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Abstract: Modern deep neural networks (DNNs) have shown promising results in brain studies
involving multi-channel electroencephalogram (EEG) signals. The representations produced by the
layers of a DNN trained on EEG signals remain, however, poorly understood. In this paper, we
propose an approach to interpret deep representations of EEG signals. Our approach produces spatio-
spectral feature images (SSFIs) that encode the EEG input patterns that activate the neurons in each
layer of a DNN. We evaluate our approach using the PhyAAt dataset of multi-channel EEG signals
for auditory attention. First, we train the same convolutional neural network (CNN) architecture
on 25 separate sets of EEG signals from 25 subjects and conduct individual model analysis and
inter-subject dependency analysis. Then we generate the SSFI input patterns that activate the layers
of each trained CNN. The generated SSFI patterns can identify the main brain regions involved
in a given auditory task. Our results show that low-level CNN features focus on larger regions
and high-level features focus on smaller regions. In addition, our approach allows us to discern
patterns in different frequency bands. Further SSFI saliency analysis reveals common brain regions
associated with a specific activity for each subject. Our approach to investigate deep representations
using SSFI can be used to enhance our understanding of the brain activity and effectively realize
transfer learning.

Keywords: brain–computer interface; EEG; spatio-spectral feature image; deep neural network;
convolutional neural network; deep representation

1. Introduction

Brain–computer interface (BCI) systems are becoming increasingly popular. The ease
of recording electroencephlogram (EEG) signals has facilitated devising and launching new
BCI systems for day-to-day applications, ranging from medical uses [1] to gaming [2,3].
However, BCI systems that are trained on EEG signals from one subject alone might not
perform well when applied to other subjects. This inability to generalize well is commonly
ascribed to individual differences in the brain folding structure, which would result in EEG
signals that follow different distributions [4]. Consequently, BCI systems might need to be
re-trained on each future subject, which requires collecting and processing new EEG data
and is a time-consuming activity. Several frameworks that use the principles of transfer
learning have been proposed to calibrate pre-trained EEG-based systems, including filter
banks [5], adaptive feature extraction [6], transfer component analysis [7], common spatial
pattern [8–10], regularized covariance matrix [8,11], canonical correlation analysis [12], and
convolutional neural networks (CNNs) [13]. The time-consuming nature of the calibration
process remains a major obstacle, and hence, strategies have been proposed to reduce the
calibration time on new subjects [11,14].

Transfer learning and re-calibration in EEG studies can be improved by identifying
suitable invariant features in EEG signals [15], i.e., EEG patterns that are common across
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subjects. However, unlike conventional data such as images of physical objects, speech
signals, or text, raw EEG signals do not offer an obvious choice of interpretable features.
Common options to define EEG features include spectral domain approaches [16]. By
including EEG signals from multiple recording sites, richer spatio-spectral features that
account for the spatial activity of the brain can also be defined, as in [17]. Given a set of
existing features, new sets of derived features can be defined by adding further processing
stages. Using this angle, the resulting processing pipeline can be seen as a system that
produces multiple representations of the input EEG signals. Such processing pipelines can
be hand-crafted or learned by training a model of a predefined architecture.

Deep neural networks (DNNs) are trainable processing pipelines and have become a
popular machine learning approach in neuroscience and brain studies. Systematic reviews
that focus on the application of DNNs to brain studies can be found in [18–21]. These
reviews discuss the main predictive tasks where DNNs are commonly used, examine their
internal architecture, and provide a comparison of the performance of different DNN
models. An analysis of the reviewed literature reveals that the majority of the existing
proposals consider CNN architectures that take as an input one-dimensional data structures,
such as temporal EEG segments or spectral domain representations of EEG signals, or
two-dimensional data structures, for instance, spectrograms or scalograms. In a limited
number of cases, spatio-spectral inputs are considered. For instance, spatio-temporal
representations of EEG signals were used as input in [22,23], who used multi-channel EEG
signals as the input of their proposed DNN [24].

