
Citation: AlZuhair, M.S.; Ben Ismail,

M.M.; Bchir, O. Soft Semi-Supervised

Deep Learning-Based Clustering.

Appl. Sci. 2023, 13, 9673. https://

doi.org/10.3390/app13179673

Academic Editor: Wenjie Zhang

Received: 18 July 2023

Revised: 20 August 2023

Accepted: 23 August 2023

Published: 27 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Soft Semi-Supervised Deep Learning-Based Clustering
Mona Suliman AlZuhair *, Mohamed Maher Ben Ismail and Ouiem Bchir

Department of Computer Science, College of Computer and Information Sciences, King Saud University,
Riyadh 11362, Saudi Arabia; mbenismail@ksu.edu.sa (M.M.B.I.); obchir@ksu.edu.sa (O.B.)
* Correspondence: 439204075@student.ksu.edu.sa

Abstract: Semi-supervised clustering typically relies on both labeled and unlabeled data to guide
the learning process towards the optimal data partition and to prevent falling into local minima.
However, researchers’ efforts made to improve existing semi-supervised clustering approaches are
relatively scarce compared to the contributions made to enhance the state-of-the-art fully unsuper-
vised clustering approaches. In this paper, we propose a novel semi-supervised deep clustering
approach, named Soft Constrained Deep Clustering (SC-DEC), that aims to address the limitations
exhibited by existing semi-supervised clustering approaches. Specifically, the proposed approach
leverages a deep neural network architecture and generates fuzzy membership degrees that better
reflect the true partition of the data. In particular, the proposed approach uses side-information
and formulates it as a set of soft pairwise constraints to supervise the machine learning process.
This supervision information is expressed using rather relaxed constraints named “should-link”
constraints. Such constraints determine whether the pairs of data instances should be assigned
to the same or different cluster(s). In fact, the clustering task was formulated as an optimization
problem via the minimization of a novel objective function. Moreover, the proposed approach’s
performance was assessed via extensive experiments using benchmark datasets. Furthermore, the
proposed approach was compared to relevant state-of-the-art clustering algorithms, and the obtained
results demonstrate the impact of using minimal previous knowledge about the data in improving
the overall clustering performance.

Keywords: deep clustering; semi-supervised clustering; soft constraints; fuzzy clustering

1. Introduction

Supervised machine learning is an extensively studied and applied topic in the artifi-
cial intelligence field [1–3]. This learning paradigm is a powerful tool for data classification
using machine language. However, supervised learning requires the availability of ac-
curately labeled datasets to infer learning models [4]. Despite the learning capability of
the state-of-the-art supervised machine learning algorithms, the continuously growing
size of the datasets used to train the models has made the labeling an even more costly
process in terms of time and effort. In contrast, when only a relatively small dataset is
available, it typically becomes prone to overfitting the training set. This disadvantage of
supervised learning has promoted research on unsupervised machine learning which does
not require labeled data for the training stage. In fact, unsupervised machine learning
can cope better with a huge amount of unlabeled data as it eliminates the requirement of
carefully annotating the training sets. Clustering is an unsupervised learning technique
that is meant to draw conclusions and discover the hidden patterns in unlabeled datasets.

Clustering has been adapted to address various problems in many areas, such as
data mining, pattern recognition, and computer vision [5]. In many fields, there are
obvious benefits to be acquired from grouping instances that share similar properties
into different clusters in an unsupervised manner [6]. Clustering algorithms have been
extensively studied, as a descriptive data mining tool, from various aspects including
similarity measures, feature selection, and grouping methods [7]. Among the well-known

Appl. Sci. 2023, 13, 9673. https://doi.org/10.3390/app13179673 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13179673
https://doi.org/10.3390/app13179673
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3491-6055
https://doi.org/10.3390/app13179673
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13179673?type=check_update&version=2

Appl. Sci. 2023, 13, 9673 2 of 18

and widely used clustering algorithms, one can cite k-means [8], hierarchical clustering [9],
and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [10]. The
main concept of DBSCAN is that for a data object to belong to a cluster, the density in a
neighborhood for that data object should be high enough, satisfying a user-specified density
threshold [11]. This threshold is represented by two hyper-parameters; the radius of the
neighborhood (eps) and the minimum number of points required to from the neighborhood
(MinPts). Despite DBSCAN algorithm’s robustness to outliers and capability of handling
irregularly shaped clusters, it deteriorates when dealing with high dimensional data and is
sensitive to the input parameters [12].

The typical goal of clustering is to group sets of data objects together in a way that
instances assigned to the same cluster are more similar to each other compared to those
belonging to other clusters. In fact, grouping similar data entities together is intended to
discover the data partition and provide insights on the patterns underlying the different
categories. Commonly, for a clustering algorithm to achieve the data mining goal, it
should be preceded by a feature extraction stage that is intended to encode and extract the
data properties that can better discriminate between the hidden clusters. However, this
feature extraction phase may yield a highly dimensional data representation and a curse of
dimensionality problem [13].

To meet the curse of dimensionality challenges, several dimensionality reduction
methods [14,15] have been introduced to transform the data from the original feature space
into a new feature space with fewer dimensions. However, despite these contributions, the
data that exhibit a highly complex latent structure remain challenging to cluster using the
existing clustering methods [5].

The emergence and rapid development of deep neural networks (DNNs) has triggered
revisiting the clustering-related research. The rationale was to exploit the deep neural
networks’ ability to automatically determine the most relevant features and relax the need
for feature handcrafting and engineering [5,16]. Moreover, the researchers’ interest in deep
clustering paradigms was intended to address challenges such as the inability to handle
datasets that lie on nonlinear manifolds, the curse of dimensionality, and the sensitivity
to noise [17,18]. Basically, the earliest deep clustering works [19,20] focused on feature
transformation and clustering as two independent processes. In other words, the data were
first mapped into a new feature space and then fed into a clustering algorithm. Recently,
deep clustering has been adapted to jointly perform feature learning, transformation, and
the clustering of data that exhibit a highly complex latent structure [5]. The fundamental
component of deep clustering approaches relies on deep neural network architectures such
as autoencoders [21], the network loss, and the clustering loss optimization [7].

Deep clustering potentials were mainly explored in the context of entirely unsuper-
vised learning. However, the datasets are naturally weak or poorly labeled in the real
world [22]. This boosted the researchers’ efforts to exploit this knowledge to inject some
supervision to guide the clustering process, i.e., introduce the semi-supervised learning
paradigm. Semi-supervised learning uses both labeled and unlabeled data to train a
model. Moreover, semi-supervised learning exploits prior knowledge and formulates it as
constraints to ease the learning process. Despite researchers’ efforts, the state-of-the-art,
semi-supervised, deep clustering approaches remain far below expectations compared to
the fully unsupervised approaches. In particular, the use of fuzzy logic was not inves-
tigated to represent the data partition in the context of semi-supervised deep learning.
Moreover, the existing semi-supervised clustering methods only proposed the integration
of the supervision information as crisp pairwise constraints rather than soft ones.

In this research, we propose a novel semi-supervised deep clustering approach, named
Soft Constrained Deep Clustering (SC-DEC), to overcome the limitations in current ap-
proaches. The proposed approach leverages a deep neural network architecture for feature
learning and performs clustering with fuzzy membership degrees to better represent the
true partition of the data. Specifically, we formulated the deep clustering problem as an
optimization of a novel objective function. This function is designed to simultaneously

Appl. Sci. 2023, 13, 9673 3 of 18

discover the hidden data clusters and optimize the deep neural network. Moreover, soft
pairwise constraints were incorporated within the objective function to represent the avail-
able supervision knowledge. These constraints were formulated in a relaxing way in
which the compliance to a constraint is not strictly obligated, which makes the proposed
approach more suitable for real-world data clustering applications where the available side
information is not mature enough to be strictly imposed. Additionally, the fuzzy-based
representation of data partition was adopted in the proposed method to reflect the grouping
of data in a more accurate way.

The main contributions of this research can be summarized as follows: (i) We formu-
lated the proposed semi-supervised deep clustering approach as an optimization problem
and designed the objective functions that carry the proposed tasks to simultaneously learn
a discriminative embedded representation of the original data along with the optimal
data clusters. (ii) We solved the formulated optimization problem and derived updated
equations of the respective parameters. (iii) We designed and implemented a novel deep
semi-supervised clustering algorithm using state-of-the-art technology, platforms, and
tools. (iv) We evaluated the performance of the proposed approach using real datasets
and standard performance measures in addition to an objective comparison with relevant
state-of-the-art approaches.

The rest of this paper is organized as follows: Section 2 presents the related works
while Section 3 introduces the proposed method. The experimental settings as well as the
analysis and discussion of the results are presented in Section 4. Finally, the conclusion and
future work are discussed in Section 5.

