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Abstract: The task of aspect-based sentiment analysis (ABSA) is to detect the sentiment polarity
toward given aspects. Contemporary methods predominantly utilize graph neural networks and
incorporate attention mechanisms to dynamically connect aspect terms with their surrounding
contexts, resulting in more informative feature representations. However, these methods only
consider whether there are dependencies between words when introducing dependencies, ignoring
that dependencies between different sentiment words have different effects. Neglecting this could
introduce noise and negatively impact the model’s performance. To overcome this limitation, we
introduce a novel approach called the local dependency-enhanced graph convolutional network
(LDEGCN). Our method combines semantic information and dependency relationships to better
capture the affective relationships between words. Specifically, we integrate sentiment knowledge
from SenticNet to enrich the sentence’s dependency graph and thoroughly explore the dependency
types between contexts and aspects to focus on particular dependency types. The local context
weight (LCW) method is employed on the dependency-enhanced graph to emphasize the importance
of local contexts, thereby mitigating the issue of long-distance dependencies. Through extensive
evaluations of five public datasets, the LDEGCN model demonstrates significant improvements over
mainstream models.

Keywords: aspect-based sentiment analysis; graph convolutional network; multi-head attention;
affective knowledge; dependency types

1. Introduction

With the continuous advancement of Internet technology and the growing number
of Internet users, a substantial volume of comment data is being generated through infor-
mation exchange. These valuable comment data, such as reviews on events, products and
people, can be leveraged for extracting useful information through sentiment analysis [1].
However, traditional sentence-level sentiment analysis methods have gradually become
inadequate in meeting our requirements, as users often pay attention to multiple aspects
of the same entity [2]. As illustrated in Figure 1, the sentiment polarity of the aspect “en-
vironment” is considered positive, whereas the sentiment polarity of the aspect “food” is
negative. Consequently, ABSA has emerged as a crucial research area in the field of natural
language processing (NLP) [3,4].

The key to addressing the ABSA task lies in precisely identifying the opinion words
that hold a substantial influence in determining the sentiment polarity of each aspect [5].
In early stages, ABSA tasks employed a combination of recurrent neural networks (RNNs)
and attention mechanisms [6–10]. These approaches were used to capture aspect-related
semantic information and generate aspect-specific sentence representations. However,
these methods suffer from limitations when it comes to handling noise introduced by
unrelated words. Additionally, they overlook the crucial syntactic dependency information
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within sentences, and the attention module might unintentionally emphasize irrelevant
words due to syntactic omissions.

Figure 1. This is an example sentence with a dependency tree, in which aspect terms (highlighted in
red) are connected with other words according to their syntactic dependency.

Recently, models have been developed with the objective of establishing relational
connections between aspects and their corresponding opinion words [11–16]. These meth-
ods notably improve the model’s performance, while they treat all dependencies equally,
disregarding the fact that the impacts of dependencies among distinct sentiment words
differ significantly in ABSA tasks. From a linguistic perspective, dependencies between
words with different sentiment intensities carry distinct meanings. Words exhibiting strong
sentiment orientation can play a significant role in ABSA tasks, while words with am-
biguous sentiment tendencies may interfere with the model’s judgment. From a syntactic
perspective, different dependency types have varying levels of importance in sentiment
analysis tasks. Tian et al. [17] argue that dependencies of the “nsubj” (nominal subject) type,
as well as certain modifier dependencies like “amod” (adjective modifier) and “advmod”
(adverb modifier), are more crucial than other types of dependencies.

To address the aforementioned limitations, we introduce the LDEGCN model, which is
composed of three crucial modules: the semantic feature extraction module, the dependency-
enhanced module and the local context weight (LCW) method. The semantic feature
extraction module is designed to extract meaningful and contextually relevant features
from the output of the embedding layer. It consists of two layers of multi-head attention
to assign attention weights to aspects within the context, thereby facilitating the extrac-
tion of semantic features. The dependency-enhanced module is utilized to strengthen
the dependency relationships between words within a sentence. It focuses on specific
dependency relationships by integrating external affective knowledge and dependency
types. Specifically, we first construct a dependency graph based on the dependency tree. To
harness external sentiment knowledge and explore various dependency types, we utilize
SenticNet to assign intensity scores to sentiment words and construct a specific dependency
set, Sset. As a result, the enhanced graph can effectively capture the emotional connec-
tions and dependency relationships between contexts and aspects. Furthermore, the LCW
method [18] is employed on the dependency-enhanced graph to weight the dependencies,
effectively solving the problem of long-distance dependencies. By evaluating our method
on five benchmark datasets, we have observed significant improvements compared to
mainstream models.

The main contributions of this paper can be summarized as follows:

• We propose an aspect-aware mechanism based on multi-head interactive attention
and multi-head self-attention to enhance the representation of aspect-related seman-
tic features.