As processing pipelines, DNNs internally produce multiple representations of their
input, which are known as deep representations. A small fraction of the literature reviewed
in [18], where DNN approaches were used in brain studies, considered model inspection,
which is needed to interpret the sequence of processing stages in a DNN pipeline. For
instance, [23,25] analyzed the weights of a DNN trained on EEG signals. Occlusion and
activation maximization have also been used, for instance, in [26–31]. Specifically, in [26],
spectral and spatial information of EEG signals were combined in a three-channel RGB
image and used for training a DNN, and deep representations were analyzed. Finally, some
studies have used transfer learning approaches based on deep representations for domain
adaptation [32,33]. Despite these efforts, deep representations of EEG signals remain poorly
understood due to the lack of interpretability. Improving our understanding of EEG deep
representations would be useful not only for explaining the decision process of a trained
model, but also for effectively realizing transfer learning and in general gaining insight into
the mechanisms of the brain. In this paper, we propose an approach for analyzing deep
representations of EEG signals. We base our approach on the common assumption that
different frequency bands in EEG signals and brain areas are associated with different brain
activities. For each deep representation in a DNN, our approach produces a spatio-spectral
feature image (SSFI) which is visualized as a topographic map and identifies the brain areas
and different frequency bands associated with the target deep representation. We evaluate
our approach on DNN models trained on EEG signals from the Physiology of Auditory
Attention (PhyAAt) dataset [34] and in addition carry out an inter-subject dependency
(ISD) analysis to explore generalized representations across subjects [35,36].

This paper is organized as follows. Section 2 introduces the PhyAAt dataset, which
we use to evaluate our proposed approach. In Section 3, we describe the methods used in
this paper, which include generation of SSFIs from multi-channel EEG signals, CNN archi-
tecture definition and training, deep representation analysis, and ISD analysis. Section 4
presents the results from our analysis, and finally, Section 5 includes the conclusions and
a discussion.

2. Dataset

In this study, we use the PhyAAt dataset [34] to evaluate our proposed approach
to analyzing deep representations in DNNs. The PhyAAt dataset provides a collection
of 14-channel EEG signals recorded from 25 healthy subjects (labelled as S1 to S25) who
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underwent a total of 144 trials of an auditory attention experiment. Each trial consisted of
three tasks. First, participants were presented with an audio message reproduced under
different auditory conditions (listening task); afterwards, the participants transcribed the
audio message (writing task), and finally, they enjoyed a resting period before the beginning
of the following trial (rest task).

The experimental auditory conditions included different levels of background noise,
message lengths, and message semanticity, and the transcription of each audio message
was used to define an auditory attention score. An Epoc-Emotiv device [37] was used to
record 14-channel EEG signals from each participant. Electrodes were arranged following
the standard 10–20 EEG electrode placement, the sampling rate was set to 128 Hz, and
the average duration of the complete series of trials for a subject was 40 min. Finally,
the time periods covering a single task were labeled according to the type of task, the
auditory conditions, and the resulting attention score. The required ethical approval for the
experiment was acquired.

3. Methods

We evaluate our approach to analyzing deep representations on DNN models trained
to solve a ternary classification problem. This ternary classification problem is that of
predicting whether a one-second long, 14-channel EEG segment from the PhyAAt dataset
was recorded during a listening, a writing, or a resting task. The implemented prediction
pipeline consists of two stages, as shown in Figure 1. First, one-second long 14-channel
EEG segments are extracted and transformed into SSFI arrays. Then, each SSFI array is
used as an input to a trained CNN model, which labels the segment as either listening,
writing, or resting.

Figure 1. Prediction pipeline consisting of an SSFI processing stage followed by a CNN model. Small
windows t1, t2, . . . , tN are extracted from a 14-channel EEG, transformed into SSFI, and then fed into
the CNN model.

In this section, we first define SSFI structures and describe the method that we use to
generate them from multi-channel EEG signals. Then, we present our chosen CNN archi-
tecture and outline how we use the PhyAAt dataset to train and test multiple CNN models
and how we carry out our ISD analysis. Our approach to analyzing deep representations in
terms of SSFIs is finally described.
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3.1. Spatio-Spectral Feature Image Definition and Generation

An SSFI is a set of images representing EEG data in the spatial and spectral domains.
Each image in an SSFI corresponds to a spatio-spectral representation for a single band
of frequencies. In EEG studies, there are well-established frequency bands associated
with particular mental and emotional states of the brain. Accordingly, in this study, we
considered the main EEG frequency bands. Raw 14-channel EEG segments are transformed
into SSFI 3D arrays that represent the spatio-spectral distribution of power. The shape of
the SSFI 3D array is D1 × D2 × D3, where D1 × D2 is the size of a 2D grid representing
the scalp topography and D3 is the number of frequency bands. Preserving the scalp
topography is important in multi-channel EEG studies, as spatially close scalp sites are in
general affected by common brain sources.

