
Citation: Guo, Y.; Cao, N.; Cai, L.;

Wu, Y.; Weiskopf, D.; Shi, D.; Chen, Q.

Datamator: An Authoring Tool for

Creating Datamations via Data

Query Decomposition. Appl. Sci.

2023, 13, 9709. https://doi.org/

10.3390/app13179709

Academic Editors: Xiaoping Fan and

Ying Zhao

Received: 19 July 2023

Revised: 16 August 2023

Accepted: 23 August 2023

Published: 28 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Datamator: An Authoring Tool for Creating Datamations via
Data Query Decomposition
Yi Guo 1 , Nan Cao 1,* , Ligan Cai 1, Yanqiu Wu 1, Daniel Weiskopf 2 , Danqing Shi 3 and Qing Chen 1,*

1 College of Design and Innovation, Tongji University, Shanghai 200092, China; 2010937@tongji.edu.cn (Y.G.);
tsailgan@tongji.edu.cn (L.C.); 1941923@tongji.edu.cn (Y.W.)

2 Visualization Research Center (VISUS), University of Stuttgart, 70569 Stuttgart, Germany;
daniel.weiskopf@visus.uni-stuttgart.de

3 Department of Information and Communications Engineering, Aalto University, 02150 Espoo, Finland;
danqing.shi@aalto.fi

* Correspondence: nan.cao@tongji.edu.cn (N.C.); qingchen@tongji.edu.cn (Q.C.)

Abstract: Datamation is designed to animate an analysis pipeline step by step, serving as an intuitive
and efficient method for interpreting data analysis outcomes and facilitating easy sharing with others.
However, the creation of a datamation is a difficult task that demands expertise in diverse skills.
To simplify this task, we introduce Datamator, a language-oriented authoring tool developed to
support datamation generation. In this system, we develop a data query analyzer that enables users to
generate an initial datamation effortlessly by inputting a data question in natural language. Then, the
datamation is displayed in an interactive editor that affords users the ability to both edit the analysis
progression and delve into the specifics of each step undertaken. Notably, the Datamator incorporates
a novel calibration network that is able to optimize the outputs of the query decomposition network
using a small amount of user feedback. To demonstrate the effectiveness of Datamator, we conduct a
series of evaluations including performance validation, a controlled user study, and expert interviews.

Keywords: natural language interface; data visualization; authoring tool

1. Introduction

A datamation [1] is designed to interpret the results from an analysis task by animating
the detailed analysis pipeline step by step. Although it has been demonstrated to be an
intuitive and effective method, creating a datamation is not easy. It is necessary to define a
coherent and purposeful sequence of steps that align with the overall analysis objectives,
followed by translating the sequence into an intuitive animation. Consequently, one needs
to acquire multiple skills, including data analysis, visualization, and animation design,
which will be challenging for users who do not have rich experience in data animation.

In recent decades, in the field of data visualization, techniques for creating insightful
animations have been extensively studied [2–5] and a number of authoring tools [6–9]
have also been developed to help users create smooth transitions between charts. These
techniques and tools greatly lower the technical barriers to designing meaningful ani-
mated transitions in data visualization. However, none of them are able to help generate
datamations based on analysis intentions or tasks.

Designing such a datamation authoring tool is not simple and a number of challenges
exist. First, it is usually difficult to clearly and precisely describe an analysis task. In
most cases, users can only communicate what they would like to find from the data in
natural language. Second, automatically selecting a series of data operations to resolve
a user’s analysis task, even a simple one, is hard because the right solution should not
only provide the correct analysis result but also ensure that each step is meaningful and
coherent to avoid confusing the audience. Third, generating an intuitive datamation of the
analysis pipeline is difficult. Even though the intermediate analysis results may be shown

Appl. Sci. 2023, 13, 9709. https://doi.org/10.3390/app13179709 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13179709
https://doi.org/10.3390/app13179709
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0006-0711-9911
https://orcid.org/0000-0003-1316-7515
https://orcid.org/0000-0003-1174-1026
https://orcid.org/0000-0002-8105-0944
https://orcid.org/0000-0002-2612-5691
https://doi.org/10.3390/app13179709
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13179709?type=check_update&version=1

Appl. Sci. 2023, 13, 9709 2 of 18

in different forms of visualization, the datamation should be able to smoothly connect them
without increasing cognitive load.

To address the above issues, in this paper, we introduce Datamator, an authoring
tool developed for creating datamations. It incorporates a query analyzer to decompose a
user’s data question into a sequence of analysis steps. The query analyzer demonstrates
proficiency in processing queries that correspond to eight distinct categories of analytical
operations or tasks (enumerated in Table 1), either in isolation or in tandem. Subsequently,
the generated analysis sequence guides the construction of a datamation, as the exam-
ple shows in Figure 1. The editor in Datamator showcases a preview of the generated
datamation and affords users the ability to edit the generated analysis progression. The
system also incorporates a deep knowledge editing network to help improve the model’s
performance based on a very small amount of user feedback. Specifically, users can cali-
brate the decomposition results in the datamation editor and feed their modifications back
into the decomposition network to improve it, with the improvement in the system being
demonstrable even when only a single instance of user feedback is provided.

Table 1. The QDMR operations used to construct data analysis pipeline.

Operation Description

select(table/column) Select table/column from the underlying dataset
project(attribute) Retrieve the attribute values from the records
aggregate(method) Compute the max/min/sum/count/avg value

comparative(condition) Filter out the records satisfying condition
sort(attribute, asc/desc) Sort the records by attribute in asc/desc order

superlative(attribute, max/min)
Find an instance whose attribute has the

maximum/minimum value
discard(records1, records2) Find instances in records1 but not in records2

intersection(records1, records2) Find instances belonging to records1 and records2

Figure 1. A datamation generated by Datamator that visualizes the analysis pipeline regarding the
data question “how many startup companies are in the game industry?”.

To the best of our knowledge, Datamator is the first authoring tool that has been
developed to support datamation design and generation. Compared with existing tools for
data animation creation, such as d3.js [5] and DataParticles [9], Datamator enables users
to generate a datamation effortlessly by inputting a data question in natural language.
Moreover, Datamator also affords users the ability to manipulate and refine the outcomes
according to their specific preferences.

We evaluate Datamator via quantitative experiments on the performance of the query
analyzer, a controlled user study to assess the effectiveness of the generated animations,
and interviews with two expert users to verify the usability of the system.

The contributions of the paper are as follows:

Appl. Sci. 2023, 13, 9709 3 of 18

• System. We introduce an authoring tool that has been developed to support data-
mation design and generation. With this system, a user can easily generate an initial
datamation by simply specifying a data query in natural language and then edit-
ing to refine it via rich interactions. The demo of the system can be found in the
Supplementary Materials.

• Data Query Decomposition with Calibration. We introduce a data query analyzer
that automatically converts a data query into a sequence of data analysis steps for
generating a datamation. The model integrates a knowledge calibration network to
support an efficient feedback mechanism.

• Evaluation. We demonstrate the utility of Datamator via interviews with expert
users and also show the performance of the data query analyzer via a quantitative
evaluation. A controlled user study is also performed to verify the effectiveness of the
generated datamations.