2. Related Works

Research work on deep clustering includes deep embedded clustering and semi-
supervised deep embedded clustering (SS-DEC) approaches. For deep embedded clus-
tering, Deep Neural Networks (DNNs) have been used for dimensionality reduction to
learn a clustering-oriented representation that favors the clustering tasks. In fact, dif-
ferent deep clustering frameworks were created on top of various DNN architectures.
Namely, autoencoders (AEs), Deep Belief Networks (DBNs) [23], Convolutional Neu-
ral Networks (CNNs) [24,25], and Generative Adversarial Networks (GANs) [26] have
been introduced and used in various deep clustering applications. In particular, au-
toencoders have been widely adapted to address challenges relevant to the deep clus-
tering architectures [21,27–29]. A recent survey [30] distinguishes deep clustering meth-
ods in terms of methodology, prior knowledge, and architecture. Specifically, the au-
thors listed semi-supervised deep clustering as one of the main four categories of deep
clustering methods.

For AE-based deep clustering approaches, the encoder layers of the trained autoen-
coder are the ones leveraged for feature transformation into a lower-dimensional space,
which serves as the input for the clustering algorithm. Recently, an AE-based deep clus-
tering architecture, deep embedded clustering (DEC) [21], was proposed, which was then
followed by a number of variants [19,27–29,31–36] that used DEC as the basis for their
framework. From then, deep clustering has become a growing research field, with DEC [21]
being the experimental benchmark for many deep clustering approaches [29,34].

For DEC [21], the DNN architecture consists mainly of an autoencoder that is used
to automatically learn the feature representations via nonlinear embedding into a lower-
dimensional feature space. After the autoencoder is trained and its parameters are ini-
tialized, it is finetuned further to minimize the reconstruction loss. Only the encoder
layers are kept and used as the initial mapping function between the data space and the
embedded feature space. To initialize the cluster centers, the original data are passed
through the initialized encoder to obtain the embedded data points and perform stan-
dard k-means clustering in the embedded feature space to obtain k initial centroids and
memberships. After that, DEC updates its parameters by iterating between computing an
auxiliary target distribution and minimizing the following objective function in form of the

Appl. Sci. 2023, 13, 9673 4 of 18

Kullback–Leibler (KL) divergence from the computed soft assignments to the computed
auxiliary target distribution:

L = KL(P||Q) = ∑i ∑j pijlog
Pij

qij
(1)

where Q is the soft assignments of the data points and P is the computed auxiliary distribution.
In the above equation, qij is a centroid-based probability distribution (i.e., soft assign-

ment) that represents the probability of assigning sample i to cluster j, and it is computed
using the Student’s t-distribution. Moreover, pij in Equation (1) is the auxiliary target
distribution that qij is matched to by minimizing a KL divergence metric between the
two distributions. Further elaboration on the computation of qij and pij can be found in
Equations (3) and (4) below.

This objective function in Equation (1) is minimized using a Stochastic Gradient
Descent (SGD) to learn cluster centers and DNN parameters from the embedded space
Z. Lastly, a cluster assignment hardening loss is applied to obtain the soft assignment
probabilities of the embedded points. DEC reported an 84.3% clustering accuracy on the
MNIST images dataset and 75.63% on the REUTERS text dataset, outperforming several
state-of-the-art spectral clustering-based algorithms.

Motivated by the need to address certain limitations, other deep clustering works were
proposed to incorporate improvements to the DEC [21] framework. Specifically, the IDEC
model [37] extended DEC by preserving the local structure of data in the feature space
through keeping the decoder layers to avoid feature space distortion by the clustering loss.
Another model introduced in [27] extended IDEC by adopting a convolutional autoencoder
(CAE) as the deep network. Later, several deep clustering works based on (CAE) were
suggested [32]. Data augmentation was also associated with DEC in [28] to improve the
model’s generalization by making the DNN learn more representative features. Moreover,
a k-means based DEC framework was presented in [19]. In particular, a cost function
that consists of dimensionality reduction, data reconstruction, and a k-means clustering
structure promoting regularization loss terms was introduced. Another related DEC-based
work [33] leverages symmetry-based distances within the DEC framework as a powerful
tool to distinguish symmetric shapes.

The authors in [38] observed the fact that DEC [21] does not make use of prior knowl-
edge to guide the learning process. They extended DEC [21] and proposed a new scheme of
Semi-Supervised Deep Embedded Clustering (SDEC) to overcome this limitation. SDEC’s
best performance was reported as an 86.11% clustering accuracy and 82.89% NMI on the
MNIST image dataset. Since then, Semi-Supervised Deep Embedded Clustering (SS-DEC)
became a growing field. Actually, most of the SS-DEC literature addresses general clus-
tering purposes [39–42]. On the other hand, some works targeted anomaly detection [43],
software fault proneness classification (fault prediction) [44], image classification and seg-
mentation [45], and deep generative purposes [46,47]. The supervision injected in SS-DEC
models takes several forms. The researchers in [41] imposed standard must-link and
cannot-link pairwise constraints to their model, while the authors in [31] extended the
encoding of standard pairwise constraints to more complex constraints such as continu-
ous values (triplet constraints), instance difficulty constraints, and cluster-level balancing
constraints. Triplet constraints are useful in the cases where no strong pairwise guidance
is available. As for the instance difficulty constraints, it allows the user to a priori specify
which instances are easier to cluster (i.e., they belong strongly to only one cluster), whereas
the cluster-level balancing constraints enable the experts to guide the clustering process
via the prior cardinality information. Another approach, Ts2DEC, outlined in [48], used
triplet constraints.

In [49], the pairwise constraints are self-generating from a mutual KNN graph which
makes the clustering approach unsupervised. The method then extends it to semi-supervised
clustering by including human intervention to finetune these self-generating constraints
by analyzing the losses associated with the pairs to form a set of false positive candidates.

Appl. Sci. 2023, 13, 9673 5 of 18

ClusterNet [50] also uses pairwise semantic constraints from very few labeled data samples
(<5% of total data) and exploits the abundant unlabeled data to drive the clustering. The
network is optimized by minimizing a combination of k-means-based clustering loss
and pairwise KL-divergence loss where the two are regularized via an autoencoder’s
reconstruction loss and each are defined for both the labeled as well as unlabeled data. A
different approach to include supervision information was outlined in [47] where a small,
labeled dataset is used to assign classes to components of Gaussian mixtures. The resulting
mixture describes the distribution of the whole data.

The authors in [39] extended deep embedded clustering approaches to Electronic
Health Record (I) patient cohorts. Specifically, supervision was applied by modifying the
latent representation according to known patient subgroups through applying transfer
learning of the encoder and fine-tuning of layers.

One should note that most DEC-based works [38,39,45,48] use k-means clustering
algorithms to initialize the cluster centers, followed by cluster assignment hardening in
the form of clustering loss. However, the authors in [40] used a graph-based clustering
method, while in [49], the mutual k nearest neighbor (MKNN) neighborhood method was
employed to automatically extract appropriate pairs for clustering, and these pairs were
used as must-link constraints. On the other hand, in [51], the researchers replaced the
classical k-means clustering with a density-based clustering approach to cluster the learned
low-dimensional embedded features. The concept of soft constraints was introduced in SS-
DEC models by the authors in [42]. They extended a previous work [52] to neural networks
with instance-level constraints. In [52], soft constraints were introduced by allowing the
constraints to be violated with violation costs.

Generally, deep clustering approaches’ potential was mainly explored in the context
of entirely unsupervised learning. The resulting approaches are still prone to the local
minima due to the NP-hardness of the clustering problem. On the other hand, most real-
world datasets are naturally weakly labeled. Therefore, exploiting some prior knowledge as
supervision information for the cluster analysis was later investigated to carry the clustering
process away from the local minima. This conforms with the assumption that feeding the
learning algorithm with some supervision in the form of a reward would improve the
learning. A semi-supervised learning paradigm has produced a considerable impact on
various machine learning-based applications [53]. Despite these achievements, the efforts
made to extend and improve the existing semi-supervised deep clustering approaches
remain far below expectations compared to the researchers’ contributions to enhance fully
unsupervised approaches. Several potentials for improvements can be investigated in
this domain. Specifically, incorporating supervision information in a relaxed way was not
investigated in previous works. In particular, such supervision can be softly expressed
within the models’ objective using “should-link” pairwise constraints to determine whether
the pairs of data instances should be assigned to the same or different cluster(s). Moreover,
the use of fuzzy logic [53] was not explored to represent the data partition in the context
of the existing semi-supervised deep learning approaches. Thus, we introduce a novel,
semi-supervised, deep clustering algorithm that incorporates the abovementioned aspects
that we believe would fill several gaps and upscale the deep clustering performance.

3. Proposed Soft Constrained Deep Clustering (SC-DEC)

The proposed semi-supervised deep clustering approach, named Soft Constrained
Deep Clustering (SC-DEC), leverages a deep neural network architecture for feature learn-
ing and performs clustering with fuzzy membership degrees. Specifically, the deep cluster-
ing problem is formulated as an optimization of a novel objective function that is designed
to simultaneously discover the hidden data clusters and optimize the deep neural network.
Furthermore, the available supervision knowledge is incorporated as soft pairwise con-
straints within the objective function in a soft way such that the compliance to a constraint
is not strictly obligated. Moreover, data partition is represented in a fuzzy manner within
the objective to accurately reflect the grouping of data.

