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Abstract: Multi-layered composite materials are being used in various engineering fields, such as
aerospace, automobile, and wind energy, because of their superior material properties. Due to various
impact loads during the service life of composite structures, different types of defects can occur,
such as matrix cracking, fiber breakage, delaminations, etc. In this research, a novel SHM technique
for delamination detection and localization using a minimum number of sensors is proposed. The
analytical, numerical, and experimental analysis of GW was performed to increase the probability of
detection and localization of delaminations in CFRP material. A new analytical model was developed,
which enables identifying converted and transmitted modes in the presence of multiple GW modes. A
2D FFT-based spatial filtering was used to filter the GW modes. The dominant A0 mode was separated
to inspect the delamination. Phase velocity is one of the important features in GW inspection to
localize the delamination. A phase spectrum approach was developed to reconstruct the phase
velocity dispersion of the GW modes in case material properties are unknown.

Keywords: guided waves; delamination; numerical simulation; CFRP; SHM; aerospace

1. Introduction

Multilayered composite materials are extensively used in aerospace and other en-
gineering fields because of their impressive material properties, such as high stiffness,
low weight, and corrosive resistance. As a result, the implementation of these materials
contributes to reducing aircraft weight, improving fuel economy, and decreasing flight
operation costs [1–5]. Various failure mechanisms can affect composite structures during
manufacturing due to design errors or overheating or during service due to static overload,
shock, and fatigue. Common defects in composites are fiber failure, buckling, matrix
cracking, and delamination [6–10]. If these defects are not detected in composite materials,
they can lead to catastrophic structural failure. Fiber failure is relatively straightforward to
detect when the composite structure experiences static and dynamic loads. Matrix damage
takes different forms, such as voids or cracks within the fibers of the lamina or as a single
intralaminar defect within a composite layer. Buckling is another form of failure, commonly
appearing as a shear or compression failure.

Delamination is a crucial failure mechanism and represents one of the significant
vulnerabilities in multilayered composites. If these types of defects are not detected,
delamination can propagate through the composite laminates. Delamination in composite
structures can significantly compromise their stiffness, potentially leading to complete
structural failure. Therefore, it is important to monitor multilayered composite structures
to reduce maintenance costs.
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Guided wave structural health monitoring (GSHM) can be used to ensure the structural
integrity of composites [11]. The following tasks can be achieved, such as damage detection,
localization, and quantification [12–16]. Baseline-dependent SHM techniques require data
from both defect-free and defective specimens. On the other hand, baseline-independent
SHM techniques can detect damages by monitoring the structural response obtained
from external forces [17–21]. The structural integrity and reliability of the system can be
achieved by implementing an appropriate maintenance procedure. CQ Gómez Muñoz
proposed a baseline-dependent SHM technique using a single transmitter and multiple
sensors to monitor defects up to 4 m despite significant attenuation due to the honeycomb
structure [22]. An in situ SHM technique by Omar Mabrok Bouzid, based on GW acoustic
emission and wireless sensor network to monitor and localize impact damages [23]. The
baseline independent active SHM technique using thin PZT sensors was presented by
K. Diamanti to monitor disbonds. However, operational conditions such as vibrations,
loading conditions, and environmental conditions such as temperature and humidity can
influence the signals [24–31].

GW inspections have received significant attention in the non-destructive field due to
their high sensitivity and their ability to travel a long distance. However, the interpretation
of GW signals is complex, especially when dealing with unknown materials. Inspection
of composite materials is challenging due to their anisotropic properties [32–37]. Numer-
ous research studies have shown that guided wave inspection is used to identify and
assess impact damage, delamination, and other types of defects presented in multilayered
composites. A GW inspection method was proposed by Wang and Xinyan to detect and
measure the delamination caused by the low-velocity impact on multi-layered composite
material [38]. Naresh Kumar presented a guided wave inspection method to determine
delamination by analyzing the local response from the composite material using a single
transmitter and receiver [39]. Several factors that influence the guided wave propagation
in composites are the multilayered structure, anisotropic properties, specimen boundaries,
mode dispersion, distortion, multiple overlapped modes, and mode conversion [40–45].

