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Abstract: Semi-supervised clustering typically relies on both labeled and unlabeled data to guide 

the learning process towards the optimal data partition and to prevent falling into local minima. 

However, researchers’ efforts made to improve existing semi-supervised clustering approaches are 

relatively scarce compared to the contributions made to enhance the state-of-the-art fully unsuper-

vised clustering approaches. In this paper, we propose a novel semi-supervised deep clustering ap-

proach, named Soft Constrained Deep Clustering (SC-DEC), that aims to address the limitations 

exhibited by existing semi-supervised clustering approaches. Specifically, the proposed approach 

leverages a deep neural network architecture and generates fuzzy membership degrees that better 

reflect the true partition of the data. In particular, the proposed approach uses side-information and 

formulates it as a set of soft pairwise constraints to supervise the machine learning process. This 

supervision information is expressed using rather relaxed constraints named “should-link” con-

straints. Such constraints determine whether the pairs of data instances should be assigned to the 

same or different cluster(s). In fact, the clustering task was formulated as an optimization problem 

via the minimization of a novel objective function. Moreover, the proposed approach’s performance 

was assessed via extensive experiments using benchmark datasets. Furthermore, the proposed ap-

proach was compared to relevant state-of-the-art clustering algorithms, and the obtained results 

demonstrate the impact of using minimal previous knowledge about the data in improving the 

overall clustering performance. 
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1. Introduction 

Supervised machine learning is an extensively studied and applied topic in the arti-

ficial intelligence field [1–3]. This learning paradigm is a powerful tool for data classifica-

tion using machine language. However, supervised learning requires the availability of 

accurately labeled datasets to infer learning models [4]. Despite the learning capability of 

the state-of-the-art supervised machine learning algorithms, the continuously growing 

size of the datasets used to train the models has made the labeling an even more costly 

process in terms of time and effort. In contrast, when only a relatively small dataset is 

available, it typically becomes prone to overfitting the training set. This disadvantage of 

supervised learning has promoted research on unsupervised machine learning which 

does not require labeled data for the training stage. In fact, unsupervised machine learn-

ing can cope better with a huge amount of unlabeled data as it eliminates the requirement 

of carefully annotating the training sets. Clustering is an unsupervised learning technique 

that is meant to draw conclusions and discover the hidden patterns in unlabeled datasets. 

Clustering has been adapted to address various problems in many areas, such as data 

mining, pattern recognition, and computer vision [5]. In many fields, there are obvious 

benefits to be acquired from grouping instances that share similar properties into different 

clusters in an unsupervised manner [6]. Clustering algorithms have been extensively stud-

ied, as a descriptive data mining tool, from various aspects including similarity measures, 
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feature selection, and grouping methods [7]. Among the well-known and widely used 

clustering algorithms, one can cite k-means [8], hierarchical clustering [9], and Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) [10]. The main concept of 

DBSCAN is that for a data object to belong to a cluster, the density in a neighborhood for 

that data object should be high enough, satisfying a user-specified density threshold [11]. 

This threshold is represented by two hyper-parameters; the radius of the neighborhood 

(eps) and the minimum number of points required to from the neighborhood (MinPts). 

Despite DBSCAN algorithm’s robustness to outliers and capability of handling irregularly 

shaped clusters, it deteriorates when dealing with high dimensional data and is sensitive 

to the input parameters [12]. 

The typical goal of clustering is to group sets of data objects together in a way that 

instances assigned to the same cluster are more similar to each other compared to those 

belonging to other clusters. In fact, grouping similar data entities together is intended to 

discover the data partition and provide insights on the patterns underlying the different 

categories. Commonly, for a clustering algorithm to achieve the data mining goal, it 

should be preceded by a feature extraction stage that is intended to encode and extract the 

data properties that can better discriminate between the hidden clusters. However, this 

feature extraction phase may yield a highly dimensional data representation and a curse 

of dimensionality problem [13]. 

To meet the curse of dimensionality challenges, several dimensionality reduction 

methods [14,15] have been introduced to transform the data from the original feature 

space into a new feature space with fewer dimensions. However, despite these contribu-

tions, the data that exhibit a highly complex latent structure remain challenging to cluster 

using the existing clustering methods [5]. 

The emergence and rapid development of deep neural networks (DNNs) has trig-

gered revisiting the clustering-related research. The rationale was to exploit the deep neu-

ral networks’ ability to automatically determine the most relevant features and relax the 

need for feature handcrafting and engineering [5,16]. Moreover, the researchers’ interest 

in deep clustering paradigms was intended to address challenges such as the inability to 

handle datasets that lie on nonlinear manifolds, the curse of dimensionality, and the sen-

sitivity to noise [17,18]. Basically, the earliest deep clustering works [19,20] focused on 

feature transformation and clustering as two independent processes. In other words, the 

data were first mapped into a new feature space and then fed into a clustering algorithm. 

Recently, deep clustering has been adapted to jointly perform feature learning, transfor-

mation, and the clustering of data that exhibit a highly complex latent structure [5]. The 

fundamental component of deep clustering approaches relies on deep neural network ar-

chitectures such as autoencoders [21], the network loss, and the clustering loss optimiza-

tion [7]. 

Deep clustering potentials were mainly explored in the context of entirely unsuper-

vised learning. However, the datasets are naturally weak or poorly labeled in the real 

world [22]. This boosted the researchers’ efforts to exploit this knowledge to inject some 

supervision to guide the clustering process, i.e., introduce the semi-supervised learning 

paradigm. Semi-supervised learning uses both labeled and unlabeled data to train a 

model. Moreover, semi-supervised learning exploits prior knowledge and formulates it 

as constraints to ease the learning process. Despite researchers’ efforts, the state-of-the-

art, semi-supervised, deep clustering approaches remain far below expectations com-

pared to the fully unsupervised approaches. In particular, the use of fuzzy logic was not 

investigated to represent the data partition in the context of semi-supervised deep learn-

ing. Moreover, the existing semi-supervised clustering methods only proposed the inte-

gration of the supervision information as crisp pairwise constraints rather than soft ones. 

