (30%). Random Forest, Extra Trees, and Light Gradient Boosting machine
learning algorithms are modeled on the training data in Python programming language.
Test data were used to evaluate the model results. The schematic view of the machine
learning-based prediction is given in Figure 5.

2.4.1. Random Forest

The Random Forest method, an ensemble-based classifier developed by Breiman [37],
is frequently used in classification and regression problems. In the Random Forest method,
which is an integrated algorithm of the bagging method, the aim is to combine the decision
of a set of classifiers through weighted or unweighted voting [38]. The Random Forest
method is a machine learning algorithm employed to solve regression and classification
tasks, which aggregates the results of several decision trees that are generated randomly.

2.4.2. Extra Trees

The Extra Trees method is a relatively new machine learning technique and was
developed as an extension of the random forest algorithm and is less likely to exceed a
dataset. The extra tree uses the same principle as the Random Forest and uses a random
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subset of features to train each base estimator. Each regression tree is trained by Extra Trees
using the whole training dataset. On the other hand, Random Forest trains the model using
a bootstrap replica. However, it randomly picks the best feature and corresponding value
to divide [39].
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2.4.3. Light Gradient Boosting

Light Gradient Boosting is an improved decision tree-based gradient learning frame-
work. This model, an incremental learning framework based on decision trees and the
empowerment principle, is relatively new. The key distinction between it and the XGBoost
model is the use of histogram-based methods to quicken training, use less memory, and
employ a leaf-based growth approach with depth limitations [40].

2.5. K-Fold Cross-Validation

Cross-validation is a useful technique for choosing the best model when there are little
available data. Cross-validation offers a more reliable estimate of the model’s performance
on unknown data, which helps prevent overfitting. Cross-validation is a more data-efficient
method than conventional validation procedures since it enables the use of all the available
data for both training and validation. The most common of the cross-validation methods
is the K-Fold cross-validation method. In the K-Fold cross-validation method used in the
study, the data are randomly grouped and divided into “k” subsets. One of them is used
for testing and the remaining “k − 1” is used for training. This process is repeated “k”
times. The average of the results determines the accuracy of the method [41]. The K-Fold
cross-validation diagram is shown in Figure 6.
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2.6. Model Evaluation

In a machine learning study, the model’s performance is enhanced through optimiza-
tion of the parameters according to the dataset. Four commonly used statistical methods
were used to evaluate the prediction accuracy of the models. These methods are the coeffi-
cient of determination (R2), root mean square error (RMSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE), defined as Equations (2)–(5) [43]. R2 indicates
how well the independent variable x explains the dependent variable y in a regression
model. The fact that the R2 value tends toward 1 when the variables are correlated lin-
early shows that the independent factors account for the majority of the variation in the
dependent variable. RMSE is a quadratic metric used to quantify the error magnitude of
a machine learning model. It is usually employed to evaluate the discrepancy between
the predicted and actual values, i.e., the distance between them. RMSE is calculated as the
square root of the average of squared prediction errors, representing the standard deviation
of the prediction errors. MAE measures the differences in errors between matched obser-
vations that express the same phenomenon. Examples of Y against X include contrasts
between predicted and observed data, subsequent time and starting time, and one measur-
ing technique and another measurement technique. MAPE is often used as a loss function
in regression problems and model evaluation because of its very intuitive interpretation of
relative error.

R2 =
∑n

i=1
(
Yi −

ˆ
Yi
)2

∑n
i=1
(
Yi − Yi

)2 (2)

RMSE =

√
1
n

n

∑
i=1

(
Yi −

ˆ
Yi
)2 (3)

MAE =
1
n

n

∑
i=1

∣∣Yi −
ˆ
Yi
∣∣ (4)

MAPE =

(
1
n

n

∑
i=1

∣∣Yi −
ˆ
Yi
∣∣

|Yi|

)
∗ 100 (5)

where Y is the actual value,
ˆ
Y is the predicted value, Y is the mean of the actual value, and

n is the number of samples.

3. Results and Discussion

The determination of briquette quality and monitoring them throughout the whole
supply chain is a highly difficult, expensive, and crucial issue. Briquettes have become
more and more popular among other biofuels in recent years due to their low storage
costs and excellent combustion efficiency. In this study, machine learning techniques were
used to quickly and inexpensively assess compression resistance, which is one of the key
briquette quality factors, as opposed to expensive and time-consuming laboratory research.
The model evaluation used to verify the data obtained by Extra Trees, Random Forest and
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Light Gradient Boosting methods with experimental data is given in Table 2. When the
MAPE and R2 values are examined, the best result among the three models is obtained from
the Extra Trees model. This model achieved the highest R2 value of 0.7595. It is expected
that this value will be close to 1.

Table 2. Model evaluation parameters of machine learning models.

Regression Model R2 MAPE MAE RMSE

Extra Trees 0.7595 0.0799 284.0107 368.1077
Random Forest 0.7287 0.0845 300.6592 390.9278

Light Gradient Boosting 0.6838 0.0922 328.6430 422.0057
Regression Model R2 MAPE MAE RMSE

In the validation of the model, the 10-fold cross-validation method was used, and the
average value of the results obtained was considered. The K-Fold validation results for all
three models are given in Table 3. When the table is examined, it is seen that the standard
deviation (std) values of R2 and MAPE are low. This is true for all three models.