The phase and group velocities of guided waves are important features to inspect
the structure. These features are dependent on the ply direction, elastic properties, and
the product of frequency-thickness [46]. A phase velocity technique was proposed by
Renaldas Raišutis to detect, locate, and size the through-thickness hole in composite
material by measuring phase velocity variation within the defect region [47]. Chongcong
Tao presented a technique to evaluate matrix cracking and fiber damage caused by cycle
loads by monitoring a significant drop in the speed of phase velocity [48]. S.C. Rosalie
proposed a technique to monitor the delamination growth between the laminates by
monitoring group velocity variation in the multilayered composite [49].

Identification of guided wave modes in the presence of low amplitude, converted, and
overlapped modes has been a long-standing problem. Zero-crossing and Hilbert transform
methods were used to calculate the ToF of well-isolated modes to determine the location of
delamination. However, the challenges arise when ToF needs to be determined using zero-
crossing and Hilbert transform techniques due to phase shift, signal-to-noise ratio, distorted
signal, and significant dispersion caused by anisotropic material properties [50–52].

In this study, the semi-analytical finite element method was used to obtain dispersion
curves to calculate the guided wave mode velocity at various frequencies. The GW tuning
curves were obtained to evaluate the dominant mode and the optimal excitation frequency
for inspection. A 2D FFT-based spatial filtering was used to filter the GW modes from the
B-scan data. To separate the specific mode, a frequency-dependent bandpass filter with a
cosine-tapered window was used to eliminate the S0 mode in the frequency wavenumber
domain. A phase spectrum approach was used to obtain the phase velocity of A0 mode.
Then the analytical GW modes were reconstructed following different propagation sce-
narios such as reflected, converted, and overlapped modes. By selecting the A0 mode,
analytical modeling, numerical simulation, and experiments were performed to detect and
estimate the location of the delamination. The objective of this research is to present a
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novel analytical model to locate the delamination in the presence of reflected, converted,
overlapped, and low-amplitude GW modes. A phase velocity reconstruction approach was
proposed to reconstruct the velocity of unknown materials from the baseline reference data.
An efficient SHM technique was developed to detect and localize the delamination in the
multi-layered CFRP material with a minimum number of sensors.

Theoretical analysis of GW interaction with delamination analytical, numerical, and
experimental analysis of GWs to increase the probability of detection in CFRP material was
used. The quantitative and qualitative analysis for the estimation of delamination position
is assessed.

2. Materials and Methods
2.1. Modeling Setup

For inspection, a multilayered CFRP plate measuring 450 mm in length and 3.5 mm in
thickness was selected. The investigated sample was manufactured from 18 plies of carbon
fiber, and the orientation of the plies are (−45◦, 0◦, +45◦, 0◦, 90◦, 0◦, −45◦, 0◦, and +45◦)2.
The mechanical properties of the CFRP used in the numerical simulation are presented in
Table 1. Here, E is Young’s modulus, G is the shear modulus, ν is the Poisson’s ratio, ρc is
the density of CFRP, and tply is the ply thickness. In this 2D model, the x-axis is along the
fibers, the y-axis is along the thickness of the CFRP plate, and the z-axis is assumed to be
infinitely long.

Table 1. The material properties of the CFRP [53–55].

Property Units Value

Density ρc kg/m3 1544
Thickness tply mm 0.194

Young’s modulus E1 GPa 131
E2 = E3 GPa 8

Shear modulus G12 = G13 GPa 4.5
G23 GPa 3.5

Poisson’s ratio ν12 = ν13 - 0.29
ν23 - 0.47

The location of delamination was analyzed in two cases by placing the receivers before
and after the delamination. In case 1, two receivers were placed at distances of 10 mm and
20 mm from the leading edge of the delamination. In case 2, three receivers were placed at
distances of 10 mm, 20 mm, and 30 mm from the trailing edge of the delamination. The
through-thickness location of the delamination (Xh) was 1.7 mm. The cases studied, the
delamination and receiver position, and distances are presented in Table 2.