In this research, we propose a novel semi-supervised deep clustering approach, 

named Soft Constrained Deep Clustering (SC-DEC), to overcome the limitations in cur-

rent approaches. The proposed approach leverages a deep neural network architecture for 



Appl. Sci. 2023, 13, 9673 3 of 19 
 

feature learning and performs clustering with fuzzy membership degrees to better repre-

sent the true partition of the data. Specifically, we formulated the deep clustering problem 

as an optimization of a novel objective function. This function is designed to simultane-

ously discover the hidden data clusters and optimize the deep neural network. Moreover, 

soft pairwise constraints were incorporated within the objective function to represent the 

available supervision knowledge. These constraints were formulated in a relaxing way in 

which the compliance to a constraint is not strictly obligated, which makes the proposed 

approach more suitable for real-world data clustering applications where the available 

side information is not mature enough to be strictly imposed. Additionally, the fuzzy-

based representation of data partition was adopted in the proposed method to reflect the 

grouping of data in a more accurate way. 

The main contributions of this research can be summarized as follows: (i) We formu-

lated the proposed semi-supervised deep clustering approach as an optimization problem 

and designed the objective functions that carry the proposed tasks to simultaneously learn 

a discriminative embedded representation of the original data along with the optimal data 

clusters. (ii) We solved the formulated optimization problem and derived updated equa-

tions of the respective parameters. (iii) We designed and implemented a novel deep semi-

supervised clustering algorithm using state-of-the-art technology, platforms, and tools. 

(iv) We evaluated the performance of the proposed approach using real datasets and 

standard performance measures in addition to an objective comparison with relevant 

state-of-the-art approaches. 

The rest of this paper is organized as follows: Section 2 presents the related works 

while Section 3 introduces the proposed method. The experimental settings as well as the 

analysis and discussion of the results are presented in Section 4. Finally, the conclusion 

and future work are discussed in Section 5. 

2. Related Works 

Research work on deep clustering includes deep embedded clustering and semi-su-

pervised deep embedded clustering (SS-DEC) approaches. For deep embedded clustering, 

Deep Neural Networks (DNNs) have been used for dimensionality reduction to learn a 

clustering-oriented representation that favors the clustering tasks. In fact, different deep 

clustering frameworks were created on top of various DNN architectures. Namely, auto-

encoders (AEs), Deep Belief Networks (DBNs) [23], Convolutional Neural Networks 

(CNNs) [24,25], and Generative Adversarial Networks (GANs) [26] have been introduced 

and used in various deep clustering applications. In particular, autoencoders have been 

widely adapted to address challenges relevant to the deep clustering architectures [21,27–

29]. A recent survey [30] distinguishes deep clustering methods in terms of methodology, 

prior knowledge, and architecture. Specifically, the authors listed semi-supervised deep 

clustering as one of the main four categories of deep clustering methods. 

For AE-based deep clustering approaches, the encoder layers of the trained autoen-

coder are the ones leveraged for feature transformation into a lower-dimensional space, 

which serves as the input for the clustering algorithm. Recently, an AE-based deep clus-

tering architecture, deep embedded clustering (DEC) [21], was proposed, which was then 

followed by a number of variants [19,27–29,31–36] that used DEC as the basis for their 

framework. From then, deep clustering has become a growing research field, with DEC 

[21] being the experimental benchmark for many deep clustering approaches [29,34]. 

For DEC [21], the DNN architecture consists mainly of an autoencoder that is used 

to automatically learn the feature representations via nonlinear embedding into a lower-

dimensional feature space. After the autoencoder is trained and its parameters are initial-

ized, it is finetuned further to minimize the reconstruction loss. Only the encoder layers 

are kept and used as the initial mapping function between the data space and the embed-

ded feature space. To initialize the cluster centers, the original data are passed through 

the initialized encoder to obtain the embedded data points and perform standard k-means 

clustering in the embedded feature space to obtain k initial centroids and memberships. 
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After that, DEC updates its parameters by iterating between computing an auxiliary target 

distribution and minimizing the following objective function in form of the Kullback–

Leibler (KL) divergence from the computed soft assignments to the computed auxiliary 

target distribution: 

𝐿 = 𝐾𝐿(𝑃||𝑄) =  ∑ ∑ 𝑝𝑖𝑗 𝑙𝑜𝑔
𝑃𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖   (1) 

where Q is the soft assignments of the data points and P is the computed auxiliary distri-

bution. 

In the above equation, 𝑞𝑖𝑗  is a centroid-based probability distribution (i.e., soft as-

signment) that represents the probability of assigning sample i to cluster j, and it is com-

puted using the Student’s t-distribution. Moreover, 𝑝𝑖𝑗  in Equation (1) is the auxiliary 

target distribution that 𝑞𝑖𝑗  is matched to by minimizing a KL divergence metric between 

the two distributions. Further elaboration on the computation of 𝑞𝑖𝑗   and 𝑝𝑖𝑗   can be 

found in Equations (3) and (4) below. 

This objective function in Equation (1) is minimized using a Stochastic Gradient De-

scent (SGD) to learn cluster centers and DNN parameters from the embedded space Z. 

Lastly, a cluster assignment hardening loss is applied to obtain the soft assignment prob-

abilities of the embedded points. DEC reported an 84.3% clustering accuracy on the 

MNIST images dataset and 75.63% on the REUTERS text dataset, outperforming several 

state-of-the-art spectral clustering-based algorithms. 

Motivated by the need to address certain limitations, other deep clustering works 

were proposed to incorporate improvements to the DEC [21] framework. Specifically, the 

IDEC model [37] extended DEC by preserving the local structure of data in the feature 

space through keeping the decoder layers to avoid feature space distortion by the cluster-

ing loss. Another model introduced in [27] extended IDEC by adopting a convolutional 

autoencoder (CAE) as the deep network. Later, several deep clustering works based on 

(CAE) were suggested [32]. Data augmentation was also associated with DEC in [28] to 

improve the model’s generalization by making the DNN learn more representative fea-

tures. Moreover, a k-means based DEC framework was presented in [19]. In particular, a 

cost function that consists of dimensionality reduction, data reconstruction, and a k-means 

clustering structure promoting regularization loss terms was introduced. Another related 

DEC-based work [33] leverages symmetry-based distances within the DEC framework as 

a powerful tool to distinguish symmetric shapes. 