Given a multi-channel EEG segment and a set of D3 frequency bands of interest, an
SSFI array is generated as follows. Rectangular grids are used to represent the spatial
density of power within one frequency band and are constructed using spherical-to-polar
coordinate conversion, so that the scalp locations corresponding to the recording electrodes
are associated to one of the grid locations. Based on the power spectral density of each EEG
channel, the power in each frequency band is computed and assigned to the electrode’s
entry in the corresponding rectangular grid. The spatial density of power on the D1 × D2
grid is then obtained by interpolating and extrapolating the values computed from each
electrode, by using a bicubic method adapted from the MNE library [37]. Figure 2 shows
the spatial density of power for a single frequency band on a scalp topography and its
corresponding rectangular grid. By stacking the D3 spatial densities of power, we obtain
the final SSFI array of dimensions D1 × D2 × D3.

Figure 2. Spatial power distribution for a single frequency band on a topographic map and its corre-
sponding SSFI on a rectangular grid. The spatial power distribution is obtained from a 14-channel
EEG segment whose recording electrodes are identified on the topography.

Prior to the generation of SSFI arrays, the 14-channel EEG signals were pre-processed
as follows. First, each EEG channel was filtered with a fifth-order, highpass IIR filter
with cascaded second-order sections and with cut-off frequency of 0.5 Hz. Then, artifacts
were removed using the ATAR (automatic and tunable artifact removal) algorithm de-
scribed in [38], with parameter β = 0.1. After this pre-processing stage, one-second long
(128 samples) segments were extracted, allowing 0.75 s (96 samples) overlap (shift 0.25 s,
32 samples) between consecutive segments.

The power spectral density of each segment channel was obtained using the Welch
method with a Hamming window. Based on the estimated power spectral density, the
power within the following six frequency bands was computed: 0.1–4 Hz (delta, δ), 4–8 Hz
(theta, θ), 8–14 Hz (alpha, α), 14–30 Hz (beta, β), 30–47 Hz (low gamma, γ1), and 47–64 Hz
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(high gamma, γ2). This process resulted in a feature vector F of 84 (6× 14) dimensions,
F ∈ R84, per EEG segment:

F =



Fδ

Fθ

Fα

Fβ

Fγ1

Fγ2

 (1)

where Fi ∈ R14 is the power of the 14 channels of an EEG segment within each band
i ∈ {δ, θ, α, β, γ1, γ2}. A 64× 64 rectangular grid was chosen for the scalp topography,
resulting in a 64× 64× 6 SSFI array. Figure 1 illustrates the process of extracting a sequence
of SSFI arrays from consecutive 14-channel EEG segments from the PhyAAt dataset.

3.2. Neural Network Architecture, Training, and Test

A CNN architecture (Figure 3), consisting of five convolutional layers (CNV), two fully
connected layers (FC), and one output layer with three output units, was used to solve the
proposed ternary classification problem. The number of input channels in this architecture
is six, which corresponds to the number of frequency bands in the input SSFI arrays. Each
convolutional layer consists of a bank of filters of size 3× 3. The first four convolutional
layers are followed by a 2× 2 max-pool layer, batch normalization, and dropout (0.3) layer.
As shown in Figure 3, the first layer (CNV1) has 32 filters and the remaining CNV layers
have 16. The activation function used for the output layer is softmax, whereas for the
hidden layers, it is a rectified linear unit (ReLu) with l2 = 0.01 regularization parameter.
Dropout and L2 regularization are used to reduce the risk of over-fitting.

Figure 3. CNN architecture used for the ternary listening–writing–reading classification task. It
consists of five convolution layers followed by two fully connected layers.