Table 2. Delamination position in the longitudinal direction.

Case Delamination Position
(Xd) (mm)

Distance between
Edge of the Sample

and Receiver
(Xr) (mm)

Distance between
Delamination and

Receiver (Xdr) (mm)

1-1 250 230 20
1-2 250 240 10
2-1 250 280 10
2-2 250 290 20
2-3 250 300 30

The 2D simulation was performed to analyze a GW interaction with a delamination-
type defect with a length of 20 mm. The delamination was located at 250 mm along the
longitudinal direction and 1.7 mm in the thickness direction, as shown in Figure 1. The
transmitter-receiver configuration was used to perform the inspection. A normal force was
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applied at the point-type excitation source to propagate the A0 mode. To minimize the
distortion of guided waves, a point-type excitation was selected. The excitation source was
placed at 70 mm from the leading edge of the CFRP plate.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 19 
 

 

The 2D simulation was performed to analyze a GW interaction with a delamination-
type defect with a length of 20 mm. The delamination was located at 250 mm along the 
longitudinal direction and 1.7 mm in the thickness direction, as shown in Figure 1. The 
transmitter-receiver configuration was used to perform the inspection. A normal force 
was applied at the point-type excitation source to propagate the A0 mode. To minimize 
the distortion of guided waves, a point-type excitation was selected. The excitation source 
was placed at 70 mm from the leading edge of the CFRP plate. 

 
Figure 1. Guided wave inspection setup of CFRP panel: defect-free (a), receiver position before the 
delamination (b), and receiver position after the delamination (c). 

2.2. Guided Wave Dispersion Curves 
Obtaining dispersion curves is an important task for the selection of appropriate GW 

modes and the excitation frequency for the inspection. The SAFE method is a fundamental 
technique used to compute the dispersion curves of guided waves. In this method, a 2D 
arbitrary plate is divided into elements in the thickness direction, and the x-axis corre-
sponds to the wave propagation direction, as shown in Figure 2. 

 
Figure 2. Schematic diagram of the 2D model used in the SAFE method. 

The governing equation of the plain strain model for wave propagation in an elastic 
medium using the SAFE method can be represented by the following equation [56]: (𝜆 + 𝜇) ∇ (∇ ∙ 𝐮ᇱ) +  𝜇∇ଶ𝐮ᇱ =  𝜌 𝜕ଶ𝐮ᇱ𝜕𝑡ଶ ′ , (1)

where 𝜆 is the Lamé constant, µ is the shear modulus, 𝜌 is the density, and t is the time. 
The 𝐮௫ᇱ , 𝐮௬ᇱ , and 𝐮௭ᇱ   are symmetric, shear horizontal, and asymmetric displacement vec-
tors. 
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2.2. Guided Wave Dispersion Curves

Obtaining dispersion curves is an important task for the selection of appropriate GW
modes and the excitation frequency for the inspection. The SAFE method is a fundamental
technique used to compute the dispersion curves of guided waves. In this method, a 2D
arbitrary plate is divided into elements in the thickness direction, and the x-axis corresponds
to the wave propagation direction, as shown in Figure 2.
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The governing equation of the plain strain model for wave propagation in an elastic
medium using the SAFE method can be represented by the following equation [56]:

(λ + µ)∇
(
∇·u′

)
+ µ∇2u′ = ρ

∂2u′

∂t2 ′
, (1)

where λ is the Lamé constant, µ is the shear modulus, ρ is the density, and t is the time. The
u′x, u′y, and u′z are symmetric, shear horizontal, and asymmetric displacement vectors.