2. Related Work

Our discussion of related work covers the following most relevant areas: animation
in data visualization, animation generation, and natural language interfaces (NLIs) for
data visualization.

2.1. Animation in Data Visualization

Animation is the transformation of visual representations over time [10]. In the field of
data visualization, animations are often used for illustrating changes in data [10], showing
the transitions between visualization views [11], highlighting relationships [6,12], and
catching attention [10]. It has also been used for supporting data analysis. Animation is a
common technique to display the change in data mappings during data processing [10,11].
Communicating affects is viewed as a core spirit of animation design [13], and has been
introduced to the design of user interfaces, motion textures, and animated gifs to create
affective systems or graphics [14–18].

Some studies focus on using animation for highlighting [19] or adding informa-
tion shown in static plots to boost reading comprehension. Hypothetical outcome plots
(HOPs) [20], for example, augment static visualizations (e.g., error bars) with animated
frames of random extracts from the underlying sampling distribution to convey uncertainty.
Pu et al. [1] presents the concept of datamation, aiming to assist users in comprehending
intricate data analysis outcomes by animating the comprehensive analysis pipeline incre-
mentally. This approach incorporates specific details obtained from the data analysis stage,
enabling individuals to gain valuable insights and comprehend particular analysis results.

Following the idea of datamation [1], we have developed Datamator, an intelligent au-
thoring tool that supports datamation design and generation. We use unit
visualization [21] driven by a set of low-level data actions to illustrate datamations. The
visualization uses captions to illustrate the semantics of each action and show the effects of
the action via animated transitions of units.

2.2. Animation Generation

Creating animated visualization can be difficult and time-consuming. A range of
tools have been introduced to help users create animated transitions. Comprehensive
libraries, such as D3.js [5] and VTK [22], allow flexible creation and great expressiveness
but require significant effort. Users need to write program code to calculate and assign
values for low-level components, impairing the ease of use. High-level grammar can
help balance the trade-off between flexibility and ease of use. Examples of this are Gemini
and Gemini2 [3,23], which suggest and execute animated transitions between two Vega-Lite
charts. While these grammar systems avoid imperative programming, it is still challenging
for ordinary users with little programming background to operate them.

To provide a programming-free environment, existing approaches choose to either
automatically generate animations using algorithms [4,24] or provide graphical interfaces

Appl. Sci. 2023, 13, 9709 4 of 18

for authoring [7,8,25]. For instance, AutoClips [4] takes a sequence of data facts (e.g., value,
difference, proportion) as input and automatically generates a data video by selecting
appropriate clips from an animation library. Data Animator [8] and CAST [7] allow users
to create animations using a GUI. Users can create keyframes by importing Data Illustrator
projects or selecting graphic components, and then design animations with timing parame-
ters and data mappings between adjacent keyframes. While the aforementioned tools have
eased the authoring process, creating a datamation is still not easy. Users have to prepare
the keyframes or the data facts that are used to synthesize animations.

Unit visualization [21,26] facilitates smooth transitions between different visualization
views. It presents data items as units and transforms them into various visual forms via
animated transitions. Recent studies have utilized it for creating animated transitions [7]
and data stories [27]. However, direct authoring of datamations, which requires careful
consideration of the analysis pipeline and data flows, is not supported in these studies.
Datamator leverages the flexibility of the unit visualization design to animate an analysis
pipeline. It uses a set of low-level actions that precisely control the existence, appearance,
and layout of the units to help with the datamation authoring.

2.3. NLIs for Data Visualization

Over the past decade, various NLIs for data visualization have been explored within
the research community [28–37] and industry [38,39]. While NLIs provide flexibility in
posing data-related questions, inherent characteristics of natural language such as ambigu-
ity and under-specification make precisely understanding user intentions a challenging
task. To overcome this obstacle, NLIs are designed to either guide users to provide a more
concrete nature language query [31,35,40] or untangle ambiguities in the query [30,36,41]
to capture user intent.

One approach to parsing natural language uses predefined grammar. Flowsense [40]
and Eviza [31] depend on predefined grammar to capture query patterns. Articulate [41]
allows people to generate visualizations by deriving mappings between tasks and data
attributes in user queries, and the translation of imprecise user specification is based
on a natural language parser enriched with machine learning algorithms that can make
reasoned decisions. ncNet [42] builds a Transformer model to translate natural language
queries to visualization specifications.

DataParticles [9] is designed to author data stories with animated unit visualizations.
In contrast to our system, DataParticles necessitates manual specification of each block
of the data story rather than automatically organizing the entire one. Another recent
approach that shares similarities with ours is Urania [43], an NLI for exploratory data
analysis that interprets the analysis process. Different from Urania, Datamator, to the best
of our knowledge, is the first of its kind, providing an authoring tool designed to facilitate
datamation design and generation. Our system enables users to effortlessly generate an
initial datamation by specifying a data query in natural language and refining it through
interactive editing. The model integrates a knowledge calibration network to enable the
model output to be continuously updated based on user feedback.

3. System Overview

Within this section, we begin by outlining the prerequisites for the Datamator system’s
design, subsequently providing an overview of its architecture. Lastly, we provide a concise
overview of the definition of QDMR (Question Decomposition Meaning Representation) op-
erations.

3.1. Design Requirements

The Datamator system was purposefully crafted to facilitate datamation authoring.
Design requirements were derived from a review of the existing literature and consultations
with domain experts. Below, we describe the critical requirements that motivated the design
adopted in our work.

Appl. Sci. 2023, 13, 9709 5 of 18

R1 Facilitating generation driven by natural language. The explosion of large language
models has led to the integration of natural language prompts in diverse application
scenarios. This enables users to engage with the system in a more intuitive and
effective manner [44]. Therefore, our system should allow users to input queries about
the data in natural language to facilitate datamation authoring.

R2 Generating datamations that are easy to understand. The system should be able to
generate coherent and comprehensible datamations, effectively demonstrating the
transitions between any two consecutive steps in the analysis pipeline, thereby facili-
tating ease of comprehension and understanding

R3 Learning from users’ feedback. The performance of language models is not always
consistent. Therefore, to ensure the quality of the generated data, the system should
allow users to refine the generated results. More importantly, the system should
enable online learning that continuously improves the performance of the model
based on users’ feedback.

3.2. Architecture

The Datamator system was designed to address the aforementioned requirements.
Figure 2 illustrates the architecture of the system with its three main modules: (a) the
Preprocessing Module, (b) the Data Query Analyzer, and (c) the Datamation Editor.

Figure 2. Three modules of Datamator: (a) preprocessing, (b) data query analyzer consists of a
decomposition network (b1) to translate the input query into an operation sequence and a calibration
network (b2) to support a feedback mechanism, (c) datamation editor.

In this system, when a user uploads a tabular dataset X and inputs a natural language
data query q (R1), the Preprocessing Module (Figure 2a) parses X and q into a word sequence
qx to facilitate subsequent calculations.

Then, the Data Query Analyzer translates the qx into a sequence of operations, where
each operation indicates a simple calculation on the input data or the outputs of the
previous operation(s). Ideally, executing these operations in order will provide the desired
results regarding the data query (R2).

