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Abstract: The particulars of stimulus–response experiments performed on dynamic biosystems
clearly limit what one can learn and validate about their structural interconnectivity (topology),
even when collected kinetic output data are perfect (noise-free). As always, available access ports
and other data limitations rule. For linear systems, exponential modes, visible and hidden, play an
important role in understanding data limitations, embodied in what we call dynamical signatures in
the data. We show here how to circumscribe and analyze modal response data in compartmentalizing
model structures—so that modal analysis can be used constructively in systems biology mechanistic
model building—for some nonlinear (NL) as well as linear biosystems. We do this by developing and
exploiting the modal basis for dynamical signatures in hypothetical (perfect) input–output (I-O) data
associated with a (mechanistic) structural model—one that includes inputs and outputs explicitly. The
methodology establishes model dimensionality (size and complexity) from particular I-O datasets;
helps select among multiple candidate models (model distinguishability); helps in designing new I-O
experiments to extract “hidden” structure; and helps to simplify (reduce) models to their essentials.
These modal analysis tools are introduced to NL enzyme-regulated and protein–protein interaction
biosystems via nonlinear normal mode (NNM) and quasi-steady state approximation (QSSA) analyses
and unified with linear models on invariant 2-dimensional manifolds in phase space, with properties
similarly informative about their dominant dynamical properties. Some automation of these highly
technical aspects of biomodeling is also introduced.

Keywords: mechanistic model; model distinguishability; quasi-steady state approximation; QSSA;
hidden modes; visible modes; dynamical signatures; candidate model; systems pharmacology;
epidemiology; minimal model; hidden Markov model; conservation constraints

1. Introduction

Over the last few decades, interest and progress in mechanistic math modeling has
burgeoned in the realm of dynamic systems biology [1,2], systems pharmacology [3]
and epidemiology [4]. The subject literature has grown substantially, with much greater
attention being paid to quantitative modeling methodology and applications, particularly
in the university life science and pharmaceutical communities. Hindsight suggests that this
focused diligence was to be expected. The development of vastly superior molecular and
cell biology measurement tools and the numerous biological discoveries emanating from
the explosive growth of data provided by these tools was undoubtedly a major if not the
impetus. The common understanding is that explicit quantitative models transform data
into useful constructs, ideas and discoveries. And the literature is growing with papers
on modeling methodologies specialized for molecular and cellular level modeling and
textbooks that are consolidating them, e.g., [5–10].

Multicompartmental modeling, described in some detail in Sections 4 and 5 below,
has been a prominent methodology in the quantitative physiology and pharmacology
literature for over half a century, yet it remains an area underappreciated by systems biology
modelers. Indeed, the subject of compartmental modeling occupies few if any pages in
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modern texts on systems biology, as for most of the references above. An overarching goal
in this paper is, first, to make the case that this oversight may be hampering progress in
the field—at least in the sense that readily available and effective tools for mechanistic
modeling are being neglected. To accomplish this, I summarize the methodology and show
the ease with which dynamic systems input–output (I-O) data can be exploited in structural,
mechanistic model building, first using linear systems analysis modal concepts merged
with linear compartmental modeling. This is developed and exemplified for linear system
compartmental models. And I show how dynamical data signatures are transformed into
minimal model structures and also how to analyze particular candidate model structures
(model distinguishability). This is key to unraveling structure from data and designing
new input–output (I-O) experiments that reveal more. Then, I show how to extend and
unify these notions to nonlinear dynamic systems biology modeling by merging concepts
in structural mechanics with enzyme kinetic modeling methodology and extending them
to modeling and understanding biochemical kinetics. First, some theories and examples.

2. Linear Modes

Modal concepts are classical in linear system theory, e.g., see reference [11]. Consider
the general class of linear time-invariant ordinary differential equation (ODE) models, with
inputs and outputs specified integral to model M, as in Figure 1 and Equation (1):

dq(t)
dt

= Kq(t) + Bu(t), y(t) = Cq(t), t ≥ 0 (1)

Symbols q, u and y are n-, r- and m-vectors of time-varying state variables (system),
inputs and outputs, respectively. K, B and C are n by n system, n by r input and m by
n output matrices of constants, respectively. Multicompartmental (MC) models, defined
graphically in Section 4 below, are a special case, with K ≡

[
kij
]

having the properties
kij ≥ 0 for i 6= j and ∑n

i=0 kij = 0, j = 1, . . . , n [12,13].
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Figure 1. Linear system model M block diagram representation with input u and output y (I-O data).

The component terms of the solution y(t) = Cq(t) = CeKtq(0) of the homogeneous
equation dq/dt = Kq, i.e., the response to initial conditions (ICs) q(0) (input u ≡ 0)
are the modes of model (1). This fundamental set of solution terms (modes) is n linearly
independent exponential functions of the form tkeλjt (k = 0, 1, . . . , n − 1 and j = 1, 2, . . . , n),
each satisfying dq/dt = Kq. The λj are eigenvalues of K. If they are distinct, the n modes are
y1 = eλ1t, . . . , yn = eλnt. If they are repeated, then for each λi of multiplicity ni (i.e., ni is
the number of λi), there are ni modes: eλit, teλit, . . . , tni−1eλit, also totaling n.

Importantly, n is the minimum dynamical dimension of model (1), i.e., the model
cannot be reduced to a smaller number of ODEs that completely characterize dynamical
responses y(t) = Cq(t) = CeKtq(0). This is paramount in tying the model with I-O data, as
we see below. The eigenvalues λj can be real or complex numbers. When they are complex,
the modes are oscillatory.