In this study, it was assumed that the plate’s width is infinitely long along the y-axis.
A totla of 36 elements are assigned in the z-axis, the thickness of the plate is discretized
into elements, and each element is 0.097 mm. In this multilayered CFRP plate, each ply is
assigned two elements. Each ply had a thickness of 0.194 mm, and the thickness of 18 plies
of CFRP plate was 3.5 mm.

The purpose of the SAFE method was to determine the phase velocity, cph( f ), and
group velocity, cg( f ), at various frequencies. The dispersion curves obtained for the CFRP
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plate under investigation are presented in Figure 3a,b. Based on the dispersion curves, it
can be observed that at a frequency of 150 kHz, the A0 mode phase and group velocities
are 1450 m/s and 1623 m/s, respectively. The S0 mode phase and group velocities are
7664 m/s and 7616 m/s, respectively.
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Figure 3. Guided wave dispersion curves in the CFRP panel: phase velocity versus frequency (a) and
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The maximum amplitude of each mode varies depending on the excitation frequency.
At higher frequencies, the guided wave modes exhibit higher-order modes with smaller
wavelengths. However, this results in complex signal interpretation because of dispersion,
as multiple modes are superimposed on each other. By selecting the frequency range of
150 kHz, only fundamental modes were exhibited, and higher-order modes should not
be present.

2.3. Guided Wave Frequency Tuning Curves

In GW inspection, fundamental or higher-order modes can be selected for the inspec-
tion according to dispersion curves. The dispersion curves obtained give only velocity and
frequency, but the sensitive mode cannot be selected. For this purpose, GW tuning curves
are important to select sensitive mode and optimal frequency for the inspection.

To obtain the frequency tuning curves, the simulation was carried out in COMSOL
with a contact transducer having similar properties to those of the transducer used in the
experiments. Figure 4 shows the schematic diagram of the inspection setup. GW excited
with an excitation frequency range from 10 to 300 kHz on a 3.5 mm CFRP plate. The
maximum displacements of both S0 and A0 were calculated for each 10 kHz frequency
step. The maximum displacements of the GW modes are presented in Figure 5. Frequency
tuning curves are used to select the optimal GW mode for the inspection.
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The A0 mode is sensitive to delamination-type defects and is also sensitive to the
length of the delamination. The displacements of the A0 mode are higher than those of
the S0 mode at 150 kHz frequency and are dominant. Therefore, the A0 mode is selected
for inspection.

2.4. Reconstruction of GW Modes

The working procedure of the combined phase spectrum and analytical model is
presented in Figure 6.
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The proposed analytical model is divided into two steps: one is pre-processing,
whereas B-scan data refer to baseline data obtained prior to installing the sensors to
reconstruct the phase velocity of GW modes. Another is post-processing, whereas GW
mode was reconstructed to measure the defect location. The first step in this method is
to perform 2D FFT on B-scan data obtained from the inspection. A 2D FFT-based spatial
filtering was used to filter the GW modes from the B-scan data. To separate the mode of
interest, a frequency-dependent bandpass filter with cosine-tapered window was used to
eliminate the S0 mode in the frequency wavenumber domain. Then, the A0 mode was
extracted for further analysis. In this analysis, the zero-crossing technique was used to
calculate the ToF along the 200 mm scanning length with a 1 mm step. The threshold level
TL is assigned to define the zero crossing points to calculate the ToF of A0 mode. The first
and second half period of the signal which exceeds the defined threshold value can be
expressed by the following equation [57]:

n1 = min{arg[u(tn) > TL] } (2)

where, TL is the threshold value, n is the number of periods and, u(tn) is the signal.
The phase velocity of the A0 mode is calculated by the following equation:

Cph =
dx
dt

(3)

where dx = x1 − x2 is the distance, dt = t1 − t2 is the ToF, Cph is the phase velocity.
Once the phase velocity of A0 mode is obtained, and the analytical signal was gener-

ated to reconstruct possible GW modes. The excitation signal used in the analytical model
is presented in Figure 7. The excitation signal is generated in the form of the Hanning
window function by the following equation [58]:

V = A. ∗ sin(ωt). ∗ sin2
(

ωt
2N

)
. ∗
(

t <
2Nπ

ω

)
(4)

where A is the amplitude of the excitation signal, ω = 2π f is the angular frequency, t is the
time, and N is the number of cycles.
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2.5. Numerical Simulation of Guided Waves

Numerous mock-up trials are necessary for the experimental evaluation of each GW
propagation scenario for various inspection setups, different types of flaws, loading, and
environmental conditions. Numerical simulation of guided waves is an effective method to
understand the propagation of GW and the interaction of various modes with delamination
in composite materials.

In this 2D model, the x-axis represents the length of the plate, the y-axis represents
the thickness of the plate, and the z-axis is infinitely long. The velocity of the guided wave
varies due to anisotropic properties and ply direction. Numerical simulation using a 3D
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model could model guided wave propagation in all directions. However, 20 elements
per wavelength criterion in 3D modeling of ultrasonic GW propagation would consume a
significant amount of time and computational resources.

Therefore, in this research, a numerical simulation of GW propagation was performed
using the 2D plane strain model. The simulation involved 3750 time steps, with each step
lasting 0.08 s. The duration of the propagation of the GW in the simulation was 300 µs. In
the finite element method (FEM), the mesh size and shape are key features. The simulation
was performed using CPE4R-type elements, which are quadrilateral elements specifically
designed for plain-strain models. These elements offer faster hourglass control and faster
integration, resulting in reduced mesh deformation and a finer mesh.

The accuracy of the GW simulation depends on the mesh size. A finer mesh gives
accurate results but increases computation time. Twenty elements per wavelength (λ)
criterion was selected to maintain the balance between accuracy and computation time.
Therefore, the mesh size was 0.6 mm.

By applying normal force to the excitation zone, the fundamental asymmetrical (A0)
mode was excited. The input signal was a three-cycle sine wave with a driving frequency
of 150 kHz. The selected frequency provides an optimal balance between dispersion,
attenuation, and mode complexity. To extract the A0 mode, signals were recorded on the
plate surface at every 0.6 mm, and the corresponding B-scan data were obtained. The
B-scan data were then subjected to a 2D fast Fourier transform to determine the phase
velocity at each frequency, as shown in Figure 8.
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The dispersion characteristics of the guided waves in the CFRP plate were obtained
using a 2D fast Fourier transform. The propagation of guided waves along the plate is rep-
resented by u(x,t) in terms of distance and time and was transformed into the wavenumber,
k, at each frequency using the 2D FFT method [59]:

H(k, f ) =
∫ +∞

−∞

∫ +∞

−∞
u(x, t)e−j(kx+ωt)dxdt (5)

where x is the distance, t is the time, ω is the angular frequency, and k is the wavenumber.
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3. Results and Discussion
3.1. Guided Wave Interaction with Delamination

For reference, the defect-free signal is required to be compared with the signal in case
of delamination. Then, the reference location of delamination is estimated by calculating
the ToF between t1 and t2 as shown in Figure 9.
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Figure 9. Reference signal and envelope of the defect-free and delamination samples to estimate the
location of the delamination.

The low amplitude reflected and overlapped converted modes can be reconstructed by
considering the estimated reference location using the defect-free signal and phase velocity
from the phase spectrum approach. Using the analytical model, targeted modes can be
reconstructed at any distance with an accurate time of flight. By comparing the analytical
signal with the numerical or experimental signal, the defect location can be estimated.