The authors in [38] observed the fact that DEC [21] does not make use of prior 

knowledge to guide the learning process. They extended DEC [21] and proposed a new 

scheme of Semi-Supervised Deep Embedded Clustering (SDEC) to overcome this limita-

tion. SDEC’s best performance was reported as an 86.11% clustering accuracy and 82.89% 

NMI on the MNIST image dataset. Since then, Semi-Supervised Deep Embedded Cluster-

ing (SS-DEC) became a growing field. Actually, most of the SS-DEC literature addresses 

general clustering purposes [39–42]. On the other hand, some works targeted anomaly 

detection [43], software fault proneness classification (fault prediction) [44], image classi-

fication and segmentation [45], and deep generative purposes [46,47]. The supervision in-

jected in SS-DEC models takes several forms. The researchers in [41] imposed standard 

must-link and cannot-link pairwise constraints to their model, while the authors in [31] 

extended the encoding of standard pairwise constraints to more complex constraints such 

as continuous values (triplet constraints), instance difficulty constraints, and cluster-level 

balancing constraints. Triplet constraints are useful in the cases where no strong pairwise 

guidance is available. As for the instance difficulty constraints, it allows the user to a priori 

specify which instances are easier to cluster (i.e., they belong strongly to only one cluster), 

whereas the cluster-level balancing constraints enable the experts to guide the clustering 

process via the prior cardinality information. Another approach, Ts2DEC, outlined in [48], 

used triplet constraints. 
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In [49], the pairwise constraints are self-generating from a mutual KNN graph which 

makes the clustering approach unsupervised. The method then extends it to semi-super-

vised clustering by including human intervention to finetune these self-generating con-

straints by analyzing the losses associated with the pairs to form a set of false positive 

candidates. ClusterNet [50] also uses pairwise semantic constraints from very few labeled 

data samples (<5% of total data) and exploits the abundant unlabeled data to drive the 

clustering. The network is optimized by minimizing a combination of k-means-based clus-

tering loss and pairwise KL-divergence loss where the two are regularized via an autoen-

coder’s reconstruction loss and each are defined for both the labeled as well as unlabeled 

data. A different approach to include supervision information was outlined in [47] where 

a small, labeled dataset is used to assign classes to components of Gaussian mixtures. The 

resulting mixture describes the distribution of the whole data. 

The authors in [39] extended deep embedded clustering approaches to Electronic 

Health Record (I) patient cohorts. Specifically, supervision was applied by modifying the 

latent representation according to known patient subgroups through applying transfer 

learning of the encoder and fine-tuning of layers. 

One should note that most DEC-based works [38,39,45,48] use k-means clustering 

algorithms to initialize the cluster centers, followed by cluster assignment hardening in 

the form of clustering loss. However, the authors in [40] used a graph-based clustering 

method, while in [49], the mutual 𝑘 nearest neighbor (MKNN) neighborhood method was 

employed to automatically extract appropriate pairs for clustering, and these pairs were 

used as must-link constraints. On the other hand, in [51], the researchers replaced the clas-

sical k-means clustering with a density-based clustering approach to cluster the learned 

low-dimensional embedded features. The concept of soft constraints was introduced in 

SS-DEC models by the authors in [42]. They extended a previous work [52] to neural net-

works with instance-level constraints. In [52], soft constraints were introduced by allow-

ing the constraints to be violated with violation costs. 

Generally, deep clustering approaches’ potential was mainly explored in the context 

of entirely unsupervised learning. The resulting approaches are still prone to the local 

minima due to the NP-hardness of the clustering problem. On the other hand, most real-

world datasets are naturally weakly labeled. Therefore, exploiting some prior knowledge 

as supervision information for the cluster analysis was later investigated to carry the clus-

tering process away from the local minima. This conforms with the assumption that feed-

ing the learning algorithm with some supervision in the form of a reward would improve 

the learning. A semi-supervised learning paradigm has produced a considerable impact 

on various machine learning-based applications [53]. Despite these achievements, the ef-

forts made to extend and improve the existing semi-supervised deep clustering ap-

proaches remain far below expectations compared to the researchers’ contributions to en-

hance fully unsupervised approaches. Several potentials for improvements can be inves-

tigated in this domain. Specifically, incorporating supervision information in a relaxed 

way was not investigated in previous works. In particular, such supervision can be softly 

expressed within the models’ objective using “should-link” pairwise constraints to deter-

mine whether the pairs of data instances should be assigned to the same or different clus-

ter(s). Moreover, the use of fuzzy logic [53] was not explored to represent the data parti-

tion in the context of the existing semi-supervised deep learning approaches. Thus, we 

introduce a novel, semi-supervised, deep clustering algorithm that incorporates the 

abovementioned aspects that we believe would fill several gaps and upscale the deep clus-

tering performance. 

3. Proposed Soft Constrained Deep Clustering (SC-DEC) 

The proposed semi-supervised deep clustering approach, named Soft Constrained 

Deep Clustering (SC-DEC), leverages a deep neural network architecture for feature learn-

ing and performs clustering with fuzzy membership degrees. Specifically, the deep clus-
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tering problem is formulated as an optimization of a novel objective function that is de-

signed to simultaneously discover the hidden data clusters and optimize the deep neural 

network. Furthermore, the available supervision knowledge is incorporated as soft pair-

wise constraints within the objective function in a soft way such that the compliance to a 

constraint is not strictly obligated. Moreover, data partition is represented in a fuzzy man-

ner within the objective to accurately reflect the grouping of data. 

This section introduces the design details of the proposed SC-DEC approach. The 

block diagram of SC-DEC is depicted in Figure 1. The proposed semi-supervised deep 

embedded clustering approach relies on two main components: (i) an objective function 

that carries out the clustering tasks as proposed, and (ii) an autoencoder AE network that 

learns the discriminative embedded representation of the original data. 

 

Figure 1. Overview of the proposed approach (SC-DEC). 