We now give all of this a geometric interpretation to tie it to the discussion of nonlinear
(NL) models and modes in Sections 10 and 11. Each mode actually has a shape, represented
by an eigenvector component vj, associated with the frequency (eigenvalue) component
λj, so it can be represented geometrically as a two-dimensional function cjvjtkeλjt each
with its own eigenvalue λj and (n-dimensional) eigenvector vj. The intrinsic parameters
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of y(t) = Cq(t) = CeKtq(0) are then the eigenvalues and eigenvectors of K, i.e., a set of 2n
structural invariants of K. Structural invariants are one of many smallest sets of parameters
completely determining or characterizing model dynamics [14].

Example 1: Simplest Case—Distinct Eigenvalues
The dynamical shape of the solution modes, for recognition purposes as well as math

analysis, depends in part on relationships among the n eigenvalues λ1, λ2, . . . , λn of system
matrix K. If they are distinct (none are repeated) and the corresponding eigenvectors are v1,
v2, . . . , vn, the general solution of dq/dt = Kq can be written:

q(t) =
n

∑
i=1

civieλit (2)

The ci are chosen to match the initial conditions (ICs) on q(t). For example, if only q1(0) 6= 0
and all other ICs are zero, then Equation (2) gives: q(t) = [q1(0)∑n

i=1 v1eλit 0 · · · 0]T. If the
eigenvalues are not distinct, the solution is more complex but still multiexponential, and
each repeated eigenvalue has its own mode, e.g., c1eλt, c2teλt are two different modes
for repeated eigenvalue λ. Multicompartmental (MC) models can have repeated and/or
complex eigenvalues in their responses.

We can generalize this for nonhomogeneous system inputs u(t) 6= 0 in Equation (2).
Since the exponential mode response to ICs is the same as the response to impulse inputs,
i.e., Bu(t) = q(0)δ(t) in Equation (2), the system response to step, ramp, exponential
and other (different) inputs—by linearity—also will be a sum of exponential modes and
additional terms inherited from u(t).

A most important feature of linear modes is that they are a minimal set of invariants
of the dynamical system, and, for any set of ICs or input(s), the modes accurately capture
essential system dynamics. Among other things, this means that linear ODEs of orders
higher than n can be accurately reduced (simplified) to order n if the ODE has only n
modes, and this simplified model can be represented by a set of n modes, each represented
geometrically as a 2-dimensional function of the eigenvalue and eigenvector associated
with each model. Whether all these modes are visible or hidden in data is the question we
address next—the key to unraveling structure from data and designing new input–output
(I-O) experiments that reveal more.

3. Modes as Data Signatures

As implied above, both visible and hidden modes play important roles in understanding
dynamical signatures in data and thus the structure of systems from which they emanate.
Using a possibly familiar analogy with large-scale data analysis in bioinformatics or com-
putational statistics, finding the modes in dynamic system data is akin to finding the
principal components (principal component analysis—PCA) or singular values (singular-
value decomposition—SVD), of a large data matrix. This means visualizing a multivariate
dataset—typically expressed in a high-dimensional data space, from its “most informative”
viewpoint—its principal components—in a lower-dimensional space. Distinct modes of
chords and scales in music are another albeit less mathematical example, with each mode
sounding different but having a different arrangement of the same notes played in particu-
lar orders.

This is important because we can use these notions for developing dynamic system
model structure and establishing the dimensionality of the model observable in data, in terms
of modes associated with n exponential solutions in the data. In brief, visible modes, in
particular I-O data, collected from a system are visibly associated or identified with visible
state variables in its model. Hidden modes in the data are associated with hidden state
variables (hidden modes (state variables, compartments) are directly analogous to hidden
states in a Markov model (hidden Markov model)), i.e., those that have no signature in the
particular I-O data. They may be in the system, but they are not visible in that dataset.
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Different experiments (input–output port configurations) are needed to discover them in
new data.

To tie these relationships to the model structure, in particular multicompartmental
structural models, we need some definitions.

4. State Variables, Compartments, Directed, Graphs, Pools and Species

We formalize and further clarify our primary nomenclature, paraphrasing classical
definitions collectively in the contextual domain of biological systems, e.g., see [12,15,16].

A compartment is an amount of material X that acts kinetically (within a dynamic
system) in a homogeneously distinct manner. Homogeneously distinct are the keywords
here. This means entities within a compartment are indistinguishable from each other, they
are “mixed completely”. If they are not, they comprise more than one compartment. A
compartment is open if it “leaks” into the environment; it is closed if it does not (Figure 2).
Most (not all) compartmental models of real systems have at least one open compartment.
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Figure 2. Two-compartment model representation (linear or nonlinear) illustrating one OPEN
compartment, with a LEAK and a CLOSED compartment (no LEAK) exchanging material (solid
arrows) with each other and possibly other compartments not shown (dotted arrows).

Every (physical) space containing compartments has a presumed volume in which
the material substance (e.g., chemical “species”, etc.) is homogeneously distributed. This
compartment volume Vi might be measurably real, or it might be virtual—called an
equivalent volume.

In other words, in chemical, biological or other physical spaces, a compartment is an
idealized store of a substance, characterized by its environment, physiochemical properties
or both. All of the substance in a given form qualifies as a compartment, e.g., active or inactive
or receptor-bound or unbound form—one compartment for each—because they generally
have different dynamics. Alternatively, all of the substance in a homogeneously distributed
(well-mixed) location, or all of it in a given form and location, qualifies as compartments,
e.g., the mass of unbound drug DF (or hormone, lipid or ion) in blood or the mass of
receptor-bound drug DR in blood or either in the liver (or another organ or organelle).
Similarly, the total drug mass DF + DR in the blood or liver (or another organ or organelle),
is each a valid compartment in principle. Similarly, in modeling epidemiological systems,
Susceptible, Exposed, Infected and Recovered (SEIR) populations are typically each considered
valid, homogeneous compartments, as in COVID-19 modeling [17].