Appl. Sci. 2023, 13, 9673 6 of 18

This section introduces the design details of the proposed SC-DEC approach. The
block diagram of SC-DEC is depicted in Figure 1. The proposed semi-supervised deep
embedded clustering approach relies on two main components: (i) an objective function
that carries out the clustering tasks as proposed, and (ii) an autoencoder AE network that
learns the discriminative embedded representation of the original data.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 19

tering problem is formulated as an optimization of a novel objective function that is de-
signed to simultaneously discover the hidden data clusters and optimize the deep neural
network. Furthermore, the available supervision knowledge is incorporated as soft pair-
wise constraints within the objective function in a soft way such that the compliance to a
constraint is not strictly obligated. Moreover, data partition is represented in a fuzzy man-
ner within the objective to accurately reflect the grouping of data.

This section introduces the design details of the proposed SC-DEC approach. The
block diagram of SC-DEC is depicted in Figure 1. The proposed semi-supervised deep
embedded clustering approach relies on two main components: (i) an objective function
that carries out the clustering tasks as proposed, and (ii) an autoencoder AE network that
learns the discriminative embedded representation of the original data.

Figure 1. Overview of the proposed approach (SC-DEC).

Let 𝑋 = ሼ𝑥௜ሽ௜ୀଵ௡ be a set of unlabeled data that serves as the input to our proposed
clustering method, where each sample 𝑥௜ ∈ ℝௗ and d is the dimensions of the input
space. Instead of performing the clustering task directly in the original data space, we
define a nonlinear mapping function 𝑓ఏ to transform the original input data 𝑋 into a la-
tent feature space 𝑍 ; 𝑓ఏ: 𝑋 → 𝑍 , where 𝜃 represents the learnable parameters. The di-
mensionality of the latent space 𝑍 is much lower than the original space dimensionality.
The main goal of the proposed SC-DEC method is to output an appropriate clustering of
data in the embedded feature space 𝑍 by utilizing the unlabeled data and the injected
supervision. Specifically, it aims to partition the data input into 𝑘 clusters, where each
cluster is defined by a centroid 𝜇௝ୀ ଵ,…,௞ and 𝜇௝ ∈ ℝௗ . Specifically, for k-means algo-
rithms, the number of clusters k is based on the related literature and the considered
benchmark datasets. Basically, we aim to find a cluster-friendly 𝑓ఏ such that the learned
parameters are biased towards the clustering task and the available knowledge.

To initialize the parameters of the 𝑓ఏ, a deep autoencoder network [54] is built and
trained in an unsupervised manner. Later, only the encoder layers are used within our
model to receive the input data and transform it to the embedded space. The supervision
knowledge are defined in the proposed approach as a set of should-link soft constraints
and denoted by ℂ = ሼ(𝑥௜, 𝑥௞): 𝑥௜ and 𝑥௞ should be assigned to the same cluster, 1 ൑ 𝑖, 𝑗 ൑𝑁. ሽ. These soft constraint sets are pre-defined and randomly generated from the dataset
and generally, the supervision information should be available for a subset of the dataset
only. In the Experiments section, we vary its ratio and investigate the performance.

We introduce our algorithm as an improvement to deep embedded clustering algo-
rithms. Specifically, we propose to integrate should-link constraints into the clustering loss
objective of DEC [21] to find clustering-friendly representations. Consequently, we tackle

Figure 1. Overview of the proposed approach (SC-DEC).

Let X= {xi}n
i=1 be a set of unlabeled data that serves as the input to our proposed

clustering method, where each sample xi ∈ Rd and d is the dimensions of the input space.
Instead of performing the clustering task directly in the original data space, we define a
nonlinear mapping function fθ to transform the original input data X into a latent feature
space Z; fθ : X → Z , where θ represents the learnable parameters. The dimensionality of
the latent space Z is much lower than the original space dimensionality. The main goal of the
proposed SC-DEC method is to output an appropriate clustering of data in the embedded
feature space Z by utilizing the unlabeled data and the injected supervision. Specifically, it
aims to partition the data input into k clusters, where each cluster is defined by a centroid
µj=1,...,k and µj∈ Rd. Specifically, for k-means algorithms, the number of clusters k is based
on the related literature and the considered benchmark datasets. Basically, we aim to find a
cluster-friendly fθ such that the learned parameters are biased towards the clustering task
and the available knowledge.

To initialize the parameters of the fθ , a deep autoencoder network [54] is built and
trained in an unsupervised manner. Later, only the encoder layers are used within our
model to receive the input data and transform it to the embedded space. The supervision
knowledge are defined in the proposed approach as a set of should-link soft constraints and
denoted byC = {(xi, xk) : xi and xk should be assigned to the same cluster, 1 ≤ i, j ≤ N.}.
These soft constraint sets are pre-defined and randomly generated from the dataset and
generally, the supervision information should be available for a subset of the dataset only.
In the Experiments section, we vary its ratio and investigate the performance.

We introduce our algorithm as an improvement to deep embedded clustering algo-
rithms. Specifically, we propose to integrate should-link constraints into the clustering
loss objective of DEC [21] to find clustering-friendly representations. Consequently, we
tackle the proposed optimization problem by defining the following objective function

Appl. Sci. 2023, 13, 9673 7 of 18

and obtaining the partial derivatives of the parameters to be updated via minimization, as
shown below:

J = ∑n
i=1 ∑C

j=1 pijlog
pij

qij
+ γ

[
∑xi ,xk∈C ∑C

j=1 qm
xi jq

m
xk j

]
(2)

where n is the number of data points, C is the number of clusters, m is the fuzziness
parameter that reflects the fuzzy-based representation of the data clusters, and C is the set
of should-link constraints as shown above.

The first term is the deep embedded clustering term of DEC [21], while the second term
is designed to learn the compact, fuzzy-based clusters given the supervision soft constraints.
The second term basically rewards the model for correctly clustering, i.e., having a high
membership value of a should-link pair of points to a certain cluster. In (2), qij and pij are
computed as shown below [21]:

qij =
(1 + ‖zi − µj‖2)−1

∑ j́(1 + ‖zi − µ j́‖2)−1 , (3)

pij =
q2

ij/f j

∑ j́ q2
i j́/f j́

(4)

where f j = ∑i qij are soft cluster frequencies; zi = fθ(xi) is the embedded representation of
xi; µj is the jth cluster centroid in the embedded space; and ‖.‖ denotes the L2-norm.

Note that γ in the above equation is a predefined trade-off parameter that balances
the influence of the supervision soft constraints. It balances the amount of penalty imposed
on the data batch for misclustering.

Minimizing the above objective function is preceded by the training of an autoencoder
AE for DNN parameter initialization. This AE training is performed by minimizing the
following objective function:

JAE = ∑n
i=1‖xi − zi‖2

2 + γ
[
∑xi ,xk∈C ∑C

j=1 qm
xi jq

m
xk j

]
(5)

where ‖xi − zi‖2
2 is the squared Euclidean distance between data point xi and its embedding zi.

The proposed algorithm would minimize the objective function in (2) iteratively and
converge towards the clustering results under specific criteria (tolerance threshold %).
Concretely, the clustering process carried out via our proposed approach follows DEC [21]
in its two phases: 1. model parameter initialization. In this phase, the deep embedding
parameters are initialized by training a deep autoencoder network. Then, the k-means
clustering algorithm [55] is applied to the embedded space Z to initialize the k cluster center
µj. 2. Model parameter optimization, i.e., updating the deep mapping fθ and refining the
cluster centers µj. In phase 2, the proposed objective loss is minimized to learn from the
current high confidence predictions by iterating between computing an auxiliary target
distribution and minimizing the Kullback–Leibler (KL) divergence to it.

To guide the learning process away from the local minima, some side information is
adopted within our approach as a set of pairwise constraints. Basically, such information is
incorporated to reward or penalize the traditional clustering objective as well as to adapt the
distance measure to each cluster. Specifically, soft pairwise constraints are introduced and
incorporated to represent the available prior knowledge where we formulate the second
term of the model’s objective according to these constraints. These pairwise constraints are
randomly generated with a size equal to β× N, where β is the number (ratio) of pairwise
constraints and N is the dataset size. Specifically, for each randomly selected data point,
we check the corresponding ground-truth labels of the whole dataset. If the ground-truth
labels of the two points are similar, a “should-link” pairwise link is formed between these
points and represented by 1. Otherwise, the pairwise link is represented by 0.

Appl. Sci. 2023, 13, 9673 8 of 18

Unlike the constraints referred to as “must-link” and “cannot-link”, the constraints in
our formulation are soft and not obligated. They can be viewed as a reward for correctly
clustering a point, which is suitable for the poorly labeled knowledge available in the real
world. The soft constraint term of the objective function governs the consistency between
the learned representation and clustering with the side information provided.

One should note that the Adam optimizer [56] was used to jointly optimize our objec-
tive in (2) with respect to its parameters, the cluster centers µj, and the DNN parameters.
The following algorithm (Algorithm 1) depicts the steps designed and implemented to
solve the clustering task of the proposed SC-DEC approach.