Lastly, each operation will drive Narrative Chart [45] to generate a datamation. This
datamation will be presented in the Datamation Editor, allowing users to interactively
remove, reorder, or add new operators to refine or correct the generated results. Real-time
updates to the datamation will occur during the editing process. Users’ modifications
will be recorded and fed back into the Data Query Analyzer (R3), where a pretrained deep
knowledge editing network (Figure 2(b2)) will utilize the modified sequence S′p to compute
a set of parameters for fine-tuning the decomposition network.

Appl. Sci. 2023, 13, 9709 6 of 18

3.3. QDMR

In our study, we utilize a set of operations known as QDMR operations, as introduced
in [46], to create pipelines for data analysis aimed at resolving analysis tasks. According
to the definition given by Wolfson et al. [46], each of these operations is responsible for
querying the source data or analyzing the outputs of previous operations. We select eight
types of QDMR operations employed to represent the data-related questions in Spider [47],
and use them to drive the datamation generation. For a description of each operation,
including its formalization and detailed explanation, please refer to Table 1.

4. Data Query Analyzer

The Data Query Analyzer was designed to resolve an input natural language data query
in the context of a given dataset and decompose it into a sequence of data operations in the
form of QDMR [46]. Moreover, it has the ability to learn online, enabling the model output
to be continuously updated based on user feedback. Specifically, as shown in Figure 3,
the design of the Data Query Analyzer consists of two parts: the decomposition network and
the calibration network. When the decomposition network wrongly resolves a data query qx
into a problematic operation sequence sd (Figure 3a), the user can modify sd to provide
a calibrated sequence sc. The calibration network takes (qx, sc) as the input and produces
a parameter calibration ∆θ for the decomposition network (Figure 3b). By adding ∆θ to
the decomposition network’s parameter θ, it will be able to generate correct results given
qx or questions similar to qx (Figure 3c) without affecting the decomposition results of
other questions (Figure 3d). Next, we will introduce the technical details of the proposed
decomposition network and the feedback mechanism.

Figure 3. Data query decomposition with online knowledge calibration.

4.1. Decomposition Network (D)

We adopted and fine-tuned the pretrained language model T5 [48], which was de-
veloped based on the Transformer architecture [49] to translate the input data query (and
the corresponding data scheme) into a sequence of QDMR operations. T5 is used due to
its many advantages shown in a wide range of translation-related tasks, such as natural
language translation [50], text2sql [51], and text summarization [52].

In general, D takes a preprocessed data query qx as input, generating a sequence
of operations:

[op1, op2, . . . , opn]← D (qx) (1)

where opn indicates the n-th operator. To encourage the output of D to be as identical as
possible to the target analysis pipeline in our training corpus, the model was trained by
using cross-entropy loss between the generated sequence and ground truth.

Appl. Sci. 2023, 13, 9709 7 of 18

4.1.1. Training Corpus

We adopted the dataset introduced in [53] to train our decomposition network. It was
generated by manually annotating the Spider dataset [47] based on the QDMR operations.
In particular, it contains 7423 natural language data queries about a number of databases
introduced in Spider. Each query corresponds to a sequence of manually annotated QDMR
operations together with attributes such as the table and column names.

4.1.2. Implementation

Our decomposition network was implemented based on PyTorch (V1.12.1) [54] and
fine-tuned via 20 epochs with the gradient accumulation step as 16. The batch size was set
to 8. The Adam [55] optimizer was used and the learning rate was set to 2× 10−4 . The
overall training procedure took around 2 h on an Ubuntu server with a V100 GPU (Nvidia
Corporation, Santa Clara, CA, USA).

4.2. Calibration Network (C)

Although effective, the language model cannot guarantee accurate decomposition
results, sometimes producing disordered or incomplete pipelines. User feedback can help
address these issues, but accumulating enough feedback data for retraining or fine-tuning
the deep learning model can be time-consuming, hindering quick responses. To solve this
problem, we introduce an online post hoc knowledge calibration mechanism, as shown in
Figure 3, that uses feedback to modify the original decomposition network’s parameters (θ)
with a calibration (∆θ) to produce desired results as suggested in user feedback.

A deep knowledge calibration network (Figure 4a), denoted as C, was designed to
implement the above idea. It is a collection of auxiliary multilayer perceptrons (MLPs). We
chose to use MLP in building the network due to its many advantages, such as excellent
fault tolerance and strong adaptive and self-learning features. Each MLP is responsible for
calibrating the parameters of a corresponding layer in the decomposition network toward
the direction of making the model output the desired operation sequence sc given by the
users’ feedback regarding the data query qx. We implemented the MLP with a single hidden
layer and adopted skip connection [56] to improve the performance and convergence of the
MLP (Figure 4b). The input of each MLP is the loss gradient ∇θi L(qx, sc) (Figure 4c) of the
decomposition network in the i-th layer calculated when fine-tuning the decomposition
network based on a user’s feedback s under the parameter setting of θi. The outputs of the
MLP are the parameters ∆θi that calibrate θi to make the decomposition network achieve a
result that matches sc. In particular, the loss gradient in the i-th layer is calculated based
on the chain rule during a back-propagation process when fine-tuning the decomposition
network based on sc. As the feedback sc is processed token by token, the gradient is thus
computed token by token as well. We can compute an averaged gradient that could be
used as the input to the aforementioned MLP:

∇θi L(qx, sc) =
1
n

n

∑
j=1
∇θi L(qx, j) =

1
n

n

∑
j=1

u(i+1)jvij (2)

where n is the total number of tokens in sc, and u(i+1)j and vij, respectively, indicate the
loss gradient in the last (i + 1)-th layer and the hidden vector in the current layer i-th
corresponding to the j-th token in sc. Equation (2) is derived based on the chain rule of
the back-propagation process. Details can be found in the book by Goodfellow et al. [57]
(Section 6.5).

However, the above gradient is a high-dimensional vector. Therefore, it requires even
more parameters to directly train a network that maps such a gradient to a parameter
calibration. There could be millions of parameters to tune when calibrating a large de-
composition model like T5, making it very difficult to converge. To address this issue, we
leverage the gradient decomposition strategy [58] to reduce the number of parameters used
in the calibration network. The idea is to directly map each gradient corresponding to a

Appl. Sci. 2023, 13, 9709 8 of 18

token j in sc into a parameter calibration ∆θij independently via an MLP, and then use the
average as the overall calibration ∆θi:

∆θi =
1
n

n

∑
j=1

∆θij =
1
n

n

∑
j=1

ũ(i+1)jṽij (3)

where ũ(i+1)j and ṽij are the output of an MLP that are derived based on u(i+1)j and vij
as follows:

zij = concat(norm(u(i+1)j), norm(vij)) (4)

hij = FC1(zij), z̃ij = FC2(hij) (5)

ũ(i+1)j, ṽij = split(z̃ij) (6)

where Equation (5) indicates the computation of the two consecutive blocks in MLP as
shown in Figure 4(b1,b2). In particular, the first block takes a vector zij that concats the
normalized u(i+1)j and vij (Equation (4)) as the input and gradually transforms them into
the final output. Here, we use ReLU as the activation function. The second block takes the
previous output hij to perform a similar computation as shown in Figure 4(b2). The final
result z̃ij is split into the desired ũ(i+1)j and ṽij (Equation (6)).