Since individual differences in the brain folding structures can result in participants
producing different EEG distributions [4], we took a subject-specific approach and trained
the proposed CNN architecture on each of the 25 participants separately, which resulted
in 25 trained CNN models. In creating the training and test sets for each subject, we
took into consideration the existing overlap between consecutive EEG segments, as it can
potentially lead to information leak from the training to the test stage. For each subject,
the EEG segments corresponding to the first 100 auditory tasks (first 100 trials) were used
for training, whereas the EEG segments extracted from the remaining trials (i.e., 44) were
used for evaluating the trained CNN models. This serial split of training and testing is
used by taking into consideration the role of time in the design of the experiments in the
PhyAAt dataset and to replicate a scenario where a model is trained on past data and
evaluated in real-time. We used the classification accuracy to quantify the performance of
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the resulting CNN models. The categorical cross-entropy was chosen as a loss function
during training [39] and the Adam (Adaptive Moment Estimation) method was used
during optimization.

In order to understand differences of brain activity for the same task in different
individuals, we carried out an ISD analysis. In ISD analysis, a trained model on one subject
is tested on all the other subjects. For consistency of comparative results, each trained
model is also tested on the data from the same subject, including training and test data
(i.e., SSFI from all 144 trials).

3.3. Deep Representation Analysis

Activation maximization is a common approach to investigating deep representations
in DNNs and consists in identifying the input patterns that activate the neurons in each
trained layer. The input patterns that activate the neurons in a given layer can be interpreted
as those that the layer is focusing on. Therefore, a deep representation can be interpreted
in terms of its corresponding maximization patterns. In problems involving images of
the natural world, such as faces and objects, this approach produces patterns which can
be meaningfully interpreted, such as eyes in a DNN model trained for face recognition,
or wheels in a DNN model trained for object recognition. The application of activation
maximization to problems involving EEG signals is more challenging, as they lack patterns
that posses the interpretability available in images of physical objects, speech signals,
or text.

Our approach to analyzing deep representations in a DNN trained on EEG signals
produces SSFI patterns. In other words, in our approach, deep representations in a DNN
are interpreted by identifying the areas of the brain and the frequency bands that activate
the associated layers. We assume that a processing pipeline transforms multi-channel EEG
signals into SSFI, which are then fed to a trained DNN, similar to the one presented in
Figure 1. Therefore, rather than looking for temporal patterns in EEG signals that activate
the layers of a DNN, our approach looks for spatio-spectral patterns. Given a DNN trained
on SSFIs, activation maximization patterns are generated by feeding random, noisy images
to a trained network and maximizing the activation of a selected deep neuron by updating
the input image using the gradient ascent method [40]. Since our input image is not
a conventional three-channel RGB image, we display a pattern for each input channel
separately. In this study, we train 25 separate CNN models that share the same architecture
on SSFI arrays from multi-channel EEG signals from 25 subjects. Comparing the SSFI
patterns activating each layer allows us to explore which brain areas and frequency bands
are involved in each auditory task for each subject, which can suggest opportunities for
transfer learning and shed light into common and individual brain mechanisms.

A second approach to analyzing a trained DNN is to generate saliency maps [41]. In
this approach, one of the input images is fed to the DNN, and by computing a gradient, a
map is produced that indicates the spatial locations of an input image that are important
for computing the output probability score. Saliency maps are usually overlaid on their
corresponding input image to identify the areas of the image that are useful in producing
the final prediction. Assuming that the input to a DNN consists of SSFIs generated from
multi-channel EEG signals, in this study, we create SSFI saliency maps, which identify
the brain areas that are relevant for each prediction. Specifically, we focus on those SSFI
images from the training set that have the highest probability score for its true class and
we generate averaged saliency maps to identify common brain regions that are associated
with the listening task.