After interaction with delamination, guided waves are reflected, transmitted, and
converted to other modes, as shown in Figure 10. Part of excited A0e mode is reflected at
the leading edge of the delamination, i.e., A0r mode, and another part of the excited A0e is
converted into S0 mode. i.e., S0c mode.
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In this study, the A0 mode is dominant, and the S0 mode has a lower amplitude.
Therefore, the out-of-plane displacement component of guided waves is extracted for
analysis, as shown in Figure 11.
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In the case of defect-free, both S0 and A0 modes are reflected from the leading and
trailing edge of the plate. In the case of delamination, the A0 mode is reverberated multiple
times within the delamination due to the displacement profile of the A0 mode being
perpendicular to the delamination. The reflection coefficient of the S0 mode is lower
compared to the A0 mode because the displacement profile of the S0 mode is parallel to
the delamination.

3.2. Localization of Delamination Using an Analytical Model

The interaction of guided waves with the delamination located at 250 mm was ana-
lyzed. To determine the position of the delamination (Xd), two different receiver positions
were used. The GW signals were received (Xr) at 20 mm and 10 mm from the leading edge of
the delamination. In this specific scenario, the A0 mode, which is reflected from the leading
edge of the delamination, was analyzed for the purpose of localizing the delamination.

During the analysis of the reflected A0 mode from the delamination, the A0 mode
that is initially excited and propagates directly to the receiver is referred to as the direct A0
mode (t1). Similarly, the reflection from the leading edge of the delamination is denoted as
t2. Taking into account the time of flight (ToF) between t1 and t2, it is possible to determine
the location of the delamination.

During guided wave inspection, the reflection coefficients of the excited A0e mode
change based on the delamination position within the specimen thickness. As a result,
the reflection obtained from the leading edge of the delamination tends to have a lower
amplitude. Delamination estimation using these lower amplitude modes is complex. For
this reason, an analytical model was developed to match the lower amplitude A0r mode,
and then the ToF of the reflected mode (t2) is estimated.

Figure 12 shows the Hilbert envelope of the asymmetrical mode of guided wave
signals received at various receiver positions. The envelope of the guided wave signal,
represented by H(t), is obtained using the Hilbert transform and can be expressed using
the following equation [45]:

H(t) = |Hilbert[x(t)]| (6)
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Figure 12. GW signal received in case the delamination is located further than the receiver.

By calculating the time of flight (ToF) between t1 and t2, the delamination location can
be estimated based on the time difference between direct and reflected A0 mode.

Xe =
∆t·cg

2
, (7)

where cg is the group velocity and ∆t = t2 − t1 is the time difference between direct and
reflected A0 mode.

The distance from the receiver to delamination estimated using an analytical model is
presented in Table 3. In this case, the location of the delamination was estimated by taking
into account the reflection from the leading edge of the delamination. The absolute error to
estimate the delamination location was calculated by considering the difference between
the actual and measured value by the following equation:

εa =| Da − Dm| (8)

where εa is the absolute error, and Da and Dm are the actual and measured values, respectively.

Table 3. Delamination position estimation using analytical model.

Case Receiver
Distance from

Delamination to
Receiver (mm)

Propagation
Time t2 – t1 (µs) ToF (dt) (µs) Estimated

Distance (mm) Absolute Error

1-1 R1 20 87.2 − 62.8 24.4 19.8 0.2
1-2 R2 10 81.1 − 69.2 11.9 9.6 0.4

In the case where the delamination is between the excitation source and the receiver,
GW signals were received at distances of 280 mm, 290 mm, and 300 mm from the leading
edge of the CFRP plate. The distance between the delamination and the receiver (Xdr) was
measured as 10 mm, 20 mm, and 30 mm. In this case, when the A0 mode propagates above
and below the delamination, part of it is transmitted A0 and part of it is converted into S0
mode. The converted S0 mode is received at the receiver as the first wave packet (t1), while
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the transmitted A0 mode continues to propagate within the delamination and is received
as the second wave packet (t2), as shown in Figure 13.
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Figure 13. Guided wave signal when the delamination is between excitation source and receiver.