Let 𝑋 =  {𝑥𝑖}𝑖=1
𝑛  be a set of unlabeled data that serves as the input to our proposed 

clustering method, where each sample 𝑥𝑖  ∈  ℝ𝑑  and d is the dimensions of the input 

space. Instead of performing the clustering task directly in the original data space, we 

define a nonlinear mapping function 𝑓𝜃 to transform the original input data 𝑋 into a la-

tent feature space 𝑍 ; 𝑓𝜃: 𝑋 → 𝑍 , where 𝜃  represents the learnable parameters. The di-

mensionality of the latent space 𝑍 is much lower than the original space dimensionality. 

The main goal of the proposed SC-DEC method is to output an appropriate clustering of 

data in the embedded feature space 𝑍 by utilizing the unlabeled data and the injected 

supervision. Specifically, it aims to partition the data input into 𝑘 clusters, where each 

cluster is defined by a centroid 𝜇𝑗= 1,…,𝑘  and 𝜇𝑗 ∈ ℝ𝑑 . Specifically, for k-means algo-

rithms, the number of clusters k is based on the related literature and the considered 

benchmark datasets. Basically, we aim to find a cluster-friendly 𝑓𝜃 such that the learned 

parameters are biased towards the clustering task and the available knowledge. 

To initialize the parameters of the 𝑓𝜃, a deep autoencoder network [54] is built and 

trained in an unsupervised manner. Later, only the encoder layers are used within our 

model to receive the input data and transform it to the embedded space. The supervision 

knowledge are defined in the proposed approach as a set of should-link soft constraints 

and denoted by ℂ = {(𝑥𝑖 , 𝑥𝑘): 𝑥𝑖 and 𝑥𝑘 should be assigned to the same cluster, 1 ≤ 𝑖, 𝑗 ≤

𝑁. }. These soft constraint sets are pre-defined and randomly generated from the dataset 

and generally, the supervision information should be available for a subset of the dataset 

only. In the Experiments section, we vary its ratio and investigate the performance. 

We introduce our algorithm as an improvement to deep embedded clustering algo-

rithms. Specifically, we propose to integrate should-link constraints into the clustering 

loss objective of DEC [21] to find clustering-friendly representations. Consequently, we 
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tackle the proposed optimization problem by defining the following objective function 

and obtaining the partial derivatives of the parameters to be updated via minimization, 

as shown below: 

𝐽 =  ∑ ∑ 𝑝𝑖𝑗𝑙𝑜𝑔
𝑝𝑖𝑗

𝑞𝑖𝑗

𝐶
𝑗=1

𝑛
𝑖=1 + 𝛾 [∑ ∑ 𝑞𝑥𝑖 𝑗 

𝑚 𝑞𝑥𝑘 𝑗 
𝑚𝐶

𝑗=1𝑥𝑖,𝑥𝑘 ∈ ℂ ]  (2) 

where n is the number of data points, C is the number of clusters, m is the fuzziness pa-

rameter that reflects the fuzzy-based representation of the data clusters, and ℂ is the set 

of should-link constraints as shown above. 

The first term is the deep embedded clustering term of DEC [21], while the second 

term is designed to learn the compact, fuzzy-based clusters given the supervision soft 

constraints. The second term basically rewards the model for correctly clustering, i.e., hav-

ing a high membership value of a should-link pair of points to a certain cluster. In (2), 𝑞𝑖𝑗  

and 𝑝𝑖𝑗 are computed as shown below [21]: 

𝑞𝑖𝑗 =
(1+‖𝑧𝑖−𝜇𝑗‖

2
)−1

∑ (1+‖𝑧𝑖−𝜇𝑗 ́ ‖
2

)−1
𝑗 ́

, (3) 

𝑝𝑖𝑗 =  

𝑞𝑖𝑗
2

𝑓𝑗
⁄

∑
𝑞𝑖�́�

2

𝑓�́�
⁄�́�

 (4) 

where 𝑓𝑗 =  ∑ 𝑞𝑖𝑗𝑖  are soft cluster frequencies; 𝑧𝑖 = 𝑓𝜃(𝑥𝑖 ) is the embedded representation 

of 𝑥𝑖; 𝜇𝑗 is the 𝑗𝑡ℎ cluster centroid in the embedded space; and ‖. ‖ denotes the L2-norm. 

Note that 𝛾 in the above equation is a predefined trade-off parameter that balances 

the influence of the supervision soft constraints. It balances the amount of penalty im-

posed on the data batch for misclustering. 

Minimizing the above objective function is preceded by the training of an autoen-

coder AE for DNN parameter initialization. This AE training is performed by minimizing 

the following objective function: 

𝐽𝐴𝐸 =  ∑ ‖𝑥𝑖 − 𝑧𝑖‖2
2𝑛

𝑖=1 + 𝛾 [∑ ∑ 𝑞𝑥𝑖 𝑗 
𝑚 𝑞𝑥𝑘 𝑗 

𝑚𝐶
𝑗=1𝑥𝑖,𝑥𝑘 ∈ ℂ ]  (5) 

where ‖𝒙𝒊 − 𝒛𝒊‖𝟐
𝟐 is the squared Euclidean distance between data point 𝑥𝑖  and its em-

bedding 𝑧𝑖. 

The proposed algorithm would minimize the objective function in (2) iteratively and 

converge towards the clustering results under specific criteria (tolerance threshold %). 

Concretely, the clustering process carried out via our proposed approach follows DEC 

[21] in its two phases: 1. model parameter initialization. In this phase, the deep embedding 

parameters are initialized by training a deep autoencoder network. Then, the k-means 

clustering algorithm [55] is applied to the embedded space Z to initialize the k cluster 

center 𝜇𝑗. 2. Model parameter optimization, i.e., updating the deep mapping 𝑓𝜃 and re-

fining the cluster centers 𝜇𝑗 . In phase 2, the proposed objective loss is minimized to learn 

from the current high confidence predictions by iterating between computing an auxiliary 

target distribution and minimizing the Kullback–Leibler (KL) divergence to it. 

To guide the learning process away from the local minima, some side information is 

adopted within our approach as a set of pairwise constraints. Basically, such information 

is incorporated to reward or penalize the traditional clustering objective as well as to adapt 

the distance measure to each cluster. Specifically, soft pairwise constraints are introduced 

and incorporated to represent the available prior knowledge where we formulate the sec-

ond term of the model’s objective according to these constraints. These pairwise con-

straints are randomly generated with a size equal to 𝛽 × 𝑁, where 𝛽 is the number (ratio) 

of pairwise constraints and 𝑁 is the dataset size. Specifically, for each randomly selected 

data point, we check the corresponding ground-truth labels of the whole dataset. If the 

ground-truth labels of the two points are similar, a “should-link” pairwise link is formed 
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between these points and represented by 1. Otherwise, the pairwise link is represented by 

0. 