4. Results

In this section, we first present the performance of the CNN model trained on each
subject. Then we use ISD analysis to explore how each model performs on other subjects.
Finally, we present the results of the deep representation analysis.
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4.1. Individual Subject Model

The performance of each CNN model trained on data from each of the 25 individual
subjects is shown in Figure 4. In addition to the random chance level performance (accuracy
of 1/3), the performance of a naive model that builds a prediction based on the majority
class is shown using empty bars. A naive model produces a constant output as it always
predicts the class that has the highest prior probability. Since the time duration taken by
each subject for writing and resting activity varies, the number of feature vectors extracted
from each segments also varies, producing different prior probabilities. In this experiment,
writing segments are longer than listening and resting for all subjects; thus, the writing
class constitutes the majority class and a naive model always predicts the writing class for
each input.

The test performance of every CNN model was found to be better than random
chance. Compared to the naive model, the proposed CNN architecture performs well for
all subjects except for subjects 16 and 17. It is interesting to observe that the same CNN
architecture trained on different individuals performs differently. By optimizing the CNN
architecture for individual subjects, the performance could have been improved. However,
for comparative purposes, CNN models always followed the same architecture shown in
Figure 3.

Figure 5 shows the Receiver Operating Characteristics (ROC) curves plot for all the
models, which results in an average Area Under the Curve (AUC) of 0.86. This indicates
that on average, models were performing well.

Figure 4. Performance of each CNN model trained and tested on the same individual subject. Empty
bars represent the performance of the majority-based model and the black horizontal line represents
the random chance-level performance, i.e., 1/3.

Figure 5. ROC curve of all the 25 CNN models relating true positive rate (TPR) and false positive
rate (FPR) values.
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4.2. Inter-Subject Dependency Analysis

The results of the ISD analysis are shown in Figures 6 and 7. Figure 6 shows a matrix
representing the performance of the CNN models trained on each subject and tested on
all 25 subjects. It is interesting to note that this matrix is not symmetric. Symmetry would
have suggested that the performance of a model trained on subject A and tested on subject
B is similar to the performance of a model trained on subject B and tested on subject A.
It can be observed that compared to other models, the CNN model trained on subject S1
performs well on the other subjects. In contrast, the CNN model trained on subject S19 and
S21 performs poorly on the other subjects. The results from Figure 6 can be summarized in
two other plots, namely the average performance of all the trained models when tested on
data from one single subject, as shown in Figure 7a, and the average performance of each
model when tested on data from other subjects, as shown in Figure 7b. Figure 7b highlights
that the model trained on S1 performs well on data from the other subjects, with a very low
variability in performance. In contrast, Figure 7a indicates that the average performance of
the models trained on every subject but S1 is low, with high variability when tested on data
from S1. The performance of all the models tested on S19 and S21 is consistently higher
than 0.5.

Figure 6. Inter-subject dependency analysis matrix that represents the performance of each CNN
model on every subject.
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(a)

(b)
Figure 7. (a) Average performance of every trained CNN model when tested on one single subject,
where the horizontal axis represents the test subject. (b) Average performance of each CNN model
when tested on all the subjects, where the horizontal axis represents the training subject.

4.3. Deep Representation

A selection of four typical SSFI patterns associated with deep representations in each of
the CNV layers in one of the trained CNN models is shown in Figures 8 and 9. To facilitate
their interpretation, each generated pattern is displayed as six separate topographical
images corresponding to each of the frequency bands that define our SSFI structure.

It is interesting to observe that the SSFI patterns associated with layer CNV1 are
focused on large brain regions in different frequency bands. For example, the first topo-
graphic map in the theta (θ) frequency band (first row, second column) shown in Figure 8a
reveals a comparison between two halves of the brain. More specifically, if the two halves
of the brain exhibit opposite activities in the (θ) frequency band, this particular pattern is
activated, i.e., the respective neuron in the CVN1 layer is activated). As described in [42],
the orientation of a pattern should not be interpreted as fixed. Therefore, the second map
of the first pattern in Figure 8a should be interpreted as a comparison between any two
halves of the brain. Specifically, if any two halves of the brain exhibit opposite activities in
the (θ) frequency band, this particular neuron in CNV1 will be activated. Similar patterns
are seen across filters corresponding to different frequency bands. In general, the patterns
from layer CNV1, also known as low-level features, compare the brain activity between
large regions of the brain. The existing literature that analyzes deep representations, such
as [42], suggests that the generated patterns can have any orientation. This statement
would apply to conventional scenarios, such as those including images of natural objects.
However, SSFIs have a fixed orientation corresponding to a constant topography; hence,
this allows us to interpret SSFI patterns exactly as they are revealed and exclude changes
in orientation. For instance, an SSFI pattern highlighting the left and right halves of the
brain should not be interpreted as any two halves of the brain. The top first map in the
alpha (α) frequency band shown in Figure 8a (first row, third column) reveals that the
associated neuron focuses on the temporal lobe activity, more on the left temporal lobe than
the right. Another example worth observing is the third pattern of the delta (δ) frequency
band (third row, first column). This pattern reveals that the associated neuron is focusing
on the high activity of the frontal side of brain (FC5, F3, AF4, F4, and F8) and the low
activity of the parietal side of brain (P7, O1, T8). In general, similar patterns are seen across
filters corresponding to different frequency bands. In summary, these patterns demonstrate
that layer CNV1 produces low-level features that compare the brain activity between large
regions of the brain. In contrast, low-level features produced by conventional CNN models
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for problems involving data structures such as images of the natural world correspond to
edges and textures.