Analyzing the guided wave (GW) signals becomes challenging due to the differing
velocities of the converted S0 modes combined with the transmitted A0 mode or other
modes. Estimation of delamination location in case of overlapped modes is complex. For
this reason, an analytical model was developed to match the overlapped modes, and then
the ToF of the converted S0 mode (t2) can be estimated.

The delamination location (Xd) can be estimated by calculating the ToF between
the converted S0 mode and the transmitted A0 mode. The estimated distance from the
delamination to the receiver and the absolute error of the estimated delamination position
are presented in Table 4.

Table 4. Localization of delamination when the delamination is between transmitter and receiver.

Case Receiver
Distance from

Delamination to
Receiver (mm)

Propagation
Time t2 – t1 (µs) ToF (dt) (µs) Estimated

Distance (mm) Absolute Error

2-1 R1 10 92.4 − 88.4 4 6.4 3.6
2-2 R2 20 99.5 − 89.4 10.1 16.3 3.7
2-3 R3 30 105.6 − 91.1 14.5 23.5 6.5
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4. Experimental Investigation

The experimental inspection focused on a multilayer CFRP plate with dimensions of
540 mm in length, 450 mm in width, and 3.5 mm in thickness. The unknown characteristics
of the CFRP material were intentionally selected to verify the developed phase spectrum
approach and analytical model. A 60 × 20 mm rectangular Teflon tape was inserted
between 9 and 10 plies of the CFRP plate, i.e., 1.7 mm in the through-thickness of the plate.
GW inspection was performed using a contact transmitter and receiver inspection setup, as
shown in Figure 14.
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The phase velocity dispersion of the A0 mode obtained using the two-dimensional
fast Fourier transform and phase spectrum approach is presented in Figure 15.
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Experimental Analysis Using Contact Transducers

The contact transducer setup (a pair of transmitter-receivers) developed by Ultrasound
Institute; Kaunas University of Technology was used to analyze the CFRP plate with 20 mm
delamination in a contact manner. The schematic experimental setup is presented in
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Figure 13. −6 dB bandwidth and wideband contact piezo ceramic transducers with a
conical protection layer of 0.2 mm diameter were used to excite and receive the GW signals.

Glycerol was used to have good contact between the transducers and the test object.
The transducer was excited with 200 V, and signals were recorded at each 1 mm along the
scanning length of 200 mm. The initial distance between the transmitter and receiver was
80 mm. The scanning was performed in both the defect-free and defective regions on the
CFRP plate. The B-scan images of guided wave propagation along the length of the plate
with respect to time for both defect-free and defective regions are presented in Figure 16.
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Figure 16. B-scan images of the defect-free and delaminated zones obtained using contact inspection.

In case the delamination is positioned after both the transmitter and the receiver; the
GW signals are reflected from the leading edge of the delamination. In this specific case,
the A0 mode, which was reflected from the leading edge of the delamination, was analyzed
to determine the delamination position.

While analyzing the reflected A0 mode obtained from the delamination is initially
excited and propagates directly to the receiver, which is referred to as the direct A0 mode
(t1). The guided wave reflected from the leading edge of the delamination is denoted as
t2. The time of flight (ToF) between t1 and t2 and the location of the delamination can be
determined.

In the GW inspection, reflection coefficients of excited A0e mode depends on the
location of the delamination in the thickness direction of the specimen. Consequently, the
reflection acquired from the leading edge of the delamination has a lower amplitude and,
in addition, is superimposed with other modes reflected from the edges of the sample.
Delamination estimation using lower amplitude and overlapped modes is complex. Thus,
an analytical model was developed to identify the lower amplitude and overlapped modes,
and then the ToF of the reflected mode (t2) can be estimated. The guided wave signals
transmitted A0 and reflected A0 are presented in Figure 17.
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Figure 17. GW signal received in case delamination was after receiver point.