Algorithm 1 Soft Constrained Deep Clustering

INPUT: Dataset X; number of clusters K; update interval T; stopping threshold tol%; maximum
number of training iterations maxIter; γ: the constraint term weight; fuzzifier m; AE pretrain
epochs; β: number of pairwise constraints; data batch size.
OUTPUT: Cluster centers {µi} k

i=1; deep mapping weights θ; cluster label assignments {yi}
n
i=1.

1: STEP1: Pretrain the deep network (AE) on input X and according to the input
hyper-parameters to obtain initial deep mapping weights θ and the data in latent space Z.

2: STEP2: Initialize the values of cluster centers {µi} k
i=1 and cluster assignments {yi}

n
i=1 by

running k-means in Z from step1.
3: STEP3: Begin model fitting:
4: → Create pairwise constraints set C according to the input parameters X, β.
5: → for iter ∈ {0, 1, . . . , maxIter} do
6: → if update_interval T is reached then
7: → Compute embedded points on all dataset X using fθ : X→ Z .
8: → Compute soft assignments q and target distribution p using zi and qij, pij

formulas in Equations (3) and (4).
9: → Update label assignments {yi}

n
i=1.

10: → Compute cluster performance metrics.
11: → Save old label assignments.
12: → Compute change in label assignment and stop training if it is < tol%.
13: → end if
14: → Begin custom training on sequential data batches S ⊂ X.
15: → Compute constraint term per batch using Equation (2) and according to C and to

the input hyper-parameters m, γ.
16: → Add the constraint term to the custom loss in Equation (2).
17: → Train the model by minimizing Equation (2) using the selected optimizer.

18: → Update cluster centers
{

µj

}K

j=1
and deep mapping weights θ on S via the respective

update equations.
19: end for

4. Experiments

The performance of the proposed SC-DEC was validated through several experimental
scenarios using benchmark datasets. Moreover, the obtained results were compared with
those achieved via relevant state-of-the-art approaches. Below are the hypotheses tested
via the experiments:

- Null hypothesis: introducing supervision to relevant unsupervised learning ap-
proaches, as described in Section 3, does not improve the clustering results.

- Alternate hypothesis: introducing supervision to relevant unsupervised learning
approaches improves the clustering results. This means that the proposed SC-DEC
yields higher accuracy than the relevant existing methods.

In the following subsections, we will outline the experiments including the datasets
and performance measures, the implementation details, the experimental scenarios, param-
eter settings, and lastly, the results and discussion of the experiments.

Appl. Sci. 2023, 13, 9673 9 of 18

4.1. Datasets and Performance Measures

The proposed approach was mainly assessed using multiple benchmarking datasets
that are widely used by the deep clustering research community. The MNIST dataset [57],
which consists of 70,000 images of handwritten digits, was used. One should note that
the MNIST digits are size-normalized and centered in a fixed-size image. Each digit in
MNIST is represented using a gray image with a size of 28 × 28 pixels. This results in a
784-dimensional vector for each image. In addition, the USPS dataset [58] that contains
9298 gray-scale, handwritten, 16 × 16 pixel digit images was also used. Moreover, the
STL-10 dataset [59] that includes 13,000 color images, categorized into 10 classes, was
considered for the experiments. Each STL-10 image is a 96 × 96 pixel size. Table 1 details
these datasets and depicts the relevant ground-truth information for the clustering task.

Table 1. Details of the datasets used in this research.

Dataset Name and
Refence Number of Points Number of Classes Number of

Dimensions

MNIST [57] 70,000 10 784

USPS [58] 9298 10 256

STL-10 [59] 13,000 10 1428

The performance of the proposed approach was evaluated using standard metrics that
are widely used by the clustering research community: the classification accuracy (ACC),
which indicates the percentage of the correctly clustered samples, and the Normalized
Mutual Information (NMI) measure which represents the normalized similarity between
the true and predicted labels for the data records. Both ACC and NMI values range between
0 and 1.

4.2. Implementation Details

Python language, along with the required libraries, were associated with high-performance
resources to implement the intended experiments. For the non-linear transformation fθ , we
select a fully connected autoencoder deep network with d–500–500–2000–10 dimensions
for all datasets, where d is the data-space dimension. All internal layers of the autoencoder
are activated via a ReLU nonlinearity function [60] except for the input, output, and
embedding layers.

The autoencoder weights were initialized using greedy layer-wise pretraining. The
optimization method for the pretraining was Stochastic gradient descent (SGD) with a
learning rate of 0.01 and a momentum of 0.9 across all datasets. To initialize the cluster
centers µj, we ran k-means 20 times and selected the best solution. In the parameter
optimization phase, we trained our (SC-DEC) model using the Adam optimizer with a
default learning rate of 0.001. The stopping threshold was set to 0.001.

4.3. Experimental Scenarios

After conducting preliminary investigations and experiments using the proposed
approach, it was observed that higher numbers of training epochs can result in a poor
clustering performance. Moreover, the clustering results are sensitive to the initialization.
Furthermore, the Adam optimizer outperformed the other optimizers, with a significant
accuracy advantage. Accordingly, a lower range of training epochs was set for all datasets.
Moreover, random seeds were fixed for all implementation libraries. Specifically, the seeds
values were set based on the performances recorded in three trial runs.

During the preliminary experimentation on model optimizers, the hyper-parameters
used for all datasets were set as follows: batch size = 256, γ and β = 1, and m = 1.2
(hyper-parameters are defined in Section 3). As for the number of pretraining epochs,
1000 was used for USPS, 2000 for MNIST, and 20 for STL-10. Table 2 shows the accuracy
values resulting from using the different model optimizers and optimizers properties. It is

Appl. Sci. 2023, 13, 9673 10 of 18

noticeable from Table 2 that the Adam optimizer outperformed the other optimizers for all
datasets and with a large margin in the STL-10 dataset.

Table 2. Performance achieved via the proposed approach using different optimizer settings
and datasets.

Optimizer Setting Learning Rate Momentum MNIST USPS STL-10

SGD

0.01 0.9 85.94% 53.86% 25.49%

0.001 0.9 79.42% 34.42% 22.97%

0.1 0.9 86.55% 68.78% 28.84%

0.01 0.9 79.19% 34.39% 26.36%

Adam 0.001 0 87.36% 74.12% 91.50%

After setting Adam as the model optimizer for our proposed approach, we performed
other preliminary experiments to investigate the proper range for tuning the number of AE
pretraining epochs. Table 3 shows the settings adopted to cluster the datasets using the
proposed approach along with the Adam optimizer.

Table 3. Settings for the experiments investigating the number of AE pretraining epochs using the
proposed approach along with Adam optimizer using the different datasets.

Hyper-Parameter MNIST USPS STL-10

batch size 256 256 256

γ 1 10 1

β 1 1 1

m 1.2 1.2 2

Regarding the settings in Table 3, some of the experiments had specific settings. For
USPS, in the 50-epoch case, γ = −100, β = 0.5, and m = 1.5. In the 100-epoch case, γ = 1 and
m = 2. For the MNIST dataset, m = 1.5 in the 300-epoch case and m = 2 in the 400-epoch
case. Table 4 shows the preliminary experiment results in terms of the accuracy values
over the number of AE pretraining epochs. For the STL-10 dataset, a smaller number of
epochs led to better clustering accuracy. Moreover, for all datasets, a higher number of
pretraining epochs was not correlated with the increasing clustering accuracy. Based on
that, we selected the range for tuning the number of AE pretraining epochs to be within
smaller values that are relative to the size of the dataset.

It should also be mentioned that as the Adam optimizer was used, the tuning scenario
dedicated for the setting of the (optimizer) hyper-parameter was excluded. For all experi-
ments conducted using the different datasets, the relevant hyper-parameters were tuned
for a better initialization and setting, as shown in Table 5.

In Table 5, since it is the first parameter to be tuned, the number of pretraining epochs
does not require default value initialization. As for the batch size’s default value, it was
initialized according to the value that is widely used by the clustering research community.
Regarding β and γ default values, they were initialized with neutral values. As for the
initialization of the Fuzzifier m default value, the most frequently used and accepted value
in various applications is m = 2 [61]. However, when datasets have significant uneven
distributions in the cluster sizes, a smaller fuzzifier value has been suggested for the
FCM-based clustering algorithms [62].

Appl. Sci. 2023, 13, 9673 11 of 18

Table 4. Performance achieved via the proposed approach using different numbers of AE pretraining
epochs on the different datasets. Bold formatting indicates the best obtained results.

MNIST USPS STL-10

of Pretraining
epochs ACC # of Pretraining

Epochs ACC # Pretraining
Epochs ACC

20 83.44% 20 74.45% 20 91.02%

30 83.51% 30 75.73% 30 78.67%

50 85.54% 50 76.62% 50 77.62%

100 85.45% 100 75.16% 100 62.25%

200 86.08% 200 75.15% 200 74.98%

300 89.00% 300 75.04% 300 66.87%

400 87.00% 500 75.78% 500 66.58%

1000 85.47% 1000 74.70% 1000 66.52%

2000 87.41% 2000 60.82% 2000 65.25%

Table 5. Hyper-parameters considered for hyper-parameter tuning along with the default values.