(a) CNV1-layer

(b) CNV2-layer

(c) CNV3-layer
Figure 8. Selection of typical SSFI deep representation patterns corresponding to four filters at layers
(a) CNV1, (b) CNV2, and (c) CNV3 for subject S5. Each pattern is shown as a row, and consists of six
maps corresponding to each frequency band arranged in columns.
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(a) CNV4-layer

(b) CNV5-layer
Figure 9. Selection of typical SSFI deep representation patterns corresponding to four filters at layers
(a) CNV4 and (b) CNV5 for subject S5. Patterns are shown as rows, frequency bands as columns.

Compared to the SSFI patterns from layer CNV1, in layers CNV2 and CNV3, patterns
are typically focused on very small regions. Layers CVN2 and CNV3 also present SSFIs
that have dead channels. A dead channel is one which produces zero or constant response.
Examples of dead channels are the ones producing the second, third, and sixth maps in
the first pattern (first row) of Figure 8b. In an SSFI pattern, dead channels are useful
for producing features that depend on a subset of frequency bands, while the others are
excluded. For example, the first pattern in Figure 8b shows that the corresponding filter
in layer CNV2 produces an output that uses information from the δ, β, and γ1 frequency
bands only.

This suggests that layers CNV2 and CNV3 produce features that focus on different
frequency bands. Interestingly, the number of dead channels decreases for layer CNV4
and there are almost none in layer CNV5, as shown in Figure 9. This indicates that CNV4
and CNV5 layers do combine features from all the channels in the previous layers, i.e., no
channel is being filtered out. From Figure 9, it can be concluded that layers CNV4 and
CNV5, which produce high-level features, focus on more localized areas of the brain. This
contrasts with the low-level features produced by CNV1, which focus on larger regions.
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To identify the association of brain regions and auditory task in the PhyAAt dataset,
we further computed SSFI saliency maps using the Vanilla and SmoothGrad approaches.
We extracted the top five SSFI arrays of subject S5 that were correctly classified by the
CNN model trained on S5 and produced the saliency maps for each task (listening, writing,
and resting). Saliency maps are shown in Figure 10. Unlike the conventional approach of
displaying saliency maps over input images, Figure 10 displays SSFI saliency maps alone
to highlight the relevant regions of the brain. This is a suitable visualization in our scenario,
since the topography remains constant. Figure 10 reveals that the CNN model under
investigation is looking into roughly the same region of the brain in each task, i.e., listening,
writing, and resting, with slight variations. SmoothGrad saliency maps suggest that during
a listening task, the CNN model focuses more on the right side of the brain.

To identify the common brain regions where each CNN model focuses to produce a
correct prediction, we averaged SSFI saliency maps corresponding the top the 100 SSFI
input arrays. A similar approach was used in [43] to localize the importance of an ECG
signal in a DNN study. The averaged saliency maps during listening tasks for all the
25 subjects are shown in Figure 11, and allow us to identify the region of the brain that each
CNN model is attending to during a listening task. Average saliency maps indicate that
the brain regions associated with listening tasks are different in each subject, which might
explain why models trained on one subject might perform poorly on other subjects [4].
Identifying subjects such that CNN models trained on them use common brain regions
could be useful. Interestingly S1, S2, and S25 exhibit the same region of brain activity, and
so do S3 and S4. A detailed analysis of these patterns could potentially reveal the reason
why a CNN model trained on one subject performs differently on different subjects. This
approach could also allow us to explore the association of brain regions with different
brain activities.