Unlike the constraints referred to as “must-link” and “cannot-link”, the constraints 

in our formulation are soft and not obligated. They can be viewed as a reward for correctly 

clustering a point, which is suitable for the poorly labeled knowledge available in the real 

world. The soft constraint term of the objective function governs the consistency between 

the learned representation and clustering with the side information provided. 

One should note that the Adam optimizer [56] was used to jointly optimize our ob-

jective in (2) with respect to its parameters, the cluster centers 𝜇𝑗, and the DNN parame-

ters. The following algorithm (Algorithm 1) depicts the steps designed and implemented 

to solve the clustering task of the proposed SC-DEC approach. 

Algorithm 1 Soft Constrained Deep Clustering 

INPUT: Dataset X; number of clusters K; update interval T; stopping threshold tol%; maximum 

number of training iterations maxIter; 𝜸: the constraint term weight; fuzzifier 𝒎; AE pretrain 

epochs; β: number of pairwise constraints; data batch size. 

OUTPUT: Cluster centers {𝝁𝒊}𝒊=𝟏
𝒌

; deep mapping weights 𝜽; cluster label assignments {𝒚𝒊}𝒊=𝟏
𝒏 .  

1: STEP1: Pretrain the deep network (AE) on input X and according to the input hyper-pa-

rameters to obtain initial deep mapping weights 𝜃 and the data in latent space 𝒁. 

2: STEP2: Initialize the values of cluster centers {𝝁𝒊}𝒊=𝟏
𝒌

 and cluster assignments {𝒚𝒊}𝒊=𝟏
𝒏  by 

running k-means in 𝒁 from step1. 

3: STEP3: Begin model fitting: 

4: → Create pairwise constraints set ℂ according to the input parameters X, β. 

5: → for iter ∈  {0, 1, … , 𝑚𝑎𝑥𝐼𝑡𝑒𝑟} do 

6:  → if update_interval T is reached then 

7: → Compute embedded points on all dataset X using 𝒇𝜽: 𝑿 → 𝒁. 

8: →  Compute soft assignments q and target distribution p using 𝒛𝒊  and 

𝒒𝒊𝒋, 𝒑𝒊𝒋 formulas in Equations (3) and (4). 

9: →  Update label assignments {𝒚𝒊}𝒊=𝟏
𝒏 . 

10: → Compute cluster performance metrics. 

11: → Save old label assignments. 

12: → Compute change in label assignment and stop training if it is < tol%. 

13:  end if 

14:  Begin custom training on sequential data batches 𝑺 ⊂ 𝑿. 

15: → Compute constraint term per batch using Equation (2) and according to ℂ and 

to the input hyper-parameters 𝒎, 𝜸. 

16:  → Add the constraint term to the custom loss in Equation (2). 

17:  → Train the model by minimizing Equation (2) using the selected optimizer. 

18: 
 → Update cluster centers {𝝁𝒋}

𝒋=𝟏

𝑲
 and deep mapping weights 𝜃 on S via the re-

spective update equations. 

19: end for 
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4. Experiments 

The performance of the proposed SC-DEC was validated through several experi-

mental scenarios using benchmark datasets. Moreover, the obtained results were com-

pared with those achieved via relevant state-of-the-art approaches. Below are the hypoth-

eses tested via the experiments: 

- Null hypothesis: introducing supervision to relevant unsupervised learning ap-

proaches, as described in Section 3, does not improve the clustering results. 

- Alternate hypothesis: introducing supervision to relevant unsupervised learning ap-

proaches improves the clustering results. This means that the proposed SC-DEC 

yields higher accuracy than the relevant existing methods. 

In the following subsections, we will outline the experiments including the datasets 

and performance measures, the implementation details, the experimental scenarios, pa-

rameter settings, and lastly, the results and discussion of the experiments. 

4.1. Datasets and Performance Measures 

The proposed approach was mainly assessed using multiple benchmarking datasets 

that are widely used by the deep clustering research community. The MNIST dataset [57], 

which consists of 70,000 images of handwritten digits, was used. One should note that the 

MNIST digits are size-normalized and centered in a fixed-size image. Each digit in MNIST 

is represented using a gray image with a size of 28 × 28 pixels. This results in a 784-di-

mensional vector for each image. In addition, the USPS dataset [58] that contains 9298 

gray-scale, handwritten, 16 × 16 pixel digit images was also used. Moreover, the STL-10 

dataset [59] that includes 13,000 color images, categorized into 10 classes, was considered 

for the experiments. Each STL-10 image is a 96 × 96 pixel size. Table 1 details these da-

tasets and depicts the relevant ground-truth information for the clustering task. 

The performance of the proposed approach was evaluated using standard metrics 

that are widely used by the clustering research community: the classification accuracy 

(ACC), which indicates the percentage of the correctly clustered samples, and the Nor-

malized Mutual Information (NMI) measure which represents the normalized similarity 

between the true and predicted labels for the data records. Both ACC and NMI values 

range between 0 and 1. 

Table 1. Details of the datasets used in this research. 

Dataset Name and Refence Number of Points 
Number of Clas-

ses 

Number of Di-

mensions 

MNIST [57] 70,000 10 784 

USPS [58] 9298 10 256 

STL-10 [59] 13,000 10 1428 

4.2. Implementation Details 

Python language, along with the required libraries, were associated with high-per-

formance resources to implement the intended experiments. For the non-linear transfor-

mation 𝑓𝜃, we select a fully connected autoencoder deep network with d–500–500–2000–

10 dimensions for all datasets, where d is the data-space dimension. All internal layers of 

the autoencoder are activated via a ReLU nonlinearity function [60] except for the input, 

output, and embedding layers. 