Hyper-Parameter Default Value
MNIST

Default Value
USPS

Default Value
STL-10

Number of AE pretraining epochs - - -

Data batch size 256 256 256

Gamma γ 1 1 1

Beta β 1 1 1

Fuzzifier m 2 2 2

Next, a set of experiments for tuning the hyper-parameters were conducted to target
the optimal solution in terms of clustering accuracy. Namely, we investigated the number
of pretraining epochs, the amount of supervision (number of constraints β), the fuzziness
parameter m, the trade-off parameter (i.e., the constraint term weight) γ, and the data batch
size. The applicable range for these hyper-parameters is as follows:β ε {x| x > 0, x ∈ R},
γ ε {x| x ∈ R}, and the data batch size ε {x| x > 0, x ∈ Z}. The latter values used to
tune the data batch size are based on the related literature and the considered benchmark
datasets. On the other hand, according to [63], the fuzzifier m is recommended to be within
the interval [2, 3.5], while the authors in [61] suggested the interval [1.5, 2.5] for m. Based
on that, we set the range of values {1.2, 1.5, 1.7, 2, 3} to tune the fuzzifier m for SC-DEC.
Specifically, the tuning process was performed by dedicating and running one experiment
for each hyper-parameter as reported in Algorithm 2. This sequential tuning strategy was
intended to select the hyper-parameter value that yields the highest clustering accuracy
using SC-DEC.

4.4. Results and Discussion

As outlined above, extensive experiments were conducted to assess the performance
of the proposed approach, SC-DEC. The results were quantitatively analyzed, visualized,
and compared to those achieved using relevant unsupervised and semi-supervised deep
clustering algorithms. Namely, the proposed approach was compared with DEC [21],
Semi-Supervised Deep Embedded Clustering (SDEC) [38], and Improved Deep Embedded
Clustering with Local Structure Preservation (IDEC) [37]. Additionally, we added the
results of applying simple k-means [8] for clustering the deep embeddings of the respective
datasets (called DL + k-means).

Appl. Sci. 2023, 13, 9673 12 of 18

Algorithm 2 Hyper-parameter tuning strategy

INPUT: Dataset X; hyper-parameter set considered for tuning: {number of AE pretraining epochs;
γ: the constraint term weight; m: the fuzzifier; β: number of pairwise constraints; data batch size};
default values of the hyper-parameters from Table 5; random sets of seed values.
OUTPUT: Hyper-parameters values that achieve the highest accuracy, per dataset.
1:
2:
3:

4:
5:

6:
7:

STEP1: Tuning of the (number of pretraining epochs) hyper-parameter.
a. Other hyper-parameters are set to the default values.
b. Tuning values per dataset:

- USPS: {50, 100, 150, 200};
- MNIST: {100, 200, 300, 400, 500};
- STL-10: {20, 50, 70, 100, 150, 200},

c. Run the model for each value 3 times, with different seeds per run.
d. Save the pretraining epochs number and the seeds that resulted in the

highest accuracy among runs.
e. Update the default value for the number of pretraining epochs according to (d).
f. Use the seeds in (d) for the rest of the experiments.

8:
9:
10:
11:
12:

13:

STEP2: Tuning of the (fuzzifier m) hyper-parameter.
a. Other hyper-parameters are set to the default values.
b. Tuning values for all datasets: {1.2, 1.5, 1.7, 2, 3}.
c. Run the model for each value.
d. Save and use the m value that resulted in the highest accuracy for the rest

of the experiments.
e. Update the default m value according to (d).

14:
15:
16:
17:
18:

19:

STEP3: Tuning of (γ) hyper-parameter.
a. Other hyper-parameters are set to the default values.
b. Tuning values for all datasets: {+1, +10, +100, +1000, −1, −10, −100, −1000}.
c. Run the model for each value.
d. Save and use the γ value that resulted in the highest accuracy for the rest

of the experiments.
e. Update the default γ value according to (d).

20:
21:
22:
23:
24:

25:

STEP4: Tuning of the (β) hyper-parameter.
a. Other hyper-parameters are set to the default values.
b. Tuning values for all datasets: {0.1, 0.3, 0.5, 0.7, 0.9, 1, 1.2, 1.5, 2}.
c. Run the model for each value.
d. Save and use the β value that resulted in the highest accuracy for the rest

of the experiments.
e. Update the default β value according to (d).

26:
27:
28:
29:
30:

31:

STEP5: Tuning of the (data batch size) hyper-parameter.
a. Other hyper-parameters are set to the default values.
b. Tuning values for all datasets: {64, 128, 256, 512}.
c. Run the model for each value.
d. Save and use the batch size value that resulted in the highest accuracy for

the rest of the experiments.
e. Update the default batch size value according to (d).

After hyper-parameter tuning, detailed in Algorithm 2, we ran 20 experiments using
the hyper-parameter values that achieved the best accuracy. Table 6 reports the results
achieved using the proposed approach along with the state-of-the-art methods on the
MNIST, USPS, and STL-10 datasets. As can be seen in Table 6, the results mainly showed
the positive impact of utilizing minimal prior knowledge about the data on the cluster-
ing performance. According to Table 6, the most notable improvement was obtained
using the STL-10 dataset, with a clustering accuracy of 91.65%, which represents a drastic
improvement compared to DEC [21] and SDEC [38].

Appl. Sci. 2023, 13, 9673 13 of 18

Table 6. Clustering results measured in ACC and NMI. Bold formatting indicates the best results.

Method MNIST [57] STL-10 [59] USPS [58]

Metric ACC NMI ACC NMI ACC NMI

DL + k-means 86.83% 76.89% 86.94% 78.84% 70.93% 68.44%

DEC [21] 84.30% NA 35.90% NA NA NA

SDEC [38] 86.11% 82.89% 38.86% 32.84% 76.39% 77.68%

IDEC [37] 83.841% 77.885% NA NA 72.693% 71.135%

SC-DEC 92.11% 84.01% 91.65% 84.85% 76.62% 75.31%

One can notice from Table 6 that the SC-DEC performance exceeded that of DL + k-means
on all three datasets. Moreover, we can see that SC-DEC outperformed the non-constrained
approach DEC [21] on the MNIST and STL-10 datasets. This proves the importance of the
proposed semi-supervision information formulated as pairwise constraints in guiding the
deep clustering process. Moreover, the results confirmed the importance of the fuzzy mem-
bership representations in improving the clustering partition. Furthermore, the proposed
approach outperformed the non-fuzzy approach SDEC [38] in terms of clustering accuracy
for all datasets.

In addition, we retested the IDEC model in [37] using the settings reported in the paper:
SGD optimizer with a 0.01 learning rate and 0.9 momentum, with the set of pretrained AE
weights used for the implementation available online. The results in Table 6 show that
the proposed SC-DEC outperformed the IDEC results in terms of clustering accuracy and
NMI metrics.

Moreover, Figure 2 plots the change trends of the ACC and NMI metrics for the best
run on the three datasets. For all datasets, one can observe that the improvement in both
metrics stabilized after roughly 30% of the total training time. Then, a slight improvement
occurred later that led the model into convergence. Additionally, Figure 3 shows the
loss change trend (learning curve) of the run that resulted in the best accuracy for the
three datasets.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 19

(a) (b) (c)

Figure 2. Change trend recorded for the performance metrics obtained using SC-DEC on MNIST
(a), USPS (b), and STL-10 (c) datasets.

(a) (b) (c)

Figure 3. Loss change over training iterations on MNIST (a), USPS (b), and STL-10 (c) datasets.

The results of the hyper-parameter tuning presented earlier are shown in Table 7.
Specifically, this table shows the hyper-parameter values that yielded the best accuracy
for the proposed model when associated with each of the datasets. Moreover, Figures 4–7
plot the trends in accuracy changes achieved via SC-DEC according to the different hyper-
parameter values on the three datasets.

(a) (b) (c)

Figure 4. Effect of number of constraints β on SC-DEC clustering accuracy for MNIST (a), USPS (b),
and STL-10 (c) datasets.

(a) (b) (c)

Figure 5. Effect of fuzzifier value m on SC-DEC clustering accuracy for MNIST (a), USPS (b), and
STL-10 (c) datasets.

(a) (b) (c)

Figure 6. Effect of constraint term weight γ on SC-DEC clustering accuracy for MNIST (a), USPS
(b), and STL-10 (c) datasets.

Figure 2. Change trend recorded for the performance metrics obtained using SC-DEC on MNIST (a),
USPS (b), and STL-10 (c) datasets.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 19

(a) (b) (c)

Figure 2. Change trend recorded for the performance metrics obtained using SC-DEC on MNIST
(a), USPS (b), and STL-10 (c) datasets.

(a) (b) (c)

Figure 3. Loss change over training iterations on MNIST (a), USPS (b), and STL-10 (c) datasets.

The results of the hyper-parameter tuning presented earlier are shown in Table 7.
Specifically, this table shows the hyper-parameter values that yielded the best accuracy
for the proposed model when associated with each of the datasets. Moreover, Figures 4–7
plot the trends in accuracy changes achieved via SC-DEC according to the different hyper-
parameter values on the three datasets.

(a) (b) (c)

Figure 4. Effect of number of constraints β on SC-DEC clustering accuracy for MNIST (a), USPS (b),
and STL-10 (c) datasets.