Figure 4. The calibration network (a) takes the gradient (c) from the decomposition network as input
to predict parameter calibration ∆θ. It is a collection of auxiliary MLPs (b) with two consecutive
blocks (b1,b2).

Finally, we update the parameter θi in the i-th layer of the decomposition network to
θ′i as follows:

θ′i = θi + ∆θi (7)

4.2.1. Loss Function

The above calibration network is trained using one feedback (qx, sc) a time. The
training samples consist of various data queries qx, their original decomposition results
sd from the decomposition network, and the desired results sc are given by users. In each
round of training, the following loss function is minimized:

L = αLr + Lp (8)

Appl. Sci. 2023, 13, 9709 9 of 18

where Lr is the cross-entropy loss designed to make sure that the calibration is efficient. It
estimates the similarity between the decomposition result after calibration and the desired
results sc:

Lr = −
n

∑
i=1

log p(θ′)(ti | t1, . . . , ti−1, qx) (9)

where p(θ′)(·) estimates the probability of the model output token ti aligned with the
desired result sc, after calibrating the decomposition network based on θ′.

In Equation (8), Lp is the Kullback–Leibler divergence, which is used to ensure that
there is minimal impact on the data queries qother, which do not need to be adjusted. It
estimates the similarity of the output distributions of decomposition network D over qother
before and after calibration:

Lp = KL(D(qother|θ),D(qother|θ′)) (10)

Intuitively, minimizing Lr ensures that the feedback will be accepted by the decompo-
sition network and minimizing Lp will prevent our calibration from affecting the decompo-
sition results beyond the feedback.

4.2.2. Training Corpus

We prepared a corpus with 12 k data samples to train the calibration network. Each
sample is a triplet that consists of a data query qx, the corresponding problematic decom-
position result sd, and a correction sc, denoted as (qx, sd, sc). To collect these data samples,
we deliberately trained a decomposition model with low accuracy based on T5 [48] by only
using a small subset of training samples randomly selected from the aforementioned corpus.
We tested the entire datasets on the model and selected the incorrect outputs sd together
with the corresponding data query qx and ground truth sc for our calibration dataset. We
iteratively performed the above training and testing process by using a different subset of
samples to train the model every time. As a result, a total of 12,227 unique training samples
were collected, which covered two types of decomposition errors: missing operations
(3340 samples) and disordered sequences (4693 samples).

4.2.3. Implementation

The calibration network was also implemented in PyTorch. We chose Adam [55] as
the optimizer and set the learning rate as 1× 10−4. The overall training procedure took
around 16 h on an Ubuntu server with one NVIDIA V100 GPU.

5. Damation Generation

In this section, we first briefly describe Narrative Chart [45] and then explain how we
use it to generate datamations.

5.1. Narrative Chart

Narrative Chart [45] is an open-source visualization library specialized for authoring
charts that facilitate data storytelling. It utilizes an action-driven grammar that empowers
users to precisely define the layout and characteristics of a chart using a sequence of actions.
These actions serve as the building blocks for users to exert fine-grained control over
the chart’s design, ensuring the desired representation is achieved. In the framework of
Narrative Chart, three distinct types of low-level actions are supported, which are used to
manipulate data, visual encoding, and annotations associated with the chart.

Data actions encompass a range of operations similar to SQL actions, such as select,
filter, and aggregate. They are responsible for processing the data, manipulating them
according to the specified criteria.

Visualization actions, in contrast, are responsible for manipulating the visual aspects
of the data representation. Users can add, modify, and delete the encoding channels that
determine how the data are visually represented in charts. The available visual channels

Appl. Sci. 2023, 13, 9709 10 of 18

differ depending on the type of chart being used. For instance, in line charts, control can
be exerted over the X-axis, Y-axis, and color. In scatterplots, control is extended to the
X-axis, Y-axis, color, and the size of the data points. In this work, we follow the design of
Pu et al. [1], which uses unit visualization to create datamations. Yet, our method can be
readily extended to other forms of visualization, requiring only minor adjustments.

Lastly, annotation actions are employed to manipulate annotations associated with the
charts. In Narrative Charts, there are 13 distinct types of annotations that can be utilized.
For instance, one can alter the filling color to “Fill” a focal unit, or make the non-focal
units invisible by “Desaturating” them. These actions allow users to enhance the visual
representation and communicate additional information through annotations in the chart.

In our work, we used Narrative Chart to generate datamations, motivated by three key
aspects. First, the utilization of Narrative Charts affords us the capacity to exercise precise
control over the multitude of visual elements encompassing the chart. This grants us a
wide range of freedom in the process of crafting a datamation, empowering us to exercise
detailed control over its creation. Secondly, the design of an action-driven framework
matches well with datamation, enabling a systematic and progressive manipulation of
visual charts that facilitates the interpretation of analysis outcomes. Lastly, Narrative
Chart possesses the capability to depict the execution process of action sequences through
animation, thus intrinsically constituting a datamation.

5.2. Action Presets

In light of the aforementioned low-level actions, we generated a datamation by con-
verting each data analysis pipeline into a series of actions. Specifically, we devised a set of
low-level actions for each QDMR operation, with the objective of elucidating the meaning
of the operation. The selection of actions was guided by two fundamental principles. Firstly,
the presentations of operations should provide a comprehensive and explicit depiction
of the data manipulation process, ensuring that the way data are altered is adequately
conveyed. Secondly, the actions associated with each operation were carefully designed
to be succinct and to minimize any potential interference with unrelated elements. This
approach aims to mitigate the likelihood of conflicts arising within the sequence of actions.
After several rounds of design and in-group discussion, we ultimately determined a set of
valid actions for each operation, which are detailed in Table 2.

Table 2. Actions in Narrative Chart used to visualize QDMR operations.

Operations Data Visual Annotation

select select – –

project – x, y-axis –color, size
aggregate aggregate – tooltip

comparative filter – fill, desaturating
sort sort – regression

superlative filter – fill, tooltip
discard filter – desaturating

intersection filter – fill, desaturating

In terms of organization and transition, we devised a structured sequence that ensures
coherence and clarity throughout the data manipulation process. Specifically, for the low-
level actions of a QDMR operation, our approach involves initially executing data actions
to update the displayed data items within the view. By performing data actions first, we
ensure that the data reflect the desired

Subsequently, we proceeded to systematically adjust the encoding methods and in-
corporate annotations. This was achieved through the utilization of visualization and
annotation actions in subsequent stages. These actions were carefully chosen and imple-

Appl. Sci. 2023, 13, 9709 11 of 18

mented to enhance the understanding and interpretation of the data, providing additional
context and insights to the viewers.

By organizing the actions in this manner, we established a logical progression from
updating the data items to refining their encoding and incorporating annotations. In
Narrative Chart, this sequential arrangement allows for a smooth transition between the
different stages of the data analysis pipeline, ensuring a coherent and comprehensive
representation of the data manipulation process.