The autoencoder weights were initialized using greedy layer-wise pretraining. The 

optimization method for the pretraining was Stochastic gradient descent (SGD) with a 

learning rate of 0.01 and a momentum of 0.9 across all datasets. To initialize the cluster 

centers 𝜇𝑗, we ran k-means 20 times and selected the best solution. In the parameter opti-

mization phase, we trained our (SC-DEC) model using the Adam optimizer with a default 

learning rate of 0.001. The stopping threshold was set to 0.001. 
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4.3. Experimental Scenarios 

After conducting preliminary investigations and experiments using the proposed ap-

proach, it was observed that higher numbers of training epochs can result in a poor clus-

tering performance. Moreover, the clustering results are sensitive to the initialization. Fur-

thermore, the Adam optimizer outperformed the other optimizers, with a significant ac-

curacy advantage. Accordingly, a lower range of training epochs was set for all datasets. 

Moreover, random seeds were fixed for all implementation libraries. Specifically, the 

seeds values were set based on the performances recorded in three trial runs. 

During the preliminary experimentation on model optimizers, the hyper-parameters 

used for all datasets were set as follows: batch size = 256, γ and β = 1, and m = 1.2 (hyper-

parameters are defined in Section 3). As for the number of pretraining epochs, 1000 was 

used for USPS, 2000 for MNIST, and 20 for STL-10. Table 2 shows the accuracy values 

resulting from using the different model optimizers and optimizers properties. It is no-

ticeable from Table 2 that the Adam optimizer outperformed the other optimizers for all 

datasets and with a large margin in the STL-10 dataset. 

Table 2. Performance achieved via the proposed approach using different optimizer settings and 

datasets. 

Optimizer Setting Learning Rate Momentum MNIST USPS STL-10 

SGD 

0.01 0.9 85.94% 53.86% 25.49% 

0.001 0.9 79.42% 34.42% 22.97% 

0.1 0.9 86.55% 68.78% 28.84% 

0.01 0.9 79.19% 34.39% 26.36% 

Adam 0.001 0 87.36% 74.12% 91.50% 

After setting Adam as the model optimizer for our proposed approach, we performed 

other preliminary experiments to investigate the proper range for tuning the number of 

AE pretraining epochs. Table 3 shows the settings adopted to cluster the datasets using 

the proposed approach along with the Adam optimizer. 

Table 3. Settings for the experiments investigating the number of AE pretraining epochs using the 

proposed approach along with Adam optimizer using the different datasets. 

Hyper-Parameter MNIST USPS STL-10 

batch size 256 256 256 

γ 1 10 1 

β 1 1 1 

m 1.2 1.2 2 

Regarding the settings in Table 3, some of the experiments had specific settings. For 

USPS, in the 50-epoch case, γ = −100, β = 0.5, and m = 1.5. In the 100-epoch case, γ = 1 and 

m = 2. For the MNIST dataset, m = 1.5 in the 300-epoch case and m = 2 in the 400-epoch 

case. Table 4 shows the preliminary experiment results in terms of the accuracy values 

over the number of AE pretraining epochs. For the STL-10 dataset, a smaller number of 

epochs led to better clustering accuracy. Moreover, for all datasets, a higher number of 

pretraining epochs was not correlated with the increasing clustering accuracy. Based on 

that, we selected the range for tuning the number of AE pretraining epochs to be within 

smaller values that are relative to the size of the dataset. 
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Table 4. Performance achieved via the proposed approach using different numbers of AE pretrain-

ing epochs on the different datasets. Bold formatting indicates the best obtained results. 

MNIST USPS STL-10 

# of Pretraining 

epochs 
ACC 

# of Pretraining 

Epochs 
ACC 

# Pretraining 

Epochs 
ACC 

20 83.44% 20 74.45% 20 91.02% 

30 83.51% 30 75.73% 30 78.67% 

50 85.54% 50 76.62% 50 77.62% 

100 85.45% 100 75.16% 100 62.25% 

200 86.08% 200 75.15% 200 74.98% 

300 89.00% 300 75.04% 300 66.87% 

400 87.00% 500 75.78% 500 66.58% 

1000 85.47% 1000 74.70% 1000 66.52% 

2000 87.41% 2000 60.82% 2000 65.25% 

It should also be mentioned that as the Adam optimizer was used, the tuning scenario 

dedicated for the setting of the (optimizer) hyper-parameter was excluded. For all exper-

iments conducted using the different datasets, the relevant hyper-parameters were tuned 

for a better initialization and setting, as shown in Table 5. 

Table 5. Hyper-parameters considered for hyper-parameter tuning along with the default values. 

Hyper-Parameter 
Default Value 

MNIST 

Default Value 

USPS 

Default Value 

STL-10 

Number of AE pretraining epochs - - - 

Data batch size 256 256 256 

Gamma 𝜸  1 1 1 

Beta 𝜷  1 1 1 

Fuzzifier m 2 2 2 

In Table 5, since it is the first parameter to be tuned, the number of pretraining epochs 

does not require default value initialization. As for the batch size's default value, it was 

initialized according to the value that is widely used by the clustering research commu-

nity. Regarding 𝛽 and 𝛾 default values, they were initialized with neutral values. As for 

the initialization of the Fuzzifier m default value, the most frequently used and accepted 

value in various applications is m = 2 [61]. However, when datasets have significant une-

ven distributions in the cluster sizes, a smaller fuzzifier value has been suggested for the 

FCM-based clustering algorithms [62]. 

Next, a set of experiments for tuning the hyper-parameters were conducted to target 

the optimal solution in terms of clustering accuracy. Namely, we investigated the number 

of pretraining epochs, the amount of supervision (number of constraints 𝛽), the fuzziness 

parameter m, the trade-off parameter (i.e., the constraint term weight) 𝛾 , and the data 

batch size. The applicable range for these hyper-parameters is as follows: 𝛽 ϵ {𝑥| 𝑥 > 0, 

𝑥 ∈ ℝ}, 𝛾 ϵ {𝑥| 𝑥 ∈ ℝ}, and the data batch size ϵ {𝑥| 𝑥 > 0, 𝑥 ∈ ℤ}. The latter values used 

to tune the data batch size are based on the related literature and the considered bench-

mark datasets. On the other hand, according to [63], the fuzzifier m is recommended to be 

within the interval [2, 3.5], while the authors in [61] suggested the interval [1.5, 2.5] for m. 