(a) (b) (c)

Figure 5. Effect of fuzzifier value m on SC-DEC clustering accuracy for MNIST (a), USPS (b), and
STL-10 (c) datasets.

(a) (b) (c)

Figure 6. Effect of constraint term weight γ on SC-DEC clustering accuracy for MNIST (a), USPS
(b), and STL-10 (c) datasets.

Figure 3. Loss change over training iterations on MNIST (a), USPS (b), and STL-10 (c) datasets.

Appl. Sci. 2023, 13, 9673 14 of 18

The results of the hyper-parameter tuning presented earlier are shown in Table 7.
Specifically, this table shows the hyper-parameter values that yielded the best accuracy
for the proposed model when associated with each of the datasets. Moreover, Figures 4–7
plot the trends in accuracy changes achieved via SC-DEC according to the different hyper-
parameter values on the three datasets.

Table 7. Hyper-parameter values that yielded the highest accuracy for the different datasets.

Hyper-Parameter Value for MNIST Value for USPS Value for STL-10

Number of AE pretraining epochs 300 50 20

Number of constraints β 1.5 0.5 0.3

Fuzzifier m 1.7 1.5 1.7

Constraint Term weight γ 1 −100 100

Data batch size 256 256 512

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 19

(a) (b) (c)

Figure 2. Change trend recorded for the performance metrics obtained using SC-DEC on MNIST
(a), USPS (b), and STL-10 (c) datasets.

(a) (b) (c)

Figure 3. Loss change over training iterations on MNIST (a), USPS (b), and STL-10 (c) datasets.

The results of the hyper-parameter tuning presented earlier are shown in Table 7.
Specifically, this table shows the hyper-parameter values that yielded the best accuracy
for the proposed model when associated with each of the datasets. Moreover, Figures 4–7
plot the trends in accuracy changes achieved via SC-DEC according to the different hyper-
parameter values on the three datasets.

(a) (b) (c)

Figure 4. Effect of number of constraints β on SC-DEC clustering accuracy for MNIST (a), USPS (b),
and STL-10 (c) datasets.

(a) (b) (c)

Figure 5. Effect of fuzzifier value m on SC-DEC clustering accuracy for MNIST (a), USPS (b), and
STL-10 (c) datasets.

(a) (b) (c)

Figure 6. Effect of constraint term weight γ on SC-DEC clustering accuracy for MNIST (a), USPS
(b), and STL-10 (c) datasets.

Figure 4. Effect of number of constraints β on SC-DEC clustering accuracy for MNIST (a), USPS (b),
and STL-10 (c) datasets.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 19

(a) (b) (c)

Figure 2. Change trend recorded for the performance metrics obtained using SC-DEC on MNIST
(a), USPS (b), and STL-10 (c) datasets.

(a) (b) (c)

Figure 3. Loss change over training iterations on MNIST (a), USPS (b), and STL-10 (c) datasets.

The results of the hyper-parameter tuning presented earlier are shown in Table 7.
Specifically, this table shows the hyper-parameter values that yielded the best accuracy
for the proposed model when associated with each of the datasets. Moreover, Figures 4–7
plot the trends in accuracy changes achieved via SC-DEC according to the different hyper-
parameter values on the three datasets.

(a) (b) (c)

Figure 4. Effect of number of constraints β on SC-DEC clustering accuracy for MNIST (a), USPS (b),
and STL-10 (c) datasets.

(a) (b) (c)

Figure 5. Effect of fuzzifier value m on SC-DEC clustering accuracy for MNIST (a), USPS (b), and
STL-10 (c) datasets.

(a) (b) (c)

Figure 6. Effect of constraint term weight γ on SC-DEC clustering accuracy for MNIST (a), USPS
(b), and STL-10 (c) datasets.

Figure 5. Effect of fuzzifier value m on SC-DEC clustering accuracy for MNIST (a), USPS (b), and
STL-10 (c) datasets.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 19

(a) (b) (c)

Figure 2. Change trend recorded for the performance metrics obtained using SC-DEC on MNIST
(a), USPS (b), and STL-10 (c) datasets.

(a) (b) (c)

Figure 3. Loss change over training iterations on MNIST (a), USPS (b), and STL-10 (c) datasets.

The results of the hyper-parameter tuning presented earlier are shown in Table 7.
Specifically, this table shows the hyper-parameter values that yielded the best accuracy
for the proposed model when associated with each of the datasets. Moreover, Figures 4–7
plot the trends in accuracy changes achieved via SC-DEC according to the different hyper-
parameter values on the three datasets.

(a) (b) (c)

Figure 4. Effect of number of constraints β on SC-DEC clustering accuracy for MNIST (a), USPS (b),
and STL-10 (c) datasets.

(a) (b) (c)

Figure 5. Effect of fuzzifier value m on SC-DEC clustering accuracy for MNIST (a), USPS (b), and
STL-10 (c) datasets.

(a) (b) (c)

Figure 6. Effect of constraint term weight γ on SC-DEC clustering accuracy for MNIST (a), USPS
(b), and STL-10 (c) datasets.

Figure 6. Effect of constraint term weight γ on SC-DEC clustering accuracy for MNIST (a), USPS (b),
and STL-10 (c) datasets.

Appl. Sci. 2023, 13, 9673 15 of 18Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 19

(a) (b) (c)

Figure 7. Effect of data batch size on SC-DEC clustering accuracy for MNIST (a), USPS (b), and STL-
10 (c) datasets.

We can notice from Table 7 and Figure 4 that the number of pairwise constraints (𝛽
hyper-parameter) was correlated with the dataset size. In the largest dataset, MNIST, the
best value was 𝛽 = 1.5, compared to 𝛽 = 0.3 and 𝛽 = 0.5 for the STL-10 and USPS da-
tasets, respectively. However, the change in accuracy in response to the increased 𝛽 value
was not substantial, as the difference between the highest and lowest accuracy equaled
1.05% (MNIST), 0.43% (STL-10), and 0.74% (USPS). This is consistent with the findings in
the SDEC paper [38] that the initial introduction of pairwise constraints into deep embed-
ded clustering will lead to a significant increase in performance, and then the performance
becomes stable, indicating that enough prior information has been captured. According
to SDEC, this observation is generally consistent with the semi-supervised learning liter-
ature.

Moreover, the effect of the number of constraints 𝛽 on the performance of the pro-
posed approach may be subject to the pairwise constraints generated, as the generation is
random for each new value of the hyper-parameter 𝛽. This would explain the relative
randomness that characterizes the results shown in Figure 4.

Furthermore, Table 7 and Figure 5 show that the highest accuracy values for the fuzzy
parameter m among the three datasets are within the interval suggested by [61] as a heu-
ristic for selecting the m value for FCM-based clustering. The calculation in [61] suggests
that the best choice for m is probably in the interval of [1.5, 2.5]. Interestingly, training our
model on the STL-10 dataset using a 512-batch size yielded better results than using the
default 256-batch size.

Table 7. Hyper-parameter values that yielded the highest accuracy for the different datasets.

Hyper-Parameter Value for MNIST Value for USPS Value for STL-10
Number of AE pretraining
epochs

300 50 20

Number of constraints 𝛽 1.5 0.5 0.3
Fuzzifier m 1.7 1.5 1.7
Constraint Term weight 𝛾 1 −100 100
Data batch size 256 256 512

5. Conclusion and Future Work
Most real-world datasets are weakly labeled by nature, which inspired the utilization

of the available prior knowledge as supervision information by clustering algorithms to
carry the clustering process away from the local minima. This led to the introduction of
semi-supervised learning within the clustering paradigm. However, the state-of-the-art
semi-supervised deep clustering approaches remain below expectations compared to the
fully unsupervised approaches, with several potentials to be explored. In this paper, we
propose a novel semi-supervised deep clustering approach (named Soft Constrained
Deep Clustering, SC-DEC) to overcome the limitations in the existing semi-supervised
clustering approaches. Specifically, the proposed approach leverages a deep neural net-
work architecture and generates fuzzy membership degrees that better reflect the true
partition of the data. Furthermore, the scarcely available prior knowledge was used as

Figure 7. Effect of data batch size on SC-DEC clustering accuracy for MNIST (a), USPS (b), and
STL-10 (c) datasets.

We can notice from Table 7 and Figure 4 that the number of pairwise constraints (β
hyper-parameter) was correlated with the dataset size. In the largest dataset, MNIST, the
best value was β = 1.5, compared to β = 0.3 and β = 0.5 for the STL-10 and USPS datasets,
respectively. However, the change in accuracy in response to the increased β value was
not substantial, as the difference between the highest and lowest accuracy equaled 1.05%
(MNIST), 0.43% (STL-10), and 0.74% (USPS). This is consistent with the findings in the
SDEC paper [38] that the initial introduction of pairwise constraints into deep embedded
clustering will lead to a significant increase in performance, and then the performance
becomes stable, indicating that enough prior information has been captured. According to
SDEC, this observation is generally consistent with the semi-supervised learning literature.

Moreover, the effect of the number of constraints β on the performance of the proposed
approach may be subject to the pairwise constraints generated, as the generation is random
for each new value of the hyper-parameter β. This would explain the relative randomness
that characterizes the results shown in Figure 4.