• We utilize SenticNet for graph construction to introduce external sentiment knowledge
and enhance the focus on specific dependency relationships within the graph by
building a specific set of dependencies.

• The LCW method is employed on the dependency-enhanced graph, which effectively
diminishes attention on long-distance dependencies.
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2. Related Works

In recent years, sentiment analysis has witnessed remarkable success with the adoption
of deep learning models. These models have the capability to automatically learn valuable
features from raw text data and encode sentences using low-dimensional word vectors,
thereby capturing rich semantic information. The previous related work in this field can be
categorized into three different parts:

2.1. Attention-Based models

Several attention-based networks have demonstrated promising performance by im-
plicitly modeling the semantic relation of an aspect and its context. Chen [7] introduced
a multiple-attention-based memory network to capture crucial information pertaining
to sentiment orientation for different aspect words. Ma et al. [8] introduced a pair of
attention networks to dynamically learn representations for both aspects and contexts.
Huang et al. [9] presented the attention-over-attention (AOA) module to simultaneously
learn representations for both aspects and contexts. Fan et al. [10] exploited a multi-
ple fine-grained attention model to interactively learn the relations between aspects and
their contexts.

Although these models benefit from attention and syntactic information, they fail to
capture dependency relationships between contexts, which is of paramount importance for
ABSA tasks.

2.2. Graph Neural Networks

Due to the enhanced capability of graphs in representing the structural information
of text and accurately capturing word-level dependency information, researchers have
begun to explore the utilization of graph neural networks (GNNs) for learning feature
representations from dependency trees. Zhang and Sun [11,12] presented a graph convolu-
tional network (GCN) method to learn from the node representation of the dependency
tree. Liang et al. [13] proposed a method to construct a syntactical dependency graph for a
sentence based on a specific aspect. It introduces the interactive graph convolutional net-
works (InterGCNs) model to extract aspect-focused and inter-aspect sentiment features for
a particular aspect. Wang et al. [14] introduced a relation graph attention network (R-GAT)
that constructs a node relation graph within the dependency tree. It employs graph atten-
tion mechanisms to capture complex dependencies between nodes and aggregates node
information into a graph-level representation. Li et al. [15] proposed a DualGCN model to
simultaneously consider the complementary interaction between syntactic structure and
semantic relevance.

With the increasing number of GNN-based models demonstrating superior perfor-
mance, research has proven the effectiveness of enhancing the dependencies between
contexts and aspects. However, these models treat each dependency item equally and they
ignore the affective information within contexts and aspects.

2.3. Affective Knowledge

By integrating external data and knowledge resources, NLP models can gain a deeper
understanding and processing capability for natural language, leading to substantial ad-
vancements across various domains and fields [19,20]. In sentiment classification tasks,
sentiment knowledge significantly improves the model’s understanding and expression
of the emotional content in text [21]. Zhou et al. [22] introduced a commonsense knowl-
edge graph to enhance sentence representation. Xing et al. [23] adapted various existing
sentiment lexicons to the target domain and found that SenticNet, as a universal sentiment
lexicon, outperformed other lexicons in terms of performance. In ABSA tasks, leveraging
the sentiment lexicon SenticNet allows for the extraction of aspect-dependent sentiment
expressions from the context. Liang et al. [24] injected affective knowledge into the graph
to enhance the model’s ability to identify the emotional tendencies in the text, leading to
more accurate classification predictions.
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Overall, infusing affective knowledge is a promising research direction that enables
the fusion of external resources with neural network models. This integration empowers
the model to better comprehend the emotional information in the text and enriches the
feature representation.

3. Proposed Approach/ Methodology

In this part, we introduce a comprehensive description of LDEGCN. This approach
aims to address the challenges of capturing syntactic and semantic information in ABSA
tasks. It enhances the representation of aspect-related semantic features through a multi-
layer attention structure. The advantages of GNN and dependency tree structure are fully
exploited, combining external sentiment knowledge and dependency type information to
bolster the representation of relevant dependencies in the dependency graph. The overall
framework of the network is illustrated in Figure 2. The proposed method is mainly divided
into five components: embedding layer, semantic feature extraction module, LDEGCN
module, feature fusion layer and sentiment classifier.

Figure 2. Framework of the proposed LDEGCN model.

3.1. Task Definition

Given a context sequence, S = {w1, w2, . . . , wa+1, . . . , wa+m, . . . , wn}, of length n,
where A = {a1, a2, . . . , am} is the aspect sequence and the subsequence of the sentence,
S. A sentence can contain one or multiple aspect terms corresponding to three sentiment
polarities (positive, negative and neutral). ABSA aims to detect the sentiment polarity of
the given aspect, A, in a sentence, S, by extracting sentiment information from the context.