5.3. Generation

Finally, we transformed operations in a data analysis pipeline into the aforementioned
actions, resulting in an action sequence that will be fed into Narrative Chart to render a
datamation. To facilitate the communication of the meaning of each QDMR operation,
we added a caption for each operation, utilizing a predefined template that takes into
account the corresponding low-level actions. The caption provides a description of the
data modifications and visual mappings involved in the operation. It is prominently
displayed atop each view and undergoes progressive updates throughout the animation
process. For example, the project operation can be described as “use size/color/x-axis to
present/encode [attribute]” and the comparative operation is described as “Find records
whose [condition]”.

6. User Interface and Interactions

The datamation editor was designed to translate the QDMR operation sequence into
a datamation and help users refine it, and eventually acquire a datamation with correct
analysis results and coherent animations. In particular, when a user uploads a spreadsheet
into the system, the raw data are displayed in the data panel (Figure 5a), which allows
users to easily access the data during the authoring process. The user can preview the
data and communicate an analysis task of interest by typing a data query into the input
box (Figure 5b).

ab

c

d

e

Figure 5. The user interface of the datamation editor. The data are displayed in (a) and users can
input their data queries into the input box (b). Datamations are displayed in (c) while operation
sequences are arranged in section (e). The configuration panel (d) allows users to edit the operations
and datamations.

By resolving the query input, the underlying system will generate an operation se-
quence to create an initial datamation. The datamation is displayed in the center of the
interface (Figure 5c) with playback buttons at the bottom to control the datamation. Mean-
while, the key-frames of datamation, which correspond to QDMR operations, are arranged

Appl. Sci. 2023, 13, 9709 12 of 18

and visualized (Figure 5e) to illustrate the intermediate analysis result of each operation.
Users can drag to rearrange their orders when necessary. Once modified, the order of
the operations shown in the configuration panel (Figure 5d) will be updated accordingly.
Through the configuration panel, users can edit each of the QDMR operations or add new
operations in the analysis pipeline. In particular, users can modify an operation’s parameter
and the corresponding actions used to update the unit visualization to fully control the
design of the datamation. Finally, by clicking the update button, users’ modifications can
be fed back into the calibration network to update the decomposition model.

7. Evaluation

We first estimated the decomposition and calibration network via quantitative exper-
iments and verified the effectiveness of the generated datamation via a controlled user
study. Finally, expert interviews were performed to verify the usability of our system.

7.1. Quantitative Evaluation

We evaluated the performance of the decomposition network based on the corpus
introduced in Section 4.1. In particular, we computed the rate of exact match between the
decomposition results and ground truth, and calculated the averaged SARI scores [59] of
the decomposition results. The SARI score is commonly used in text simplification tasks;
it evaluates the goodness of words that are added, deleted, and kept in the simplified
sentences. Two baseline models introduced in [46] were used for comparison. Specifically,
we employed two different baselines for our study. The first baseline, denoted as B1,
utilized a sequence-to-sequence neural network featuring a five-layer LSTM encoder and
cross-attention. The second baseline, referred to as B2, employed a distinct sequence-to-
sequence model that integrated a copy mechanism [60] in order to handle queries that were
previously unseen. We trained these models based on the entire corpus and tested their
performance via a validation set containing 30% of data that were randomly selected from
the corpus, with the data queries being replaced by similar but different questions. The
evaluation results are summarized in Table 3.

Table 3. Our model (D) outperforms the two baseline models (B1 and B2).

Models Exact Match SARI

B1 25.64% 0.759
B2 38.39% 0.812
D 82.23% 0.876

We measured the effectiveness of the calibration network using the success rate and
the retain rate. Here, the success rate was defined as the percentage of the incorrect decom-
position results Sd that could be successfully amended by the calibration network via the
feedback Sc among all the incorrect results. The retain rate was defined as the percentage of
correct decomposition results that remain correct after updating the model’s parameters
via calibrations. We performed the experiment based on the above decomposition network
D and calculated the success rate and the retain rate based on the dataset introduced in
Section 4.2. In particular, we used 80% of the data to train the calibration network and used
the remaining 20% for validation. As a result, the success rate was 76.61% and the retain
rate was 91.79%.

7.2. User Study

To verify that the datamations generated by Datamator can effectively convey insights,
we reperformed the experiment (Study-I) described in [1]. In particular, 40 lab students (18
males and 22 females, mean age 25.1, SD 1.77) from a design college with a background in
visual communication design were invited to take part in our study. They were divided
into two groups (i.e., G1, G2), where each group had 20 members. A between-subject study
was performed, in which two groups of people were asked to answer the same question

Appl. Sci. 2023, 13, 9709 13 of 18

by exploring the data via datamations generated by Datamator and the static charts (the
last frames of the datamations), respectively. The study sessions lasted about an hour and
participants were compensated with USD 15.

Procedure and Tasks During the study, the participants were asked to resolve a para-
dox as shown in Figure 6: it seems people with a higher education level (Ph.D.) have
a lower average income (Figure 6c), but when we take the work fields into consider-
ation, we obtain the opposite result, i.e., people with a higher education level have
a higher income in both industry and academia (Figure 6d). The truth is that peo-
ple with a lower education level tended to work in industry, where a higher salary is
usually paid, and these people outnumbered the people with a higher education level
by a large margin. We visualized the two opposite sides of the paradox in a pair of
datamations generated by Datamator as illustrated in Figure 6a,b. We showed these
datamations to the participants in G1 and showed the last frames as static charts to
the participants in G2. These participants were asked to read these visual represen-
tations carefully and then select the truth of the paradox from eight potential choices
(seven were distractors) provided by us (refer to [1] for details about the choices). Our
hypothesis was that G1 tends to have higher accuracy than G2.

Figure 6. In the user study, the participants were asked to resolve a paradox shown in this figure:
case (a) people with a higher education level have lower average income (c); case (b), however, when
we take the work field into consideration, people with higher education have higher average income
(d), therefore the contrary is true.

Results As a result, only 40% of participants in G2 correctly found out the truth of
the paradox, while 75% of participants in G1 did so. A chi-squared test showed that G1
performed significantly better (χ2(1, N = 40) = 5.01, p < 0.05, one-tailed) than G2 in the
experiment. The gap between G1 and G2 was 35%, which was a sizeable difference with
Cohen’s h-value equal to 0.68.

Discussion This outcome serves to provide empirical validation for our hypothesis.
Specifically, the participants enrolled in Group G1 exhibited a notable trend towards achiev-
ing enhanced levels of accuracy when compared to their counterparts within Group G2.
Building upon the implications of this finding, we conducted a validation of the efficacy
of the datamation generated by Datamator in successfully imparting insightful informa-
tion. Furthermore, these findings confirm the effectiveness of the visualization actions we
designed for a variety of analytical operations.

Appl. Sci. 2023, 13, 9709 14 of 18

7.3. Interview with Experts

Two expert users were interviewed separately. The first expert (E1) was a researcher
in data visualization who had published over 10 papers in IEEE Transactions on Visualization
and Computer Graphics (TVCG). The second expert worked for an IT consulting company,
and their job was to analyze customer data using tools like PowerBI and Tableau. During the
interview, the experts were asked to create datamations using Datamator based on datasets
selected from the Spider corpus. They tried a number of data queries and the corresponding
datamations were created. Their operations, generation results, and comments were
recorded in detail. Each interview lasted for about 1.5 h.