A multicompartmental (MC) model consists of a directed graph of two or more
compartments interconnected, so there can be an exchange of material or change of state
(into two or more compartments) among some or all of them and possible leaks from
any of them (i.e., Figure 2). Exchange may occur by material transgressing some physical
barrier (e.g., by diffusion or membrane transport) or by undergoing some physical or
chemical transformation (e.g., metabolism, inactive to active state, etc.). Each compartment
is represented by a single state variable in a multicompartmental (MC) model. Changes in
the location of material generate different compartments (different state variables) for the
same material, typically with different volumes. Changes in material form (e.g., precursor
to product, carbohydrate to metabolite, infected to recovered, etc.) generate different
compartments (different state variables)—possibly in the same “space” or “container” and
with the same volume, and so on.
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Circles are commonly used to represent compartments arrows to represent unidirec-
tional transfers—which include inputs, influxes and effluxes (leaks)—and dashed lines,
with a small open-circle endpoint, denote measured outputs (Figure 3). Directed graphs
(digraphs) also are used to represent MC models, with nodes (vertices) representing com-
partments and edges as the arrows interconnecting compartments (nodes) or the environ-
ment, as in Figure 3. For linear systems, arrows and edges are typically represented by
constant parameters (e.g., fractional transfer rates kij). For nonlinear systems, arrows and
edges designate variable functions of constant parameters (e.g., A, B) and state variables qi
(e.g., saturable functions, like A/(B + qi) [7].
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A pool is the total amount of a substance in a system or subsystem [18], defined
purposely loosely to suit the variety of ways different investigators were using it. We
are a bit more precise here, defining pool—similarly, as a mass or volume size measure
for a real or abstract space or material, emphasizing that it is not necessarily uniformly
(homogeneously) distributed [19]. A compartment may be a pool, but not necessarily vice
versa. On the other hand, we can speak of the “pool of X in compartments i and j” or the
“pool of X in the whole organism” (or “whole compartmental model or system”) because
the term pool circumvents the homogeneity requirement on any of these entities. Pool
Models are particularly useful for steady-state flux balance analysis (FBA) [6].

Species is a term commonly used in chemistry and molecular biology, usually de-
fined as distinct molecular entities sharing the same chemical properties, and having
the same chemical properties effectively means homogeneous. In a chemical or biological
system kinetic (dynamical) model, distinct species are thus represented as distinct state
variables—the classical definition of (homogeneous) compartment in a dynamic system
model. Different definitions for some of these terms are embodied in the latest version
(Level 3) of the Systems Biology Markup Language SBML, a “bridge language (lingua franca) for
communication or exchange of mathematical models across programming tools” (sbml.org),
with potential for confusion in modeling biological systems. In SBML, a “compartment
is a well-stirred container of finite size where species may be located”. And “species is
a pool of entities of the same kind located in a compartment and participating in reac-
tions (processes)”. The main distinction of SBML from classical definitions (which we
have adopted here) is that SBML “compartments” are containers of species, whereas clas-
sical compartments are unique homogeneous entities represented as state variables. The
different meanings of species, compartment and pool—taken together—generate potential
ambiguities for modeling.

A multicompartmental (MC) model can have any number of compartments. But its
observable (visible) dimensionality is limited by the locations of inputs and outputs and
thus the particular (noise-free) data available. This means the granularity—or extent—of
multicompartmentalization is experiment-dependent. The minimum dimension—the
smallest number of possible compartments—is equal to the number of its distinct modes
visible in its output response for any particular specification of input and output locations.

5. Modes, Compartments and Data: Modes in Data = Minimum Compartment Number

In this and the following sections, we begin to show how modal analysis can be used
to characterize (build) a system dynamical structure from temporal kinetic input–output
(I-O) data collected from accessible I-O ports. This methodology is summarily unified in
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Section 9. We have seen above that the modes of this data are the fundamental solutions of
the ODEs representing the model, one for each of the state variables; and any zero-input
response—i.e., response due only to ICs—is a linear combination of these modes. Thus, for
linear multicompartmental models, the number of modes is equal to the number of state
variables, which means mode-count≡minimum compartment-count.

The actual number of system compartments—identified as such or not—is typically
greater than the minimum needed to represent the dynamics, in many cases very much
larger than this minimum number. Probed compartment(s) are likely included in the
count, but—at least in principle—additional “hidden” and unprobed compartments need
to be discovered—typically by probing different I-O ports—to establish actual dynamical
dimensionality, as illustrated below. This can be challenging for the modeler, no matter
what the goals are.

6. Finding Modes (Compartments) Visible in Output Data Signals through
Graphical Inspection

Not all modes and compartments (state variables) they represent are visible in a
particular output y(t), in response to a particular input u(t)—i.e., an input–output port pair.
But they may be visible from other I-O data ports. We take advantage of the fact that modes
are intrinsically responses to initial conditions (ICs) or, equivalently, impulse inputs. The
procedure is to systematically test each I-O port pair of a candidate model structure, counting
the number of modes in each designated output compartment in response to an impulse
input into the designated input compartment. Candidate model structures are derived
from available mechanistic biological system domain knowledge. Alternative candidates
typically account for unknown or incomplete knowledge of compartmental connectivities.
Checking all possible compartment I-O pairs in this manner then gives all possible modes
in the system, i.e., all possible compartments in the candidate model. This, incidentally,
reveals new experiment designs for finding otherwise hidden compartments.