Furthermore, Table 7 and Figure 5 show that the highest accuracy values for the
fuzzy parameter m among the three datasets are within the interval suggested by [61] as
a heuristic for selecting the m value for FCM-based clustering. The calculation in [61]
suggests that the best choice for m is probably in the interval of [1.5, 2.5]. Interestingly,
training our model on the STL-10 dataset using a 512-batch size yielded better results than
using the default 256-batch size.

5. Conclusions and Future Work

Most real-world datasets are weakly labeled by nature, which inspired the utilization
of the available prior knowledge as supervision information by clustering algorithms to
carry the clustering process away from the local minima. This led to the introduction of
semi-supervised learning within the clustering paradigm. However, the state-of-the-art
semi-supervised deep clustering approaches remain below expectations compared to the
fully unsupervised approaches, with several potentials to be explored. In this paper, we
propose a novel semi-supervised deep clustering approach (named Soft Constrained Deep
Clustering, SC-DEC) to overcome the limitations in the existing semi-supervised clustering
approaches. Specifically, the proposed approach leverages a deep neural network architec-
ture and generates fuzzy membership degrees that better reflect the true partition of the
data. Furthermore, the scarcely available prior knowledge was used as side information
and formulated as a set of soft pairwise constraints to direct the machine learning process
into clustering unlabeled data. This clustering task was formulated as an optimization
problem where a novel objective function was minimized to simultaneously discover the
hidden data clusters and optimize the deep neural network. The proposed approach was
assessed using standard datasets and performance measures. The experiments proved
that the proposed approach can automatically learn the partitioning of data. Moreover,
various calibrations of the model’s hyper-parameters were investigated during the exper-
iments. The experimental results showed that the size of the pairwise constraints was
positively correlated with the dataset size. However, after enough prior information has
been captured via the initial insertion of the pairwise constraints into the proposed model,

Appl. Sci. 2023, 13, 9673 16 of 18

the model performance became stable. Furthermore, when compared to the state-of-the-art
approaches, SC-DEC produced competitive results on the STL-10 dataset and outperformed
the other models on MNIST and USPS.

Some limitations of the proposed approach should be stated, which include 1. sen-
sitivity issues toward the presetting of the number of clusters and 2. the trial-and-error
approach in selecting some of the hyper-parameter values for tuning. However, to address
these limitations as well as to investigate new potentials, some directions are suggested for
future studies. Specifically, we suggest researching the following approaches: 1. developing
an automatic determination of the number of clusters through designing an additional term
to the proposed objective; 2. researching robust heuristics to guide the selection process for
hyper-parameters β and γ; 3.dropping the noise points and considering only the points
with membership values over a certain threshold for the constraint term formulation; 4.
investigating the effect of “should-not-link” pairwise constraints; and 5. studying the
proposed method using text datasets.

Author Contributions: Conceptualization, M.S.A., M.M.B.I. and O.B.; methodology, M.S.A., M.M.B.I. and
O.B.; software, M.S.A.; validation, M.S.A. and M.M.B.I.; formal analysis, M.S.A. and M.M.B.I.; investigation,
M.S.A. and M.M.B.I.; resources, M.S.A. and M.M.B.I.; data curation, M.S.A.; writing—original draft
preparation, M.S.A.; writing—review and editing, M.S.A., M.M.B.I. and O.B.; visualization, M.S.A.
and M.M.B.I.; supervision, O.B. and M.M.B.I. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The MNIST
data can be found at http://yann.lecun.com/exdb/mnist/ (accessed on 18 July 2023). The USPS data
can be found at [https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps]
(accessed on 18 July 2023). The STL-10 data can be found at https://cs.stanford.edu/~acoates/stl10/
(accessed on 18 July 2023).

Acknowledgments: The authors would like to thank the Deanship of Scientific Research in King
Saud University for supporting this research through the initiative of Graduate Students Research
Support (GSR).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jha, J.; Ragha, L. Intrusion detection system using support vector machine. Int. J. Appl. Inf. Syst. 2013, 3, 25–30.
2. Dhankhad, S.; Mohammed, E.; Far, B. Supervised Machine Learning Algorithms for Credit Card Fraudulent Transaction Detection:

A Comparative Study. In Proceedings of the 2018 IEEE International Conference on Information Reuse and Integration (IRI), Salt
Lake City, UT, USA, 6–9 July 2018; pp. 122–125. [CrossRef]

3. Jain, P.; Garibaldi, J.M.; Hirst, J.D. Supervised machine learning algorithms for protein structure classification. Comput. Biol. Chem.
2009, 33, 216–223. [CrossRef]

4. Talabis, M.; McPherson, R.; Miyamoto, I.; Martin, J. Information Security Analytics: Finding Security Insights, Patterns, and Anomalies
in Big Data; Syngress: Waltham, MA, USA, 2014.

5. Min, E.; Guo, X.; Liu, Q.; Zhang, G.; Cui, J.; Long, J. A Survey of Clustering With Deep Learning: From the Perspective of Network
Architecture. IEEE Access 2018, 6, 39501–39514. [CrossRef]

6. Bramer, M. Principles of Data Mining; Springer: Berlin/Heidelberg, Germany, 2007; Volume 180.
7. Dahal, P. Deep Clustering. DeepNotes. 24 April 2019. Available online: http://deepnotes.io/deep-clustering (accessed on

28 February 2021).
8. Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An efficient k-means clustering algorithm:

Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881–892. [CrossRef]
9. Johnson, S.C. Hierarchical clustering schemes. Psychometrika 1967, 32, 241–254. [CrossRef] [PubMed]
10. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. Density-based spatial clustering of applications with noise. Int. Conf. Knowl. Discov.

Data Min. 1996, 6.
11. Xu, R.; Wunsch, D. Survey of Clustering Algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [CrossRef]

http://yann.lecun.com/exdb/mnist/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps
https://cs.stanford.edu/~acoates/stl10/
https://doi.org/10.1109/iri.2018.00025
https://doi.org/10.1016/j.compbiolchem.2009.04.004
https://doi.org/10.1109/ACCESS.2018.2855437
http://deepnotes.io/deep-clustering
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1007/BF02289588
https://www.ncbi.nlm.nih.gov/pubmed/5234703
https://doi.org/10.1109/TNN.2005.845141

Appl. Sci. 2023, 13, 9673 17 of 18

12. Sisodia, D.; Singh, L.; Sisodia, S.; Saxena, K. Clustering techniques: A brief survey of different clustering algorithms. Int. J. Latest
Trends Eng. Technol. 2012, 1, 82–87.

13. Steinbach, M.; Ertöz, L.; Kumar, V. The Challenges of Clustering High Dimensional Data. In New Directions in Statistical Physics;
Springer: Berlin/Heidelberg, Germany, 2004; pp. 273–309.

14. Saul, L.K.; Weinberger, K.Q.; Sha, F.; Ham, J.; Lee, D.D. Spectral Methods for Dimensionality Reduction. Semi-Supervised Learn.
2006, 3, 293–308. [CrossRef]

15. Vasan, K.K.; Surendiran, B. Dimensionality reduction using Principal Component Analysis for network intrusion detection.
Perspect. Sci. 2016, 8, 510–512. [CrossRef]

16. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell. 2013, 35, 1798–1828. [CrossRef]

17. Rolnick, D.; Veit, A.; Belongie, S.; Shavit, N. Deep learning is robust to massive label noise. arXiv 2017, arXiv:1705.10694.
18. Aljalbout, E.; Golkov, V.; Siddiqui, Y.; Strobel, M.; Cremers, D. Clustering with deep learning: Taxonomy and new methods. arXiv

2018, arXiv:1801.07648.
19. Yang, B.; Fu, X.; Sidiropoulos, N.D.; Hong, M. Towards k-means-friendly spaces: Simultaneous deep learning and clustering. In

Proceedings of the International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 3861–3870.
20. Shaham, U.; Stanton, K.; Li, H.; Nadler, B.; Basri, R.; Kluger, Y. SpectralNet: Spectral Clustering using Deep Neural Networks.

arXiv 2018. [CrossRef]
21. Xie, J.; Girshick, R.; Farhadi, A. Unsupervised deep embedding for clustering analysis. In Proceedings of the International

Conference on Machine Learning, PMLR, New York, NY, USA, 20–22 June 2016; pp. 478–487.
22. Parsazad, S.; Saboori, E.; Allahyar, A. Data selection for semi-supervised learning. arXiv 2012, arXiv:1208.1315.
23. Chen, G. Deep learning with nonparametric clustering. arXiv 2015, arXiv:1501.03084.
24. Kampffmeyer, M.; Løkse, S.; Bianchi, F.M.; Livi, L.; Salberg, A.-B.; Jenssen, R. Deep divergence-based approach to clustering.