3.2. Embedding

In ABSA tasks, pre-trained language model BERT offers rich feature information.
Therefore, we input the sentence-aspect pair (S, A) into BERT in the form of “[CLS] S [SEP]
A [SEP]” to initialize the aspect-aware word vectors, where “[CLS]” represents the symbolic
marker encoding the overall sentence-level representation, while “[SEP]” serves as the
separator between the context and the aspect. The calculation in BERT is as follows:

{Hc, Ha} = BERT({[CLS], S, [SEP], A, [SEP]}) (1)

In the equation, Hc = {h1, h2, . . . , hn} ∈ Rn×hdim is the word embedding of contextual
word and Ha = {ha+1, ha+2, . . . , ha+m} ∈ Rm×hdim is the word embedding of aspect word,
where hdim is the dimensionality of each word vector, n is the length the sentence and m is
the length of the aspect term.
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3.3. Semantic Feature Extraction

Attention is a commonly used method to grasp the interaction between aspects and the
surrounding contexts [25]. The semantic feature extraction module comprises a two-layer
multi-head attention mechanism. Multi-head attention (MHA) is a variation of attention.
The input sequence undergoes multiple linear transformations and is mapped to several
vector representations, including query, key and value. Each new query and key–value
pair undergoes an independent attention operation, referred to as a head. The attention
values generated by different heads are concatenated to obtain the final output value. The
mathematical calculation is as follows:

Attention(K, Q) = softmax

(
QWQ ×

(
KWK)T

√
d

)
K (2)

where matrices Q and K are the query vector and the key vector, respectively, while WQ and
WK are learnable weight matrices and d is the dimensionality of the input node features.

MHA(K, Q) =
[

head1 ⊕ head2 ⊕ . . .⊕ headn
]
Wm (3)

headi = Attentioni(K, Q) (4)

where “⊕” represents the concatenation of vectors and Wm ∈ Rhdim is a learnable weight
matrix. In the first attention layer, the semantic feature extraction module utilizes self-
attention with K = Q = Hc to learn the correlation within the sequence and obtain the
introspective feature representation, Hcs. In addition, it employs interactive attention with
K = Hc and Q = Ha to acquire the aspect-aware representation, Has, with a primary focus
on capturing the interactions between aspects and contexts. The second attention layer
exploits a MHA with K = Hcs and Q = Has to obtain a richer semantic representation, Hsem:

Hcs = MHA(Hc, Hc) (5)

Has = MHA(Hc, Ha) (6)

Hsem = MHA(Hcs, Has) (7)

3.4. LDEGCN
3.4.1. Enhanced by Affective Knowledge

GCNs have the capability to directly operate on graph-structured data, making them
widely used for encoding syntactic information [26]. To construct the local dependency-
enhanced graph, we first construct the dependency graph for each input sentence over the
dependency tree following the approach proposed in [11]. The dependency tree encapsu-
lates lexical relationships and holds vital significance for understanding sentence structure
and meaning. By extracting the connections between words from the dependency tree, we
can more accurately capture the associations between emotional expressions and context,
leading to better analysis and interpretation of the sentiment polarity of sentences. The
adjacency matrix, D ∈ Rn×n, of the sentence is obtained as follows:

Di,j =

{
1 if wi and wj have dependences
0 otherwise

(8)

Inspired by Liang et al. [24], we incorporate the sentiment knowledge from SenticNet
into the construction of the adjacency matrix to represent the emotional information be-
tween words. We utilize the latest version of SenticNet7 (http://sentic.net, accessed on 1
January 2023), which employs a novel commonsense-based neural–symbolic AI framework

http://sentic.net
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for interpretable sentiment analysis and assigns semantic and emotional values to 400,000
concepts. Table 1 showcases examples of selected words and their corresponding sentiment
intensities.

Table 1. Samples of affective words in SenticNet.

Word Intensity

Good 0.659
Excellent 0.744
Romantic 0.851

Reasonable 0.170
Bad −0.659

Horrible −0.793

The calculation of specific sentiment scores is as follows:

Ii,j = |Intensity(wi)|+ |Intensity(wi)| (9)

The intensity score, Intensity(wi) ∈ [−1, 1], indicates the emotional intensity score
of the word, wi, in the SenticNet sentiment dictionary, with negative values indicating
negative emotions, positive values indicating positive emotions and 0 indicating neutrality.
The SenticNet sentiment dictionary comprises mappings of words to their corresponding
emotional polarity and intensity. By simply matching each emotion word with SenticNet
and extracting emotional intensity values from it, we can assign the intensity scores to the
emotional words. For example, consider the sentence: “This product is excellent.” When
we analyze this sentence using SenticNet, the model looks up its emotional intensity score
in SenticNet. Consequently, the word “excellent” in the sentence would be assigned an
emotional intensity score of 0.744, conveying a positive sentiment. The graph convolu-
tional network can extract sentiment dependencies from two dependent nodes, where the
sentiment dependency correlation is determined by the sum of the absolute values of their
sentiment intensity scores. By considering the strength of sentiment relationships between
nodes, the model can understand the sentiment dependencies in the graph and analyze the
sentiment associations between different aspects or entities.