Table 3. K-Fold validation result of machine learning models.

Extra Trees Random Forest Light Gradient Boosting

Fold R2 MAPE R2 MAPE R2 MAPE

0 0.7610 0.0843 0.7346 0.0873 0.6932 0.0953
1 0.7315 0.0809 0.7042 0.0851 0.6792 0.0924
2 0.7715 0.0829 0.7286 0.0902 0.7052 0.0946
3 0.7735 0.0810 0.7627 0.0852 0.7150 0.0927
4 0.7262 0.0855 0.6983 0.0902 0.6555 0.0976
5 0.7769 0.0777 0.7573 0.0812 0.6903 0.0911
6 0.7500 0.0826 0.7098 0.0871 0.6541 0.0961
7 0.7714 0.0733 0.7232 0.0783 0.6892 0.0865
8 0.7824 0.0715 0.7456 0.0775 0.6764 0.0880
9 0.7500 0.0791 0.7225 0.0835 0.6797 0.0882

Mean 0.7595 0.0799 0.7287 0.0845 0.6838 0.0922
Std 0.0184 0.0043 0.0206 0.0042 0.0183 0.0036

The graph of the measured compressive resistance values of the briquettes produced
from peanut shells and the values predicted by the Extra Trees model, which gives the best
results, are given in Figure 7. As a result of the estimation made with the test data, the best
result was obtained with the value of R2 = 0.754.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 12 
 

6 0.7500 0.0826 0.7098 0.0871 0.6541 0.0961 
7 0.7714 0.0733 0.7232 0.0783 0.6892 0.0865 
8 0.7824 0.0715 0.7456 0.0775 0.6764 0.0880 
9 0.7500 0.0791 0.7225 0.0835 0.6797 0.0882 

Mean 0.7595 0.0799 0.7287 0.0845 0.6838 0.0922 
Std  0.0184 0.0043 0.0206 0.0042 0.0183 0.0036 

The graph of the measured compressive resistance values of the briquettes produced 
from peanut shells and the values predicted by the Extra Trees model, which gives the 
best results, are given in Figure 7. As a result of the estimation made with the test data, 
the best result was obtained with the value of R2 = 0.754. 

 
Figure 7. Prediction errors for Extra Trees model. 

In Figure 8, the estimation errors are given for the Random Forest model, and the R2 
value calculated on the test data for this model, which is the second-best model for the 
estimation of compressive resistance, was 0.712. I has been stated in the literature that the 
Random Forest model gives good results [39,44,45]. 

 
Figure 8. Prediction errors for Random Forest model. 

In this study, it is the Light Gradient Boosting model with an R2 = 0.670 value that 
gives the third best result and is acceptable for strength estimation. The prediction error 

Figure 7. Prediction errors for Extra Trees model.



Appl. Sci. 2023, 13, 9826 9 of 12

In Figure 8, the estimation errors are given for the Random Forest model, and the R2

value calculated on the test data for this model, which is the second-best model for the
estimation of compressive resistance, was 0.712. I has been stated in the literature that the
Random Forest model gives good results [39,44,45].
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In this study, it is the Light Gradient Boosting model with an R2 = 0.670 value that
gives the third best result and is acceptable for strength estimation. The prediction error
values of this model are given in Figure 9. As a result, it can be said that all models demon-
strated significant non-linear mapping generalization abilities and are useful for predicting
compressive resistance. The optimization of hyperparameters or experimentation with al-
ternative models may be attempted to improve the machine learning model. The variation
in briquette parameters is influenced by both the experimental conditions and the choice of
raw material.
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4. Conclusions

To determine the quality parameters of briquettes, measurements with a large number
of samples are required. Measurements with a large number of samples are time consuming,
costly, and labor-intensive. It also introduces a number of measurement errors. Identifying
such features with machine learning inspires larger datasets, attributes, and algorithms for
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further study, as well as faster and more reliable results for industrial applications such as
discrimination, ranking, and prediction processes.

In this study, 10 different machine learning (ML) methods were used to estimate the
compressive resistance of briquettes depending on briquette properties such as density,
moisture content, pressure, particle size, shatter index, and tumbler index. This study was
carried out on the three models that gave the best results from these methods. These models
were Extra Trees, Random Forest, and Light Gradient Boosting. The R2 values obtained
from the models were 0.7595, 0.7287, and 0.6838, respectively. A 10-fold cross validation
was applied to all three models and the average value was taken. The MAPE values of the
models were 0.0799, 0.7287, and 0.0922, respectively. As a result of the study, acceptable
results emerged from the models obtained. The use of machine learning models has been
found to be a preferable method to reduce measurement time and cost. Developing various
machine learning models for different raw materials can lead to improvements.

Author Contributions: Conceptualization, A.K. and O.K.; methodology A.K. and O.K.; validation,
A.K. and O.K.; formal analysis, A.K. and O.K.; data curation, O.K.; software, A.K.; writing-original
draft preparation, A.K., O.K. and B.S.Z.; writing-review and editing, A.K., O.K. and B.S.Z.; visualiza-
tion, A.K.; super-vision, A.K. and O.K.; project administration, A.K. and O.K. All authors have read
and agreed to the published version of the manuscript.

Funding: Funded by National University of Science and Technology Polytechnic Bucharest through
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