Neural Netw. 2019, 113, 91–101. [CrossRef]
25. Caron, M.; Bojanowski, P.; Joulin, A.; Douze, M. Deep clustering for unsupervised learning of visual features. In Proceedings of

the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 132–149.
26. Premachandran, V.; Yuille, A.L. Unsupervised Learning Using Generative Adversarial Training and Clustering; 2016. Available

online: https://openreview.net/forum?id=SJ8BZTjeg (accessed on 17 July 2023).
27. Guo, X.; Liu, X.; Zhu, E.; Yin, J. Deep clustering with convolutional autoencoders. In Proceedings of the International Conference

on Neural Information Processing, ICONIP 2017, Guangzhou, China, 14–18 November 2017; pp. 373–382.
28. Guo, X.; Zhu, E.; Liu, X.; Yin, J. Deep embedded clustering with data augmentation. In Proceedings of the Asian Conference on

Machine Learning, PMLR, Beijing, China, 14–16 November 2018; pp. 550–565.
29. Shah, S.A.; Koltun, V. Deep continuous clustering. arXiv 2018, arXiv:1803.01449.
30. Ren, Y.; Pu, J.; Yang, Z.; Xu, J.; Li, G.; Pu, X.; Yu, P.S.; He, L. Deep Clustering: A Comprehensive Survey. arXiv 2022. [CrossRef]
31. Zhang, H.; Basu, S.; Davidson, I. A framework for deep constrained clustering-algorithms and advances. In Proceedings of the

Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Würzburg, Germany, 16 September
2019; pp. 57–72.

32. Dizaji, K.G.; Herandi, A.; Deng, C.; Cai, W.; Huang, H. Deep Clustering via Joint Convolutional Autoencoder Embedding
and Relative Entropy Minimization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy,
22–29 October 2017; pp. 5747–5756. [CrossRef]

33. Moreno, J.G. Point Symmetry-based deep clustering. In Proceedings of the 27th ACM International Conference on Information
and Knowledge Management, Torino, Italy, 22–26 October 2018; pp. 1747–1750.

34. Jiang, Z.; Zheng, Y.; Tan, H.; Tang, B.; Zhou, H. Variational Deep Embedding: An Unsupervised and Generative Approach to
Clustering. arXiv 2016, arXiv:1611.05148.

35. Wang, C.; Pan, S.; Hu, R.; Long, G.; Jiang, J.; Zhang, C. Attributed Graph Clustering: A Deep Attentional Embedding Approach.
arXiv 2019, arXiv:1906.06532.

36. Li, K.; Wang, F.; Yang, L.; Liu, R. Deep feature screening: Feature selection for ultra high-dimensional data via deep neural
networks. Neurocomputing 2023, 538, 126186. [CrossRef]

37. Guo, X.; Gao, L.; Liu, X.; Yin, J. Improved Deep Embedded Clustering with Local Structure Preservation. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 1753–1759.
[CrossRef]

38. Ren, Y.; Hu, K.; Dai, X.; Pan, L.; Hoi, S.C.; Xu, Z. Semi-supervised deep embedded clustering. Neurocomputing 2019, 325, 121–130.
[CrossRef]

39. Carr, O.; Jovanovic, S.; Albergante, L.; Andreotti, F.; Dürichen, R.; Lipunova, N.; Baxter, J.; Khan, R.; Irving, B. Deep Semi-
Supervised Embedded Clustering (DSEC) for Stratification of Heart Failure Patients. arXiv 2020, arXiv:2012.13233.

40. Li, X.; Yin, H.; Zhou, K.; Zhou, X. Semi-supervised clustering with deep metric learning and graph embedding. World Wide Web
2020, 23, 781–798. [CrossRef]

41. Vilhagra, L.A.; Fernandes, E.R.; Nogueira, B.M. TextCSN: A semi-supervised approach for text clustering using pairwise
constraints and convolutional siamese network. In Proceedings of the 35th Annual ACM Symposium on Applied Computing,
Brno, Czech Republic, 30 March–3 April 2020; pp. 1135–1142.

https://doi.org/10.7551/mitpress/6173.003.0022
https://doi.org/10.1016/j.pisc.2016.05.010
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.48550/arXiv.1801.01587
https://doi.org/10.1016/j.neunet.2019.01.015
https://openreview.net/forum?id=SJ8BZTjeg
https://doi.org/10.48550/arXiv.2210.04142
https://doi.org/10.1109/iccv.2017.612
https://doi.org/10.1016/j.neucom.2023.03.047
https://doi.org/10.24963/ijcai.2017/243
https://doi.org/10.1016/j.neucom.2018.10.016
https://doi.org/10.1007/s11280-019-00723-8

Appl. Sci. 2023, 13, 9673 18 of 18

42. Wang, Z.; Mi, H.; Ittycheriah, A. Semi-supervised Clustering for Short Text via Deep Representation Learning. arXiv 2016,
arXiv:1602.06797.

43. Ruff, L.; Vandermeulen, R.A.; Görnitz, N.; Binder, A.; Müller, E.; Müller, K.R.; Kloft, M. Deep semi-supervised anomaly detection.
arXiv 2019, arXiv:1906.02694.

44. Arshad, A.; Riaz, S.; Jiao, L.; Murthy, A. Semi-Supervised Deep Fuzzy C-Mean Clustering for Software Fault Prediction. IEEE
Access 2018, 6, 25675–25685. [CrossRef]

45. Enguehard, J.; O’Halloran, P.; Gholipour, A. Semi-Supervised Learning With Deep Embedded Clustering for Image Classification
and Segmentation. IEEE Access 2019, 7, 11093–11104. [CrossRef]

46. Kingma, D.P.; Rezende, D.J.; Mohamed, S.; Welling, M. Semi-supervised learning with deep generative models. arXiv 2014,
arXiv:1406.5298.

47. Śmieja, M.; Wołczyk, M.; Tabor, J.; Geiger, B.C. SeGMA: Semi-Supervised Gaussian Mixture Autoencoder. IEEE Trans. Neural
Netw. Learn. Syst. 2020, 32, 3930–3941. [CrossRef]

48. Ienco, D.; Pensa, R.G. Deep triplet-driven semi-supervised embedding clustering. In Proceedings of the International Conference
on Discovery Science, Split, Croatia, 28–30 October 2019; pp. 220–234.

49. Fogel, S.; Averbuch-Elor, H.; Cohen-Or, D.; Goldberger, J. Clustering-Driven Deep Embedding With Pairwise Constraints. IEEE
Comput. Graph. Appl. 2019, 39, 16–27. [CrossRef]

50. Shukla, A.; Cheema, G.S.; Anand, S. Semi-supervised clustering with neural networks. In Proceedings of the 2020 IEEE Sixth
International Conference on Multimedia Big Data (BigMM), IEEE, New Delhi, India, 24–26 September 2020; pp. 152–161.

51. Ren, Y.; Wang, N.; Li, M.; Xu, Z. Deep density-based image clustering. Knowl.-Based Syst. 2020, 197, 105841. [CrossRef]
52. Basu, S.; Banerjee, A.; Mooney, R.J. Active semi-supervision for pairwise constrained clustering. In Proceedings of the 2004 SIAM

International Conference on Data Mining, SIAM, Lake Buena Vista, FL, USA, 22–24 April 2004; pp. 333–344.
53. Zhu, X. Semi-Supervised Learning Literature Survey (Technical Report); Computer Sciences; University of Wisconsin-Madison:

Madison, WI, USA, 2005.
54. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.-A. Stacked Denoising Autoencoders: Learning Useful Representa-

tions in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.
55. Hartigan, J.A.; Wong, M.A. A k-means clustering algorithm. Appl. Stat. 1979, 28, 100–108. [CrossRef]
56. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
57. LeCun, Y. The MNIST Database of Handwritten Digits. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on

17 August 2023).
58. Hull, J.J. A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 550–554. [CrossRef]
59. Coates, A.; Ng, A.; Lee, H. An analysis of single-layer networks in unsupervised feature learning. In Proceedings of the Fourteenth

International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Fort Lauderdale,
FL, USA, 11–13 April 2011; pp. 215–223.

60. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Fort Lauderdale, FL, USA, 11–13 April
2011; pp. 315–323.

61. Pal, N.; Bezdek, J. On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 1995, 3, 370–379. [CrossRef]
62. Zhou, K.; Yang, S. Effect of cluster size distribution on clustering: A comparative study of k-means and fuzzy c-means clustering.

Pattern Anal. Appl. 2020, 23, 455–466. [CrossRef]
63. Zhou, K.; Fu, C.; Yang, S. Fuzziness parameter selection in fuzzy c-means: The perspective of cluster validation. Sci. China Inf. Sci.

2014, 57, 1–8. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2018.2835304
https://doi.org/10.1109/ACCESS.2019.2891970
https://doi.org/10.1109/TNNLS.2020.3016221
https://doi.org/10.1109/MCG.2018.2881524
https://doi.org/10.1016/j.knosys.2020.105841
https://doi.org/10.2307/2346830
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/34.291440
https://doi.org/10.1109/91.413225
https://doi.org/10.1007/s10044-019-00783-6
https://doi.org/10.1007/s11432-014-5146-0

	Introduction
	Related Works
	Proposed Soft Constrained Deep Clustering (SC-DEC)
	Experiments
	Datasets and Performance Measures
	Implementation Details
	Experimental Scenarios
	Results and Discussion

	Conclusions and Future Work
	References