Analysis can be performed mathematically, but it is easier through systematic inspec-
tion of the compartmental model graph. This graphical approach exposes visually why
the full dimensionality of a model and the system it represents is difficult to establish.
In the process, it also provides a more facile tool for discovering the hidden structure
in the underlying system. The following two simple examples illustrate the procedure
step-by-step. Additional, more complex examples can be found in [6].

Example 2: 2-Compartment Candidate Model with One Input and Two Outputs
In the simple model of Figure 4, we assume zero ICs and a single impulse input. We

relax these assumptions, later, to discover how ICs and other inputs affect results. The kijs
are non-negative rate constants (time−1), and Vis are volumes. We are interested in the
number of modes visible in outputs 1 and 2 under various conditions. We evaluate this
number first mathematically and then more simply using graphical inspection.
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y1(t) =
1

V1(λ1 − λ2)

[
(k02 + k12 + λ1)eλ1t − (k02 + k12 + λ2)eλ2t

]
, y2(t) =

k21

V1(λ1 − λ2)

(
eλ1t − eλ2t

)
and the two exponents (eigenvalues) are:

λ1,2 =

(
−(k02 + k12 + k21)±

√
(k02 + k12 + k21)

2 − 4k02k21

)
/2 ≤ 0 for all kij ≥ 0

We have exactly two distinct (exponential) modes measurable in each compartment
for an impulse input for all kij > 0. Now suppose k21 = 0 (and ICs remain zero), then
λ2 = −(k02 + k12), which nulls λ1 and the second exponential term in the equation for y1,
i.e., the solution for y1 reduces to only one mode, and that for y2 reduces to zero modes because
the coefficient goes to zero (by L’Hopital’s rule). Thus, the model with k21 = 0 will exhibit
one mode in 1 and none in 2. That is what the math tells us.

The Simpler Graphical Solution: We redo the problem by reasoning physically about
each case, k21 nonzero and k21 zero, i.e., with and without the forward connection from com-
partment 1 to 2. The principle here is that each compartment, when it is stimulated by a
signal entering it, elicits a distinct mode associated with that compartment in its dynamic
response. Whether this effect is visible in an output depends on the locations of the I-O
probes and the compartment interconnections.

An input signal entering compartment 1 (an impulse input in this example) will first
stimulate the first mode represented by that state variable—dynamic system compartment
1 itself. Then, if k21 is nonzero, the signal travels to 2 via k21, where it stimulates the second
distinct mode, represented by that state variable—dynamic system compartment 2. Finally,
with k12 nonzero, material travels back to 1 via k12, with a dynamic reflecting both the
stimulus from 1 along k21 and the corresponding dynamic due to stimulation of the distinct
mode in 2. So we see two modes in both compartments. They go back and forth, feeding
their signals forward and back, because they are connected reversibly.

Other Parameterizations: Now, using the same reasoning and inspection of the graph,
we see that if k12 = 0 and k21 is nonzero, we find only one mode in compartments 1 and 2 in
compartment 2, for the same input and ICs, because the mode associated with compartment
2 is not visible in 1 because of the lack of connection back to 1 (k12 = 0). We discovered this
using the mathematics above, but this graphical solution is easier.

Nonzero ICs: Going one step further, if we started with zero input, k12 6= 0, k21 6= 0 and
nonzero ICs in both compartments, both would have two modes visible in them because
the ICs are equivalent to impulse inputs. And, unlike the zero IC case above, when k21 = 0,
compartment 1 would still show 2 modes because mode 2 would be stimulated by the
nonzero IC in 2 and travel to 1 along k12.

So nonzero ICs can be as important as inputs in establishing model complexity
because—in essence—they are equivalent to impulse inputs and generate the same
modal responses.

Example 3: 3-Compartment Candidate Model
We add a third compartment, the only one measured in this example, and evaluate the

number of modes visible in the output of compartment 3 in Figure 5, using only graphical
reasoning. We again assume zero ICs everywhere, an impulse input and all kij > 0. In the
previous example, we established that two modes would be visible in compartment 2 if it
were measured. Despite the fact that compartment 2 is not measured in this problem, there
are still two “excited” modes in 2, and they travel to compartment 3 along nonzero path
k32. So, at least two modes are visible in compartment 3 measurements. But, compartment
3 is itself a dynamic state variable compartment, and when it is stimulated, it generates its
own mode. Stimulated by two modes coming from 2, it therefore exhibits three modes in its
output. No math needed!
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Figure 5. Mode determination by visual inspection for a more complex 3-compartment model.

Different Inputs: Going one step further, if the input u1 were an exponential function
distinct from the fundamental modes of the model, e.g., a single exponential input, then
four modes would be visible at y3 because the input “mode” would also be visible in the
output. Inputs are external to the model; therefore, exponential inputs can be thought of as
the output of a compartment external to the model (another mode!) and so on. . .

Remarks: In principle, the results above do not depend on parameter values, only
structure, assuming all kij > 0 in the models. In reality, the relative magnitudes of the
parameter values matter because depending on parameter values, some modes may be
very small and difficult to detect in real data. This is a problem for model parameter
sensitivity analysis, beyond our scope here.

Impulse inputs (approximate brief-pulse inputs in practice) are in principle maximally
informative for modal analysis. If the input were instead a step, or ramp, or any integral of
the impulse, the modal responses would be qualitatively the same—still exponential, with
the same frequency λi (eigenvalues), but with different shapes (eigenvectors). Arbitrary
inputs also elicit the same, albeit less obvious, modal responses, and they would be more
difficult to unravel. Nevertheless, they too can be accommodated if needed by using
suitable (e.g., Fourier transform) analysis—also beyond our scope in this paper.