Based on that, we set the range of values {1.2, 1.5, 1.7, 2, 3} to tune the fuzzifier m for SC-

DEC. Specifically, the tuning process was performed by dedicating and running one ex-

periment for each hyper-parameter as reported in Algorithm 2. This sequential tuning 

strategy was intended to select the hyper-parameter value that yields the highest cluster-

ing accuracy using SC-DEC. 
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Algorithm 2 Hyper-parameter tuning strategy 

INPUT: Dataset X; hyper-parameter set considered for tuning: {number of AE pretraining 

epochs; 𝜸: the constraint term weight; 𝒎: the fuzzifier; β: number of pairwise constraints; data 

batch size}; default values of the hyper-parameters from Table 5; random sets of seed values. 

OUTPUT: Hyper-parameters values that achieve the highest accuracy, per dataset. 

1: 

2: 

3: 

 

 

 

4: 

5: 

 

6: 

7: 

STEP1: Tuning of the (number of pretraining epochs) hyper-parameter. 

a. Other hyper-parameters are set to the default values. 

b. Tuning values per dataset: 

- USPS: {50, 100, 150, 200}; 

- MNIST: {100, 200, 300, 400, 500}; 

- STL-10: {20, 50, 70, 100, 150, 200}, 

c. Run the model for each value 3 times, with different seeds per run. 

d. Save the pretraining epochs number and the seeds that resulted in the 

highest accuracy among runs. 

e. Update the default value for the number of pretraining epochs accord-

ing to (d). 

f. Use the seeds in (d) for the rest of the experiments. 

8: 

9: 

10: 

11: 

12: 

 

13: 

STEP2: Tuning of the (fuzzifier 𝒎) hyper-parameter. 

a. Other hyper-parameters are set to the default values. 

b. Tuning values for all datasets: {1.2, 1.5, 1.7, 2, 3}. 

c. Run the model for each value. 

d. Save and use the 𝒎 value that resulted in the highest accuracy for the 

rest of the experiments. 

e. Update the default 𝒎 value according to (d). 

14: 

15: 

16: 

17: 

18: 

 

19: 

STEP3: Tuning of (𝜸) hyper-parameter. 

a. Other hyper-parameters are set to the default values. 

b. Tuning values for all datasets: {+1, +10, +100, +1000, −1, −10, −100, 

−1000}. 

c. Run the model for each value. 

d. Save and use the 𝜸 value that resulted in the highest accuracy for the 

rest of the experiments. 

e. Update the default 𝜸 value according to (d). 

20: 

21: 

22: 

23: 

24: 

 

25: 

STEP4: Tuning of the (β) hyper-parameter. 

a. Other hyper-parameters are set to the default values. 

b. Tuning values for all datasets: {0.1, 0.3, 0.5, 0.7, 0.9, 1, 1.2, 1.5, 2}. 

c. Run the model for each value. 

d. Save and use the β value that resulted in the highest accuracy for the 

rest of the experiments. 

e. Update the default β value according to (d). 
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26: 

27: 

28: 

29: 

30: 

 

31: 

STEP5: Tuning of the (data batch size) hyper-parameter. 

a. Other hyper-parameters are set to the default values. 

b. Tuning values for all datasets: {64, 128, 256, 512}. 

c. Run the model for each value. 

d. Save and use the batch size value that resulted in the highest accuracy 

for the rest of the experiments. 

e. Update the default batch size value according to (d). 

4.4. Results and Discussion 

As outlined above, extensive experiments were conducted to assess the performance 

of the proposed approach, SC-DEC. The results were quantitatively analyzed, visualized, 

and compared to those achieved using relevant unsupervised and semi-supervised deep 

clustering algorithms. Namely, the proposed approach was compared with DEC [21], 

Semi-Supervised Deep Embedded Clustering (SDEC) [38], and Improved Deep Embed-

ded Clustering with Local Structure Preservation (IDEC) [37]. Additionally, we added the 

results of applying simple k-means [8] for clustering the deep embeddings of the respec-

tive datasets (called DL + k-means). 

After hyper-parameter tuning, detailed in Algorithm 2, we ran 20 experiments using 

the hyper-parameter values that achieved the best accuracy. Table 6 reports the results 

achieved using the proposed approach along with the state-of-the-art methods on the 

MNIST, USPS, and STL-10 datasets. As can be seen in Table 6, the results mainly showed 

the positive impact of utilizing minimal prior knowledge about the data on the clustering 

performance. According to Table 6, the most notable improvement was obtained using the 

STL-10 dataset, with a clustering accuracy of 91.65%, which represents a drastic improve-

ment compared to DEC [21] and SDEC [38]. 

Table 6. Clustering results measured in ACC and NMI. Bold formatting indicates the best results. 

Method MNIST [57] STL-10 [59] USPS [58] 

Metric ACC NMI ACC NMI ACC NMI 

DL + k-means 86.83% 76.89% 86.94% 78.84% 70.93% 68.44% 

DEC [21] 84.30% NA 35.90% NA NA NA 

SDEC [38] 86.11% 82.89% 38.86% 32.84% 76.39% 77.68% 

IDEC [37] 83.841% 77.885% NA NA 72.693% 71.135% 

SC-DEC 92.11% 84.01% 91.65% 84.85% 76.62% 75.31% 

One can notice from Table 6 that the SC-DEC performance exceeded that of DL + k-

means on all three datasets. Moreover, we can see that SC-DEC outperformed the non-

constrained approach DEC [21] on the MNIST and STL-10 datasets. This proves the im-

portance of the proposed semi-supervision information formulated as pairwise con-

straints in guiding the deep clustering process. Moreover, the results confirmed the im-

portance of the fuzzy membership representations in improving the clustering partition. 

Furthermore, the proposed approach outperformed the non-fuzzy approach SDEC [38] in 

terms of clustering accuracy for all datasets. 

In addition, we retested the IDEC model in [37] using the settings reported in the 

paper: SGD optimizer with a 0.01 learning rate and 0.9 momentum, with the set of pre-

trained AE weights used for the implementation available online. The results in Table 6 

show that the proposed SC-DEC outperformed the IDEC results in terms of clustering 

accuracy and NMI metrics. 