Interview Feedback Due to page limitations, we restrict our report to summarizing
only some major feedback:

Data query decomposition. All the experts felt that starting a datamation generation
process by inputting a natural language query was a “good idea that greatly reduces the
technique barriers”. E1 mentioned that to“resolve a natural language question into data
operations is useful for users with little data analysis background”. E2 said that “although
[the system] cannot always provide a comprehensive [decomposition] result, it is always a
good start by pointing out the potential directions to solve problem”.

The authoring tool. All experts were able to successfully generate datamations based
on our system. They were quite excited when seeing an analysis pipeline shown in an
animation. “This is my first time to see such kind of tool”, said E2 and he continued
“this feature is very nice, I can hardly generate this kind of animations using the tools
that I have ever used”. E1 believed that “showing the analysis via an animation is very
intuitive” and “it is a good strategy for interpreting an analysis result”. At the same time,
both E1 and E2 praised the interactive authoring functionalities supported in our system
and even constructively suggested a number of new features such as “recommend proper
operations for users to choose when creating an analysis pipeline (E2)” and “provide more
visualization styles (E1)”. In addition, E1 believed that our feedback mechanism is useful as
“it could help the underlying model to reduce errors in the next time”. E2 also mentioned
that “[with the help of feedback] I can make the result better and better”. Two datamations
authored by experts are shown in Figure 7.

Figure 7. Datamations authored by our expert users based on a dataset consisting of 389 cars.

Discussion The feedback from experts indicates that they found our datamation
compelling for conveying analysis pipelines. The interactive authoring features were
well received, with experts suggesting enhancements like guided operations and varied
visualization styles. The feedback mechanism was acknowledged as valuable for the
iterative improvement of results. Overall, the experts’ responses affirm the system’s
effectiveness in intuitive datamation authoring, underscoring its potential for practice.

Appl. Sci. 2023, 13, 9709 15 of 18

8. Conclusions, Limitations, and Future Work

In this paper, we presented Datamator, developed for creating datamations. The
quantitative evaluation shows that the decomposition network can understand the users’
questions and resolve them in a sequence of steps. Furthermore, the calibration network can
precisely fine-tune the parameter of the decomposition network’s parameters to produce
desired results as suggested in user feedback. Through our user study, we validated the
data generated by Datamator and eventually showed that they can effectively convey
insights. This validation was underscored by the outcomes of expert interviews, which
consistently appraised Datamator’s proficiency in generating datamations that elucidate
intricate data analysis procedures. The tool’s editing functionality also proved to be adept
in rectifying machine-generated results, as evidenced by the study’s outcomes.

Still, based on the interview feedback and observations from the study, there are a
number of limitations of our work that are worth studying in the future.

A limitation of the decomposition model stems from the fact that both the decomposi-
tion and calibration networks rely on pretrained models. Consequently, these networks
exhibit restricted capabilities when confronted with difficult queries and queries that are
very different from the training data. This constraint arises due to the finite scope of the
training data used to pretrain the networks. One potential solution to address this limitation
is to encompass transfer learning or continual fine-tuning on diverse datasets. A robust
adaptation mechanism could enable the networks to gradually incorporate knowledge
from new data instances, thereby enhancing their adaptability to unseen scenarios.

Another limitation pertains to the current calibration network’s inability to holistically
enhance the performance of the decomposition network. This limitation is rooted in the
limited interplay between the two networks, preventing synergistic refinements that could
optimize the decomposition process based on both input data and user feedback. The
design of the calibration network is intended to be a temporary solution used to optimize
the performance of the model during the accumulation of new training samples. To
improve the overall performance, the development of a dynamic knowledge accumulation
mechanism is proposed. Such a mechanism would systematically gather new samples from
user feedback and iteratively adapt the decomposition network, culminating in a more
refined and effective model.

The last limitation centers around the scalability of the visualization design, specifically
when dealing with multidimensional data [61], time-series data [62], and large amounts
of data. To surmount this limitation, interactive visualizations that allow users to zoom,
filter, and interact could be included. This way, users could focus on specific parts of the
dataset without overwhelming the visualization with excessive data points. It would also
be possible to interactively modify the attributes of the data being visualized.

Supplementary Materials: The following supporting information can be downloaded at: www.mdpi.
com/xxx/s1; Video S1: The video abstract of our work and the system demo.

Author Contributions: Conceptualization, Y.G., D.S., N.C. and D.W.; methodology, Y.G., D.S., N.C.
and D.W.; software, Y.G., Y.W. and L.C.; validation, Y.G. and L.C.; formal analysis, Y.G. and L.C.;
investigation, Y.G.; resources, Y.G.; data curation, Y.G. and L.C.; writing—original draft preparation,
Y.G.; writing—review and editing, N.C. and D.W.; visualization, Y.G., Y.W. and L.C.; supervision,
Q.C., N.C. and D.W.; project administration, N.C.; funding acquisition, Q.C., N.C. and D.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by NSFC 62061136003, NSFC 62002267, NSF Shanghai 23ZR1464700,
NSFC 62072338, and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
449742818.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

www.mdpi.com/xxx/s1
www.mdpi.com/xxx/s1

Appl. Sci. 2023, 13, 9709 16 of 18

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pu, X.; Kross, S.; Hofman, J.M.; Goldstein, D.G. Datamations: Animated Explanations of Data Analysis Pipelines. In Proceedings

of the CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–14.
2. Ge, T.; Zhao, Y.; Lee, B.; Ren, D.; Chen, B.; Wang, Y. Canis: A High-Level Language for Data-Driven Chart Animations. Comput.

Graph. Forum 2020, 39, 607–617. [CrossRef]
3. Kim, Y.; Heer, J. Gemini 2: Generating Keyframe-Oriented Animated Transitions between Statistical Graphics. In Proceedings of

the IEEE Visualization Conference, New Orleans, LA, USA, 24–29 October 2021; pp. 201–205.
4. Shi, D.; Sun, F.; Xu, X.; Lan, X.; Gotz, D.; Cao, N. AutoClips: An Automatic Approach to Video Generation from Data Facts. In

Comput. Graph. Forum 2021, 40, 495–505. [CrossRef]
5. Bostock, M.; Ogievetsky, V.; Heer, J. D3 Data-Driven Documents. IEEE Trans. Vis. Comput. Graph. 2011, 17, 2301–2309. [CrossRef]
6. Amini, F.; Riche, N.H.; Lee, B.; Leboe-McGowan, J.; Irani, P. Hooked on data videos: Assessing the effect of animation and

pictographs on viewer engagement. In Proceedings of the AVI, Castiglione della Pescaia, Italy, 1 June 2018; pp. 1–9.
7. Ge, T.; Lee, B.; Wang, Y. CAST: Authoring Data-Driven Chart Animations. In Proceedings of the CHI Conference on Human

Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–15.
8. Thompson, J.R.; Liu, Z.; Stasko, J. Data Animator: Authoring Expressive Animated Data Graphics. In Proceedings of the CHI

Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–18.
9. Cao, Y.; E, J.L.; Chen, Z.; Xia, H. DataParticles: Block-based and Language-oriented Authoring of Animated Unit Visualizations.