7. Automated Mode Detection Using Graph Theory Algorithms

The graphical mode-finding algorithm of the last section is readily automated using
computer science graph theory tools. Either Breadth-First Search (BFS) or Depth-First
Search (DFS) [20] can be used to count compartments with a directed path between any
measurable compartments, i.e., those reachable from perturbed compartments, i.e., those re-
ceiving inputs or having nonzero initial conditions (ICs are the same as equivalent impulse
inputs). Directed connectedness and the permutations of paths between inputs to different
compartments and follow-up compartments are key to counting modes. Pseudocode for
the imbedded mode-counting algorithm of the last section is given in Appendix A. This
algorithm was originally written by Farhad Hormozdiari and augmented by Teaching
Assistant Long Nguyen, both Ph.D. students at UCLA at the time. Notation G(V,E) means
a graph with V vertices (nodes and compartments) and E edges (rate-constant parameters).

8. Hidden Modes and Model Simplification

Hidden modes and compartments also have an upside in the context of model simpli-
fication. For state variable models, model reduction (aggregation) means finding a simpler
representation (with fewer state variables) appropriate or useful for some purpose. Transfer
functions (TFs) Hij(s) between pairs of inputs and outputs (uj and yi) of multicompart-
mental models

.
q = Kq + Bu, y = Cq are particularly convenient for this because pole-zero

cancellations in Hij(s) reduce model dimensionality and therefore the state variable and
compartment number between these I-O pairs. This means that a multicompartmental
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model has hidden compartments if its TF has at least one pole-zero cancellation. Con-
versely, it has no hidden compartments if there are no pole-zero cancellations [21]. (We
remark here that multicompartmental models also can have hidden oscillations (hidden
oscillatory modes) in some compartments with complex eigenvalues (modes) hidden from
outputs measured in a central compartment. This interesting phenomenon can occur in
potentially physiologically realizable systems, modeled with generalized mammillary models,
as developed in [21].

Example 4: 3- Compartment Candidate Model Transfer Function and Simplifications
The I-O TF for the model of Example 3, Figure 5, is computed by using Laplace

transform analysis as:

H31(s) =
k21k32

s(s2 + (k21 + k12 + k02 + k32)s + k21(k02 + k32))
(3)

No pole-zero cancellation is possible in (3) with all kij > 0, so model dimensionality
cannot be reduced from 3. If both the input and output are instead in compartment 2 here
(TF H22), the TF is:

H22(s) =
s(s + (k12 + k02 + k32))

s(s2 + (k21 + k12 + k02 + k32)s + k21(k02 + k32))
(4)

The zero and pole at the origin in (4) cancel each other, and the model is reduced
to the second order. And if turnover rates in compartments 1 and 2 (−k11 = k21 and
−k22 = k12 + k02 + k32) are equal, we still have a two-dimensional model:

H22(s)|k21=k12+k02+k32
=

s + k21

(s + k21)
2 − k21k12

(5)

Although not the intention of this example, the number (two) of visible compartments
in this H22 example is available simply from the inspection of the graph: the mode generated
in compartment 3 cannot be returned to and therefore be visible in 2 because there is no
path from 3 to 2.

9. Deriving Mechanistic Models from Modal Analysis

The content of Sections 5–8 is summarized and consolidated here, delineating the
process of characterizing (building) a system dynamical structure (as multicompartmental
models) from dynamical input–output (I-O) data using modal analysis.

We assume at least some information/data is/are available about the biosystem mech-
anism, enough for formulating alternative candidate model structures with accessible or
potentially accessible I-O ports. In biology, the system structure is usually partially known
(the current knowledge base). To discover how the system can be more fully structured,
we formulate different hypotheses about how it may be structured into different and explicit
candidate models, with possibly unspecified dimensionality (number of state variable compo-
nents or other complexity), and we test them against pertinent data (Examples 2 and 3 and
Figures 4 and 5 in Section 6 are simple examples of two- and three-dimensional candidate
models tested in this fashion, respectively). Notably, additional/alternative biomodel
complexity is typically guided by the current knowledge base, often inferred by the known
structure. Alternative candidates, for example, also can be based on open questions about
its mechanistic structure as well as what the current literature or collaborators suggest.

Modal analysis directly answers the dimensionality question for a single set of I-O data
(at least in principle). The modes of this data are the fundamental solutions of the ODEs
representing the minimal model, one for each of the state variables visible in that dataset.
For linear multicompartmental models, the number of modes is equal to the number of
state variables, which means the mode-count ≡ minimum compartment-count ≡ minimal
dynamical dimensionality of the model visualized from that I-O dataset.
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Moving on, the actual number of compartments (state variables) is typically greater
than the minimum needed to represent complete dynamics. Probed compartment(s) are
included in the count, but—at least in principle—additional “hidden” and unprobed
compartments need to be discovered to complete the model structure further. This is
carried out as follows.

Modes intrinsically are responses to initial conditions (ICs) or, equivalently, impulse
inputs. The procedure then is to systematically test each I-O port pair of a candidate
model structure, counting the number of modes in each designated output compartment in
response to an impulse input into the designated input compartment. Checking all possible
compartment I-O pairs in this manner then gives all possible modes in the system, i.e., all
possible compartments in the candidate model. This, incidentally, reveals new experiment
designs for finding or otherwise exploring the dynamics of hidden compartments.

A procedure for computing alternative identifiable model candidates (indistinguish-
able I-O equivalent models), using a more sophisticated but mathematically equivalent
methodology, can be found in [22], implemented in a freely accessible app at the website:
http://biocyb1.cs.ucla.edu/DISTING/, (URL accessed on 13 July 2023).