Moreover, Figure 2 plots the change trends of the ACC and NMI metrics for the best 

run on the three datasets. For all datasets, one can observe that the improvement in both 

metrics stabilized after roughly 30% of the total training time. Then, a slight improvement 
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occurred later that led the model into convergence. Additionally, Figure 3 shows the loss 

change trend (learning curve) of the run that resulted in the best accuracy for the three 

datasets. 

   
(a) (b) (c) 

Figure 2. Change trend recorded for the performance metrics obtained using SC-DEC on MNIST 

(a), USPS (b), and STL-10 (c) datasets. 

   
(a) (b) (c) 

Figure 3. Loss change over training iterations on MNIST (a), USPS (b), and STL-10 (c) datasets. 

The results of the hyper-parameter tuning presented earlier are shown in Table 7. 

Specifically, this table shows the hyper-parameter values that yielded the best accuracy 

for the proposed model when associated with each of the datasets. Moreover, Figures 4–

7 plot the trends in accuracy changes achieved via SC-DEC according to the different hy-

per-parameter values on the three datasets. 

   
(a) (b) (c) 

Figure 4. Effect of number of constraints β on SC-DEC clustering accuracy for MNIST (a), USPS (b), 

and STL-10 (c) datasets. 

   
(a) (b) (c) 

Figure 5. Effect of fuzzifier value m on SC-DEC clustering accuracy for MNIST (a), USPS (b), and 

STL-10 (c) datasets. 

   

(a) (b) (c) 
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Figure 6. Effect of constraint term weight γ on SC-DEC clustering accuracy for MNIST (a), USPS 

(b), and STL-10 (c) datasets. 

   
(a) (b) (c) 

Figure 7. Effect of data batch size on SC-DEC clustering accuracy for MNIST (a), USPS (b), and STL-

10 (c) datasets. 

We can notice from Table 7 and Figure 4 that the number of pairwise constraints (𝛽 

hyper-parameter) was correlated with the dataset size. In the largest dataset, MNIST, the 

best value was 𝛽 = 1.5, compared to 𝛽 = 0.3 and 𝛽 = 0.5 for the STL-10 and USPS da-

tasets, respectively. However, the change in accuracy in response to the increased 𝛽 value 

was not substantial, as the difference between the highest and lowest accuracy equaled 

1.05% (MNIST), 0.43% (STL-10), and 0.74% (USPS). This is consistent with the findings in 

the SDEC paper [38] that the initial introduction of pairwise constraints into deep embed-

ded clustering will lead to a significant increase in performance, and then the performance 

becomes stable, indicating that enough prior information has been captured. According 

to SDEC, this observation is generally consistent with the semi-supervised learning liter-

ature. 

Moreover, the effect of the number of constraints 𝛽 on the performance of the pro-

posed approach may be subject to the pairwise constraints generated, as the generation is 

random for each new value of the hyper-parameter 𝛽. This would explain the relative 

randomness that characterizes the results shown in Figure 4. 

Furthermore, Table 7 and Figure 5 show that the highest accuracy values for the fuzzy 

parameter m among the three datasets are within the interval suggested by [61] as a heu-

ristic for selecting the m value for FCM-based clustering. The calculation in [61] suggests 

that the best choice for m is probably in the interval of [1.5, 2.5]. Interestingly, training our 

model on the STL-10 dataset using a 512-batch size yielded better results than using the 

default 256-batch size. 

Table 7. Hyper-parameter values that yielded the highest accuracy for the different datasets. 

Hyper-Parameter Value for MNIST Value for USPS Value for STL-10 

Number of AE pretraining 

epochs 
300 50 20 

Number of constraints 𝜷 1.5 0.5 0.3 

Fuzzifier m 1.7 1.5 1.7 

Constraint Term weight 𝜸 1 −100 100 

Data batch size 256 256 512 

5. Conclusion and Future Work 

Most real-world datasets are weakly labeled by nature, which inspired the utilization 

of the available prior knowledge as supervision information by clustering algorithms to 

carry the clustering process away from the local minima. This led to the introduction of 

semi-supervised learning within the clustering paradigm. However, the state-of-the-art 

semi-supervised deep clustering approaches remain below expectations compared to the 

fully unsupervised approaches, with several potentials to be explored. In this paper, we 

propose a novel semi-supervised deep clustering approach (named Soft Constrained 

Deep Clustering, SC-DEC) to overcome the limitations in the existing semi-supervised 
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clustering approaches. Specifically, the proposed approach leverages a deep neural net-

work architecture and generates fuzzy membership degrees that better reflect the true 

partition of the data. Furthermore, the scarcely available prior knowledge was used as 

side information and formulated as a set of soft pairwise constraints to direct the machine 

learning process into clustering unlabeled data. This clustering task was formulated as an 

optimization problem where a novel objective function was minimized to simultaneously 

discover the hidden data clusters and optimize the deep neural network. The proposed 

approach was assessed using standard datasets and performance measures. The experi-

ments proved that the proposed approach can automatically learn the partitioning of data. 

Moreover, various calibrations of the model’s hyper-parameters were investigated during 

the experiments. The experimental results showed that the size of the pairwise constraints 

was positively correlated with the dataset size. However, after enough prior information 

has been captured via the initial insertion of the pairwise constraints into the proposed 

model, the model performance became stable. Furthermore, when compared to the state-

of-the-art approaches, SC-DEC produced competitive results on the STL-10 dataset and 

outperformed the other models on MNIST and USPS. 

Some limitations of the proposed approach should be stated, which include 1. sensi-

tivity issues toward the presetting of the number of clusters and 2. the trial-and-error ap-

proach in selecting some of the hyper-parameter values for tuning. However, to address 

these limitations as well as to investigate new potentials, some directions are suggested 

for future studies. Specifically, we suggest researching the following approaches: 1. devel-

oping an automatic determination of the number of clusters through designing an addi-

tional term to the proposed objective; 2. researching robust heuristics to guide the selec-

tion process for hyper-parameters β and γ; 3.dropping the noise points and considering 

only the points with membership values over a certain threshold for the constraint term 

formulation; 4. investigating the effect of “should-not-link” pairwise constraints; and 5. 

studying the proposed method using text datasets. 
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