In Proceedings of the CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; pp. 1–15.
10. Robertson, G.; Fernandez, R.; Fisher, D.; Lee, B.; Stasko, J. Effectiveness of Animation in Trend Visualization. IEEE Trans. Vis.

Comput. Graph. 2008, 14, 1325–1332. [CrossRef] [PubMed]
11. Heer, J.; Robertson, G. Animated Transitions in Statistical Data Graphics. IEEE Trans. Vis. Comput. Graph. 2007, 13, 1240–1247.

[CrossRef] [PubMed]
12. Fisher, D. Animation for Visualization: Opportunities and Drawbacks. Beautiful Vis. 2010, 19, 329–352.
13. Lasseter, J. Principles of traditional animation applied to 3D computer animation. Annu. Conf. Comput. Graph. Interact. Tech.

1987, 21 , 35–44.
14. Bakhshi, S.; Shamma, D.A.; Kennedy, L.; Song, Y.; De Juan, P.; Kaye, J. Fast, cheap, and good: Why animated GIFs engage us. In

Proceedings of the CHI Conference on Human FACTORS in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 575–586.
15. Feng, C.; Bartram, L.; Riecke, B.E. Evaluating affective features of 3D motionscapes. In Proceedings of the ACM Symposium on

Applied Perception (SAP), Vancouver, BC, Canada, 8–9 August 2014; pp. 23–30.
16. Lockyer, M.; Bartram, L. Affective motion textures. Comput. Graph. 2012, 36, 776–790. [CrossRef]
17. Shi, Y.; Yan, X.; Ma, X.; Lou, Y.; Cao, N. Designing emotional expressions of conversational states for voice assistants: Modality

and engagement. In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems,
Montreal, QC, Canada, 21–26 April 2018; pp. 1–6.

18. Yang, Z.; Zhang, Y.; Luo, J. Human-centered emotion recognition in animated gifs. In Proceedings of the 2019 IEEE International
Conference on Multimedia and Expo, Shanghai, China, 8–12 July 2019; pp. 1090–1095.

19. Ware, C.; Bobrow, R.J. Motion to Support Rapid Interactive Queries on Node–Link Diagrams. ACM Trans. Appl. Percept. 2004,
1, 3–18. [CrossRef]

20. Hullman, J.; Resnick, P.; Adar, E. Hypothetical outcome plots outperform error bars and violin plots for inferences about reliability
of variable ordering. PLoS ONE 2015, 10, e0142444. [CrossRef]

21. Drucker, S.; Fernandez, R. A Unifying Framework for Animated and Interactive Unit Visualizations; Microsoft Research: Redmond,
WA, USA , 2015.

22. Schroeder, W.; Martin, K.; Lorensen, B. The Visualization Toolkit, 4th ed.; Kitware: Clifton Park, NY, USA, 2006.
23. Kim, Y.; Heer, J. Gemini: A Grammar and Recommender System for Animated Transitions in Statistical Graphics. IEEE Trans. Vis.

Comput. Graph. 2020, 27, 485–494. [CrossRef]
24. Li, W.; Wang, Y.; Huang, H.; Cui, W.; Zhang, H.; Qu, H.; Zhang, D. AniVis: Generating Animated Transitions between Statistical

Charts with a Tree Model. arXiv 2021, arXiv:2106.14313.
25. Amini, F.; Riche, N.H.; Lee, B.; Monroy-Hernandez, A.; Irani, P. Authoring Data-Driven Videos with Dataclips. IEEE Trans. Vis.

Comput. Graph. 2016, 23, 501–510. [CrossRef] [PubMed]
26. Park, D.; Drucker, S.M.; Fernandez, R.; Elmqvist, N. Atom: A grammar for unit visualizations. IEEE Trans. Vis. Comput. Graph.

2017, 24, 3032–3043. [CrossRef] [PubMed]
27. Lu, J.; Chen, W.; Ye, H.; Wang, J.; Mei, H.; Gu, Y.; Wu, Y.; Zhang, X.L.; Ma, K.L. Automatic Generation of Unit Visualization-based

Scrollytelling for Impromptu Data Facts Delivery. In Proceedings of the IEEE PacificVis, Tianjin, China, 19–21 April 2021;
pp. 21–30.

28. Liu, C.; Han, Y.; Jiang, R.; Yuan, X. Advisor: Automatic Visualization Answer for Natural-Language Question on Tabular Data.
In Proceedings of the IEEE Pacific Visualization Symposium, Tianjin, China, 19–21 April 2021; pp. 11–20.

29. Wang, Y.; Hou, Z.; Shen, L.; Wu, T.; Wang, J.; Huang, H.; Zhang, H.; Zhang, D. Towards Natural Language-Based Visualization
Authoring. IEEE Trans. Vis. Comput. Graph. 2022, 29, 1222–1232. [CrossRef]

http://doi.org/10.1111/cgf.14005
http://dx.doi.org/10.1111/cgf.14324
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2008.125
http://www.ncbi.nlm.nih.gov/pubmed/18988980
http://dx.doi.org/10.1109/TVCG.2007.70539
http://www.ncbi.nlm.nih.gov/pubmed/17968070
http://dx.doi.org/10.1016/j.cag.2012.04.009
http://dx.doi.org/10.1145/1008722.1008724
http://dx.doi.org/10.1371/journal.pone.0142444
http://dx.doi.org/10.1109/TVCG.2020.3030360
http://dx.doi.org/10.1109/TVCG.2016.2598647
http://www.ncbi.nlm.nih.gov/pubmed/27875166
http://dx.doi.org/10.1109/TVCG.2017.2785807
http://www.ncbi.nlm.nih.gov/pubmed/29990044
http://dx.doi.org/10.1109/TVCG.2022.3209357

Appl. Sci. 2023, 13, 9709 17 of 18

30. Gao, T.; Dontcheva, M.; Adar, E.; Liu, Z.; Karahalios, K.G. DataTone: Managing Ambiguity in Natural Language Interfaces for
Data Visualization. In Proceedings of the User Interface Software and Technology, Charlotte, NC, USA, 11–15 November 2015;
pp. 489–500.

31. Setlur, V.; Battersby, S.E.; Tory, M.; Gossweiler, R.; Chang, A.X. Eviza: A Natural Language Interface for Visual Analysis. In
Proceedings of the User Interface Software and Technology, Tokyo, Japan, 16–19 October 2016; pp. 365–377.

32. Aurisano, J.; Kumar, A.; Gonzalez, A.; Leigh, J.; DiEugenio, B.; Johnson, A. Articulate2: Toward a Conversational Interface for
Visual Data Exploration. In Proceedings of the IEEE Visualization, Baltimore, MD, USA, 23–28 October 2016.

33. Narechania, A.; Srinivasan, A.; Stasko, J. NL4DV: A Toolkit for Generating Analytic Specifications for Data Visualization from
Natural Language Queries. IEEE Trans. Vis. Comput. Graph. 2021, 27, 369–379. [CrossRef]

34. Hoque, E.; Setlur, V.; Tory, M.; Dykeman, I. Applying Pragmatics Principles for Interaction with Visual Analytics. IEEE Trans. Vis.
Comput. Graph. 2017, 24, 309–318. [CrossRef]

35. Cox, K.; Grinter, R.E.; Hibino, S.L.; Jagadeesan, L.J.; Mantilla, D. A Multi-Modal Natural Language Interface to an Information
Visualization Environment. Int. J. Speech Technol. 2001, 4, 297–314. [CrossRef]

36. Wen, Z.; Zhou, M.X.; Aggarwal, V. An Optimization-based Approach to Dynamic Visual Context Management. In Proceedings
of the IEEE InfoVis, Minneapolis, MN, USA, 23–25 October 2005; pp. 187–194.