10. Nonlinear Modes in Nonlinear Models

Nonlinear (NL) ODE models also have “transfer functions” (TFs), i.e., input–output
solution response functions. Unlike linear models, however, their dynamic responses are
dependent on inputs—input shapes or magnitudes. So we cannot write them only in terms
of model parameters, like we do for linear model TFs. Nevertheless, the principle result
above carries over to NL models. “Modes” in NL systems can cancel each other (like poles
and zeros)—at least approximately—or be vanishingly small in magnitude, or present for
vanishingly small transient times—thereby rendering complex structures less visible in
data characterized by specific inputs and outputs. Similarly simplified NL models, also
with input-dependent dynamics, are characteristic of enzyme kinetic models. We tie the
linear mode concept together here with a novel view of quasi-steady state approximations
(QSSA) in nonlinear biochemical kinetics models (described in Section 11)—viewed as
nonlinear modes with the same kinds of geometric properties as linear modes. The goal is to
better understand NL systems and facilitate NL model building and analysis.

The field of mechanics has a developed theory of nonlinear modes associated with
certain oscillatory phenomena in mechanical systems. Biological systems share many of the
same dynamical properties, not recognized as such in the field. We make the connection
precise here.

As noted earlier, linear modes are a minimal set of n-dimensional invariants of the dynam-
ical system and, for any set of ICs or input(s), the modes accurately capture essential system
dynamics. Among other things, this means linear ODEs of an order higher than n can be
accurately reduced (simplified) to order n, and this simplified model can be represented
by a set of n two-dimensional modes in a state vector space. Mode shape is represented by
eigenvector component vj, associated with a frequency (eigenvalue) component λj. The
intrinsic parameters of the measurement model y(t) = Cq(t) = CeKtq(0) for the homoge-
neous linear system are then the eigenvalues and eigenvectors of K, a set of 2n structural
invariants of K. Importantly, λj can be complex as well as real.

In mechanics, modal analysis is typically concerned with vibrations and resonances
in mechanical structures [23]. When their models are linear or NL and linearized about
their equilibrium solutions—a common practice in analyzing stability properties—some
λj are complex. This means there exist oscillatory components in their dynamical behav-
ior. In this context, linear modes are called linear normal modes (https://en.wikipedia.
org/wiki/Normal_mode, accessed on 13 July 2023), or LNMs, and the governing equa-
tions of motion can be decoupled into LNMs, e.g., by diagonalization of their system
matrix. In decoupled form, i.e., with a basis chosen to decouple the state variables,
a linear system vibrates as if it consisted of independent oscillators governed by the
(complex) modes, a property not shared with NL systems. Linear modal solutions also

http://biocyb1.cs.ucla.edu/DISTING/
https://en.wikipedia.org/wiki/Normal_mode
https://en.wikipedia.org/wiki/Normal_mode
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obey the superposition principle, i.e., free and forced oscillations are conveniently ex-
pressed as linear combinations of individual LNM motions in phase space. Importantly,
modal solutions have an invariance property, i.e., a motion initiated on one specific LNM—
representable as a two-dimensional planar surface in phase space—has no effect on the re-
maining LNMs because they are decoupled. This property permits the modal concept to be
readily extended to NL systems.

By analogy, for NL models of the form dx/dt = f(x,u), a nonlinear normal mode
(NNM) is defined similarly as a two-dimensional invariant manifold in phase space. Non-
linear systems, however, can exhibit highly complex behaviors not possible with linear
systems and, for this reason, NNM analysis generally requires more complex mathematical
handling [24]. (We remark here that the scope of this paper is limited to an important class
of NL systems in biology and other physical systems with similar model structures and not
to all NL systems. Hopefully, it will motivate more research focused on a wider variety of
NL systems. For NL models, it conceptually introduces the bridge between NNM analysis
in mechanics and nonlinear biosystem modeling and analysis presented in Section 11 via
the NNM-QSSA analogy and invariant manifolds.).

Nonlinear modal analysis is about generating minimal reduced-order models that ac-
curately capture the dynamics of higher-order models, with the help of NNMs. An effective
and computationally efficient methodology for accomplishing this is based on the two-
dimensional invariant manifold approach, as developed in [25], for example. Geometrically,
(NL) NNMs—like LNMs—are represented by two-dimensional nonplanar surfaces in phase
space. They are, however, tangent to the planar surfaces of their linearized ODE LNMs at
the equilibrium point of their NL ODE system.

For mechanical system applications, the nonplanar surface NNM is parameterized by
a single pair of state variables (displacement and velocity), chosen as master coordinates,
with the remaining variables being functionally related to the chosen pair. In this special
form, the original system behaves on the manifold surface like a nonlinear single-degree-
of-freedom system. Solutions beginning in the manifold remain in it for all time, which
extends the invariance property of LNMs to nonlinear systems. More general theory and
applications of NNM analysis are available in [24].

11. Nonlinear Modes in Systems Biology

Conceptually, this treatment of NL normal modes in mechanics, as nonplanar two-
dimensional manifolds in phase space, is directly extensible to a major class of NL systems
biology models. The analogous application is reducing complex biosystem models using
conservation relations, combined with dynamical approximations (quasi-steady state approxi-
mations, QSSA), common in biochemical reaction modeling. Enzymatic and cellular protein
interaction networks (PIN) typically involve complex interactions among numerous cellular
components, and their models typically involve sets of coupled first-order ODEs, each
representing the state variable motions of the interacting cellular components. Dominant
characteristics of these NL systems include numerous inter-variable conservation relations,
which serve to reduce system order, and higher-order interactions that obey the quasi-steady
state approximation (QSSA) [26] or total quasi-steady state (tQSSA) approximations [27,28].
Together, these constraints and approximations serve to simplify the dynamics of these
systems substantially, with solutions on nonplanar two-dimensional manifolds in phase
space, not unlike nonlinear normal modes in mechanics.