Figure 10. Saliency maps for top five SSFI input arrays for listening (L), writing (W), and resting (R) tasks
that were classified correctly. Saliency maps are generated using (a) Vanilla (b) SmoothGrad approach.
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Figure 11. Average saliency map of listening task for all 25 subjects.

5. Conclusions and Discussion

Modern DNNs have become a popular approach in EEG studies [18–21]. From a
computational point of view, trained DNNs are pipelines that produce multiple representa-
tions of their input, which are known as deep representations. Each deep representation
encapsulates a set of features describing the input. Representations close to the input of
trained DNNs are associated with low-level features, whereas deeper representations close
to the output correspond to high-level features and can identify complex patterns in the
DNN input.

Despite the promising results shown by DNN approaches in EEG studies, our under-
standing of the computational pipelines that they implement remains limited. Understand-
ing DNN pipelines and the deep representations that they produce can be useful. First,
this would allow us to identify which EEG patterns are relevant for a specific prediction,
which could shed light on the brain mechanisms involved. Second, by comparing deep
representations from DNNs trained on EEG from different individuals, we can identify
similarities and differences that could suggest different brain mechanisms. This would in
turn allow us to cluster individuals according to the brain mechanisms that they exhibit.
Third, understanding DNN pipelines and deep representations could contribute to real-
izing effective transfer learning and reduce training time. Transfer learning approaches
can be used to retrain an existing DNN so that it can be used on other individuals or can
be applied to predictive tasks different from the one for which the DNN was originally
trained.

In this article, we have presented an approach that allows us to interpret the deep rep-
resentations of DNN models trained on EEG multi-channel data. The proposed approach
exploits the spatio-spectral relationship of EEG data and generates SSFI patterns revealing
the frequency bands and the spatial region of brain that activate the neurons within each
layer in a DNN model. The association between brain regions and frequency bands and
physical, physiological, and psychological activities is widely accepted in neuroscience, and
hence, SSFI patterns provide us with meaningful interpretations of the deep representations
produced by DNN models. SSFI patterns interpreting deep representations can therefore
enhance our understanding of the brain activity. With BCI systems in mind, SSFI patterns
can also contribute to the design and realization of transfer learning.

To evaluate our approach, we used the PhyAAt dataset for auditory tasks. We trained
25 CNN models on EEG multi-channel signals from each subject in the dataset. First, we
analyzed the performance of each individual CNN model on EEG signals from the subject
it was trained on. Then we conducted ISD analysis, which allowed us to investigate how a
model trained on one subject performs on others. The observed variation in performance
demonstrates the importance of learning robust deep representations, which are necessary
to implement transfer learning effectively.
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We analyzed the SSFI patterns associated with the deep representation generated by
neurons in each of the layers of the trained CNN models. To generate SSFI patterns, we
used an activation maximization approach. SSFI saliency maps for listening, writing, and
resting tasks were also produced and averaged saliency maps were obtained to highlight
the common brain regions that are associated with listening tasks for all the subjects. Our
approach and subsequent analysis reveals that, unlike conventional CNN scenarios such as
those involving images of the natural world, SSFI low-level features represent the activities
in larger brain regions and high-level features represent clusters of small brain regions.
Interestingly, middle-level features are used to selectively combine different frequency
bands. The common brain regions extracted by averaged SSFI saliency maps show different
regions associated with listening tasks for different subjects, and reveal that a few subjects
share similar brain regions.

We have applied our approach to investigating deep representations to CNN models
trained on multi-channel EEG signals recorded during auditory tasks. Our approach could
also be applied to explore deep representations in DNN models trained on EEG signals
recorded during other brain tasks, for instance, visual tasks. The same methodology that we
have implemented in this study could be followed to analyze similarities and differences
between the brain activity in different individuals carrying out the same brain task.
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