37. Srinivasan, A.; Lee, B.; Stasko, J.T. Interweaving multimodal interaction with flexible unit visualizations for data exploration.
IEEE Trans. Vis. Comput. Graph. 2021, 27, 3519–3533. [CrossRef]

38. Microsoft Power BI Q&A. Available online: https://powerbi.microsoft.com (accessed on 11 January 2022).
39. Tableau Ask Data. Available online: https://www.tableau.com/products/new-features/ask-data (accessed on 11 December 2021).
40. Yu, B.; Silva, C.T. Flowsense: A Natural Language Interface for Visual Data Exploration within a Dataflow System. IEEE Trans.

Vis. Comput. Graph. 2019, 26, 1–11. [CrossRef]
41. Sun, Y.; Leigh, J.; Johnson, A.; Lee, S. Articulate: A Semi-Automated Model for Translating Natural Language Queries into

Meaningful Visualizations. In Smart Graphics, Proceedings of the 10th International Symposium on Smart Graphics, Banff, AB, Canada,
24–26 June 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 184–195.

42. Luo, Y.; Tang, N.; Li, G.; Tang, J.; Chai, C.; Qin, X. Natural Language to Visualization by Neural Machine Translation. IEEE Trans.
Vis. Comput. Graph. 2022, 28, 217–226. [CrossRef] [PubMed]

43. Guo, Y.; Cao, N.; Qi, X.; Li, H.; Shi, D.; Zhang, J.; Chen, Q.; Weiskopf, D. Urania: Visualizing Data Analysis Pipelines for Natural
Language-Based Data Exploration. arXiv 2023, arXiv:2306.07760.

44. Shen, L.; Shen, E.; Luo, Y.; Yang, X.; Hu, X.; Zhang, X.; Tai, Z.; Wang, J. Towards natural language interfaces for data visualization:
A survey. IEEE Trans. Vis. Comput. Graph. 2022, 29, 3121–3144. [CrossRef]

45. IDvXLab. Narrative Chart. 2022. Available online: https://github.com/narchart/narrative-chart (accessed on 12 January 2023).
46. Wolfson, T.; Geva, M.; Gupta, A.; Gardner, M.; Goldberg, Y.; Deutch, D.; Berant, J. Break it down: A question understanding

benchmark. Trans. Assoc. Comput. Linguist. 2020, 8, 183–198. [CrossRef]
47. Yu, T.; Zhang, R.; Yang, K.; Yasunaga, M.; Wang, D.; Li, Z.; Ma, J.; Li, I.; Yao, Q.; Roman, S.; et al. Spider: A Large-Scale

Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the Empirical
Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 3911–3921.

48. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the Empirical Methods in Natural Language Processing, Online,
16–20 November 2020; pp. 38–45.

49. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All You Need.
Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008.

50. Vaswani, A.; Bengio, S.; Brevdo, E.; Chollet, F.; Gomez, A.N.; Gouws, S.; Jones, L.; Kaiser, Ł.; Kalchbrenner, N.; Parmar, N.; et al.
Tensor2tensor for Neural Machine Translation. arXiv 2018, arXiv:1803.07416.

51. Wang, B.; Shin, R.; Liu, X.; Polozov, O.; Richardson, M. RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-
SQL Parsers. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, Online, 6–8 July 2020;
pp. 7567–7578.

52. Liu, Y.; Lapata, M. Text Summarization with Pretrained Encoders. arXiv 2019, arXiv:1908.08345.
53. Saparina, I.; Osokin, A. SPARQLing Database Queries from Intermediate Question Decompositions. In Proceedings of the

Empirical Methods in Natural Language Processing. Punta Cana, Dominican Republic, 7–11 November 2021; pp. 8984–8998.
54. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037.
55. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
56. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the CVPR, Las Vegas, NV,

USA, 26 June–1 July 2016; pp. 770–778.
57. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online:

http://www.deeplearningbook.org (accessed on 5 January 2023).
58. Mitchell, E.; Lin, C.; Bosselut, A.; Finn, C.; Manning, C.D. Fast model editing at scale. arXiv 2021, arXiv:2110.11309.
59. Xu, W.; Napoles, C.; Pavlick, E.; Chen, Q.; Callison-Burch, C. Optimizing Statistical Machine Translation for Text Simplification.

Trans. Assoc. Comput. Linguist. 2016, 4, 401–415. [CrossRef]

http://dx.doi.org/10.1109/TVCG.2020.3030378
http://dx.doi.org/10.1109/TVCG.2017.2744684
http://dx.doi.org/10.1023/A:1011368926479
http://dx.doi.org/10.1109/TVCG.2020.2978050
https://powerbi.microsoft.com
https://www.tableau.com/products/new-features/ask-data
http://dx.doi.org/10.1109/TVCG.2019.2934668
http://dx.doi.org/10.1109/TVCG.2021.3114848
http://www.ncbi.nlm.nih.gov/pubmed/34784276
http://dx.doi.org/10.1109/TVCG.2022.3148007
https://github.com/narchart/narrative-chart
http://dx.doi.org/10.1162/tacl_a_00309
http://www.deeplearningbook.org
http://dx.doi.org/10.1162/tacl_a_00107

Appl. Sci. 2023, 13, 9709 18 of 18

60. Gu, J.; Lu, Z.; Li, H.; Li, V.O. Incorporating Copying Mechanism in Sequence-to-Sequence Learning. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; pp. 1631–1640.

61. Zhao, Y.; Ge, L.; Xie, H.; Bai, G.; Zhang, Z.; Wei, Q.; Lin, Y.; Zhao, F. Astf: Visual abstractions of time-varying patterns in radio
signals. IEEE Trans. Vis. Comput. Graph. 2022, 29, 214–224. [CrossRef] [PubMed]

62. Zhao, Y.; Lv, S.; Long, W.; Fan, Y.; Yuan, J.; Jiang, H.; Zhao, F. Malicious webshell family dataset for webshell multi-classification
research. Visual Inform. 2023. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TVCG.2022.3209469
http://www.ncbi.nlm.nih.gov/pubmed/36170397
http://dx.doi.org/10.1016/j.visinf.2023.06.008

	Introduction
	Related Work
	Animation in Data Visualization
	Animation Generation
	NLIs for Data Visualization

	System Overview
	Design Requirements
	Architecture
	QDMR

	Data Query Analyzer
	Decomposition Network (D)
	Training Corpus
	Implementation

	Calibration Network (C)
	LossFunction
	TrainingCorpus
	Implementation

	Damation Generation
	Narrative Chart
	Action Presets
	Generation

	User Interface and Interactions
	Evaluation
	Quantitative Evaluation
	User Study
	Interview with Experts

	Conclusions, Limitations, and Future Work
	References