The mathematics of the classic Michaelis-Menten reaction of a single substrate S with
a single enzyme E illustrates these constraints and QSSA (approximation) characteristics
and is outlined in Appendix B. More complex biochemical interactions in cells follow the
derivation of the M-M model.

In each of these interactions, the dominant dynamics are second-order, one each for
the substrate and product, with all enzymatic reactions or other protein or metabolic
interactions substituted by algebraic equations, based on the QSSA or tQSSA [6]. On a
microscopic level, each interaction obeying one of these assumptions also has two nonlinear
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modes, a fast one—on the “fast manifold”—and a slow one—on the “slow manifold”. The
fast one disappears nearly instantaneously (or very quickly) relative to the slow one—which
represents the relatively longer-term behavior of the mechanisms that dominate overall
biosystem dynamics. A single mode, the slow one, strongly dominates the dynamics
and approximates the subsystem interaction reasonably well. For example, this behavior
is illustrated in the phase space figures (with nullcline “manifolds”) associated with a
more complex four-dimensional Slyke–Cullen reaction feedback system model, where
all trajectories starting at different points in phase space rapidly converge to a planar
surface [29]).

This is a general extension of the QSSAs to higher-order biological systems and is
directly analogous to model reduction of NNM analysis of invariant manifolds on the phase
space of mechanical systems. This means NNM analysis is equivalent to QSSA analysis,
which likely came first [26,30], with invariant manifolds of the biosystem in the substrate–
product phase space of each reaction submodel.

12. Discussion

We have presented a cohesive viewpoint of the modal concept, merging classical
linear with modern nonlinear dynamic system geometries. We used the classical multi-
compartmental modeling paradigm for developing this viewpoint—with compartments
representing state variables (nodes), material flux functions or constant parameters (edges)
connecting them, and I-O ports explicitly stated. This is all in accord with the hypoth-
esized, candidate real system structure and the experimental testing of it to discover
its specific connectivity. This has been presented as a unifying paradigm for establish-
ing minimal homeomorphic model structure from I-O data signatures—represented as
modal responses on two-dimensional invariant manifolds—for NL as well as linear sys-
tems. Naturally encompassing these notions, compartmental modeling theory has a sound
physical and mathematical basis, with much of it motivated early on by problems in
chemical kinetics [31–33] Ironically, the new systems biology has had similar motiva-
tional forces—from biochemistry—but a few decades ago, the new theory separated itself
from well-developed compartmentalization concepts. Developers of the Systems Biology
Markup Language (SBML), a language designed for developing universally compatible
software in biomodeling, ignored the past—likely inadvertently—in an important software
“venue” receiving much attention in the systems biology modeling community at the time
(http://en.wikipedia.org/wiki/SBML, accessed on 13 July 2023). They adopted an older
and looser notion of compartment than that honed and refined by the established commu-
nity of 20th-century compartmental analysts. Mones Berman, John Jacquez [15] and Sol
Rubinow [13], for example, wrote books, ran national or university programs, or developed
fairly widely used modeling software (SAAM, etc.) based on or about compartmental
analysis methods—with compartments defined quite differently than in SBML lingo.

In the lingo of compartmental analysis, reviewed earlier, a compartment is an amount
of material X that acts kinetically in a homogeneously distinct manner—ultimately a
state variable in the language of dynamic systems and differential equations. In contrast,
compartment in the “lingua franca” of SBML means a space that (typically) contains multiple
state variables. This is régressif (pardon my French), taking us back to an earlier time in
biology when physical spaces, like organs in a biological system, were conveniently called
compartments. Colloquially speaking, they still are to some, but more likely they contain
numerous sub-compartments in a myriad of forms—like nuclear, or cytosolic or tubule X,
for example. As a consequence, both free and commercial software packages for systems
biology modeling (SimBiology, Copasi, Cell Designer, etc.) are written or are being written
with compartments that speak SBML, rather than classical modeling science, and many
users (like myself) need an attitude adjustment as well as a workaround to use them.

Change is often useful, leading to progress, but in my view, not in this case. I have
tried my best to show here that there is good reason to retain the classical notion of
compartment in dynamic systems biology modeling, with direct application via modal

http://en.wikipedia.org/wiki/SBML
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analysis for establishing system structure. In a nutshell, compartment as a state variable
promotes the congruence of relevant mechanistic model topology (connectedness) with modal
I-O data. Classical compartments circumscribe and embody the deep connection between
signal data (measurements) and model structure—linear or nonlinear—at the same time
leveraging well-developed tools of engineering and physics and compartmental modeling
theory based on an analysis of the intrinsic properties of ordinary differential equations
and their solution spaces.

13. Conclusions

The primary results of this work are summarized in the following points:

1. Modes in system I-O responses accurately capture essential system dynamics for each
I-O pair of a mechanistic (multicompartmental, linear or nonlinear) model, defining
minimal system dimensionality (size and complexity) based on that I-O pair. In other
words, the granularity of the model (or extent of its multicompartmentalization)
is experiment-dependent, and the minimum dimension—the smallest number of
possible compartments—is equal to the number of its distinct modes visible in its
output response—for any particular specification of input and output (I-O) locations.

2. More extensively, modal analysis methodology can establish more than model di-
mensionality from particular datasets. It also can help in designing new experiments
to extract “hidden” structures and select among multiple candidate models (model
distinguishability analysis) or simplify (reduce) models to their dynamical essentials.

3. In particular, the testing of all I-O pairs of a hypothesized candidate multicompart-
mental structure can extract hidden modes and thus provide complete structure.

4. Finding modes (and thus compartments) visible in output data signals by graphical
inspection speeds up the model-building process and visually exposes new experiment
designs for discovering compartment connectivity.