The measured distance from the receiver to the delamination is presented in Table 5.
The absolute error of the delamination location was calculated by considering the difference
between the actual and the measured values.

Table 5. Localization of delamination when the delamination after excitation and receiver.

Case Receiver
Distance from

Delamination to
Receiver (mm)

Propagation
Time t2 − t1 (µs) ToF (dt) (µs) Estimated

Distance (mm) Absolute Error

1-2 R1 20 123.7 − 87.4 36.3 19.7 0.3
1-3 R2 10 114.5 − 95.6 18.9 10.2 0.2

In the case when the delamination is located between the excitation source and the
receiver, GW signals were received at distances of 280 mm, 290 mm, and 300 mm from the
leading edge of the CFRP plate. In this case, the excited A0 mode propagates within the
delamination, further divided into converted S0 and transmitted A0 modes. The converted
S0 mode is received at the receiver as the first wave packet (t1), while the transmitted A0
mode is received as the second wave packet (t2), as shown in Figure 18.

The complexity in signal interpretation arises from the varying velocities of the con-
verted S0 modes when combined with the transmitted A0 mode or other modes. Estimation
of delamination location using such type of overlapped modes is complex. For this reason,
an analytical model was used to match the overlapped modes, and then the ToF of the
converted S0 mode (t2) was estimated.

The delamination location (Xd) was estimated by calculating ToF between converted S0
mode and transmitted A0 mode. The estimated distance from delamination to the receiver
and the absolute error of the estimated delamination position are presented in Table 6.
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Table 6. Localization of delamination when the delamination is between excitation and receiver.

Case Receiver
Distance from

Delamination to
Receiver (mm)

Propagation
Time t2 − t1 (µs) ToF (dt) (µs) Estimated

Distance (mm) Absolute Error

2-1 R1 10 136 − 125.8 10.2 11 0.8
2-2 R2 20 142.1 − 128 14.1 15.3 4.7
2-3 R3 30 151.3 − 130.2 21.1 22.9 7.1

5. Conclusions

In this article, an effective GW inspection setup was proposed to locate the delam-
ination in the multilayered CFRP material. This method has the advantage of locating
the delamination either in between the excitation and receiver positions or even between
the receiver and the boundary of the sample. The guided waves are excited with a single
excitation source, and several receiver positions are used to locate the delamination in the
longitudinal direction. Thus, the proposed inspection setup has the advantage of locating
the delamination with the minimum number of sensors.

The A0 mode was selected for the inspection by analyzing dispersion curves and
frequency tuning curves. GW mode selection based on dispersion curves provides only the
velocity of a particular mode at different frequencies. Therefore, the selection of GW modes
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following dispersion curves is not accurate and is limited. The use of frequency tuning
curves has the advantage of selecting dominant modes and optimal frequencies for the
inspection. Thus, the A0 mode was selected for the inspection because it has a dominant
amplitude compared to the S0 mode and is sensitive to a delamination-type defect.

Phase velocity is one of the important features in detecting and locating the delam-
ination. Phase velocity estimation of GW modes in composite materials with unknown
properties is difficult. For this reason, a phase spectrum approach was developed to es-
timate the phase velocity of GW modes. The estimated phase velocity of the A0 mode is
further used in the developed analytical model.

The excited GW is reflected, converted, and overlapped with other modes when it en-
counters delamination. Analysis of GW modes in the presence of low amplitude, converted,
and overlapped modes is difficult. For this reason, a novel analytical model was developed
to locate the delamination in the presence of low amplitude and overlapped modes.

The analytical model developed was verified with five different scenarios using nu-
merical and experimental investigations. In the case of numerical results, the delamination
position was estimated with an average absolute error of 2.8 mm from the actual position of
delamination. In the case of experimental results, the delamination position was estimated
with an average absolute error of 2.6 mm from the actual position of delamination.
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