5. By analogy, finding the modes in dynamic system data is akin to finding the principal
components (principal component analysis—PCA), or singular values (singular-value
decomposition—SVD), of a large dataset (e.g., bioinformatics data matrix), thereby
simplifying it to the minimum dimension (size and complexity) for analysis.

6. For linear systems, diagonalized modal solutions (linearized normal modes LNMs)
have an invariance property, i.e., a motion initiated on one specific LNM—representable
as a two-dimensional planar surface in phase space—has no effect on the remaining LNMs
because they are decoupled. This property permits the modal concept to be readily
extended to NL systems. A nonlinear normal mode (NNM) is a two-dimensional
invariant (nonplanar) manifold surface in phase space, tangent to the planar surfaces of
their linearized ODE LNMs at the equilibrium point of their NL ODE system.

7. NL modal analysis is thus about generating minimal reduced-order models that accurately
capture the dynamics of higher-order models in mechanics, with the help of NNMs.

8. For biological systems, the analogous application is reducing complex biosystem
models using conservation relations, combined with dynamical approximations (quasi-
steady-state approximations, QSSA) common in biochemical reaction modeling. This
means NNM analysis is equivalent to QSSA analysis, with invariant manifolds of the
biosystem in the substrate–product phase space of each reaction submodel.

9. Compartments are state variables, not spaces or containers of state variables.
10. Linear model simplification also can be helped by examining the poles and zeros of

I-O transfer functions for cancellations.
11. Prospectively, this work introduces and explains the analogies between LNM and

NNM analyses in mechanics and the QSSA in a broad class of regulated systems in
biochemistry and systems biology. Hopefully, it will serve to promote the study of
other NL system classes, like those that exhibit more complex behaviors.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Appl. Sci. 2023, 13, 9772 14 of 16

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Algorithm A1: Pseudocode for Calculating Mode Number for each Measurable
Compartment.

Require: Graph G(V,E), node (compartment) i receives input
Ensure: Modes[j] mode-count for all compartments, for all j ε V
// Determine compartments reachable from the input

while v ε V
if v is reachable from i then // Using DFS or BFS:

TrueMode[v]← 1
end if

end while
// Count modes based on connectivity:
while v ε V do

while v’ ε V do
if v is reachable from v’ then // Using DFS or BFS:
if TrueMode[v] = 1 then
Modes[v]←Modes[v] + 1
end if

end if
end while

end while

This algorithm actually finds the maximum number of modes in each compartment
because it is completely symbolic—with no regard for numerical values of model parame-
ters. Hidden modes can be missed, e.g., those due to model parameters coinciding like the
k22 = k33 in Example 4.

Appendix B. Full Michaelis–Menten (M-M) Dynamics Reduced to 2nd Order—A Very
Common Paradigm in Biochemistry

The following is adapted from [7]. The stoichiometric equation:

S + E
k1


k−1

ES
k2→ P + E (A1)

describes the Michaelis–Menten (M-M) reaction, in which enzyme E and substrate S initially
react to reversibly form a complex ES. The complex then breaks down to form the product P
plus free (not complexed) enzyme E. Let cS, cE, cES and cP represent concentrations of the
four molecular species (state variables) in (A1). Then, flux balance and/or the law of mass
action applied to the three elementary reactions in (A1) leads directly to the following four
coupled nonlinear ODEs:

dcS
dt

= −k1cEcS + k−1cES (A2)

dcE
dt

= −k1cEcS + k−1cES + k2cES (A3)

dcES
dt

= k1cEcS − (k−1 + k2)cES (A4)

dcP
dt

= v2 = k2cES (A5)
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The first three equations have a “hidden” redundancy and can be reduced to two
ODEs, using an algebraic conservation equation derived simply by realizing that enzymes
are present in the mix in either free E or complexed form ES and must always have a sum
equal to the initial cE(0):

cE(t) + cES(t) = cE(0) (A6)

for t > 0. Equation (A6) is then used to eliminate cE ≡ cE(t) from the RHS of Equations (A2)
and (A4). This gives:

dcS
dt

= −k1cE(0)cS + (k1cS + k−1)cES (A7)

dcES
dt

= k1cE(0)cS − (k1cs + k−1 + k2)cES (A8)

The quasi-steady state approximation (QSSA) of M-M theory is based on the fact that
equilibrium is very rapidly established among E, S and ES in accordance with the first
(the reversible) reaction, virtually independent of the second reaction. Kinetically (and
mathematically), this means that the change in complex ES concentration is approximately
zero, relatively speaking, i.e., dcES(t)

dt
∼= 0 for all t > 0. This then means that the LHS of

Equation (A8) is approximately equal to zero, making it an algebraic constraint equation
instead of a third ODE in the M-M model.

After some algebraic rearrangements of the equations, the reduced M-M ODE model
has only two ODEs, combined in (A9), representing the (approximate) coupled nonlin-
ear relationship between product P and substrate S concentrations in the reaction mix,
parameterized by two constants, vmax and Km, in (A10).

dcp

dt
= −dcS

dt
∼=

vmax cs(t)
Km + cs(t)

f or all t > 0 conc/time units (A9)

Parameters vmax, the maximum value of v, and Km, the Michaelis constant, depend
on the rate constants and e(0), i.e.,

vmax = k2cE(0) and Km =
k−1 + k2

k1
(A10)

The necessary condition for validity of the QSSA is Km + cS(0) >> cE(0) [26]. This condi-
tion is met (or approximately met) in most enzymatically regulated processes governing
metabolism and protein–protein interactions in cells. The total QSSA, denoted tQSSA
(derived similarly), is an even better approximation [27,28].
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