3.4.2. Enhanced by Aspect and Dependency Types

Aspect terms are crucial in ABSA tasks; thus, it is necessary to further enhance the
dependency relationships between aspects and contexts:

Ai,j =

{
1 if wi or wj is a aspect word
0 otherwise

(10)

To better identify context words or opinion words related to the aspect, we construct a
specific set of dependency types, denoted as Sset = {“nsubj”, “dobj”, “amod”, “advmod”,
“neg”, “acomp”}. When building the adjacency matrix, we consider the dependency types
between words and enhance the specific dependency relationships. Let Rwi ,wj represent the
dependency type between words, wi and wj; if Rwi ,wj ∈ Sset, we increase the weight of that
dependency type in the graph:

Ti,j =

{
1 Rwi ,wj ∈ Sset

0 otherwise
(11)

By utilizing the adjacency matrix, D; the aspect matrix, A; the sentiment matrix, I; and
the type-enhanced matrix, T, we are able to derive the dependency-enhanced adjacency
matrix, U:

Ui,j = Di,j × (Ii,j + Ai,j + Ti,j + 1) (12)
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3.4.3. Local Context Weight

Dependency syntactic structure can reveal the semantic modification relationships
between different constituents of a sentence, enabling it to capture collocational information
over long distances. The dependency graph constructed through dependency syntactic
trees allows for the effective acquisition of long-distance dependencies among various
words in a sentence. According to the literature [27], the sentiment polarity of aspects is
primarily influenced by the surrounding contexts. As the distance between the context
and the aspect increases, the correlation gradually weakens. This characteristic was not
effectively addressed in previous works. Hence, the LCW method was introduced for
improved handling of long-distance dependencies. This method assigns higher weights to
words in close proximity while reducing the weights of words farther away. This guides
the model to focus more on local correlations, enhancing its performance in addressing
long-distance dependency issues.

The LCW method constructs a local context-weighted adjacency matrix and leverages
the dependency parse tree to calculate the syntactic distance (SD) between contexts and
aspects in order to assign position weights. The syntactic distances from contexts to
different aspects are illustrated in Figures 3 and 4. Formally, the weight of dependency
(wi, wj) can be defined as follows:

Wi,j =

{
1− di+dj

2n di and dj exist
0 no connection

(13)

where di, dj represent the syntactic distance in the dependency tree from the i-th word
and the j-th word to the given aspect, respectively, and n represents the length of the
current sentence.

Gi,j = Ui,j ∗Wi,j (14)

Figure 3. The positional relationship of the aspect “environment” in dependency tree (The number
on each word represents the SD to the aspect “environment”).

Figure 4. The positional relationship of the aspect “food” in dependency tree (The number on each
word represents the SD to the aspect “food”).
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The dependency graph enhanced by LCW not only incorporates the syntactic infor-
mation of the context but also effectively filters out noise caused by irrelevant information
to the aspect. Based on the enhanced graph, the multi-layer GCN facilitates the efficient
fusion of global information and local sentiment details. Algorithm 1 provides an overview
of the procedure for generating the dependency-enhanced matrix for each sentence:

Algorithm 1 The process of generating a dependency-enhanced matrix.

Require: a sentence, Wc =
{

wc
1, wc

2, . . . , wc
a+1, . . . , wc

a+m, . . . , wc
n
}

; aspect sequence, Wa ={
wa

1, wa
2, . . . , wa

n
}

; the dependency tree of the sentence, dependency(Wd); intensity scores
from SenticNet; a specific dependency set, Sset; syntax distance, SD = {d1, d2, . . . , dn}

1: for i = 1→ n do
2: for j = 1→ n do
3: if dependency(wi, wj) ∈ dependency(Wd) or i = j then
4: Di,j ← 1 ∇Generated by dependency tree
5: Ii,j ← |Intensity(wi)|+

∣∣Intensity(wj)
∣∣ ∇Enhanced by SenticNet

6: if wc
i or wc

j ∈Wa then
7: Ai,j ← 1
8: if Ri,j ∈ Sset then
9: Ti,j ← 1 ∇Enhanced by dependency type

10: else
11: Ti,j ← 0

12: endif
13: else
14: Ai,j ← 0

15: endif
16: else
17: Di,j ← 0

18: endif
19: Ui,j ← Di,j × (Ii,j + Ai,j + Ti,j + 1)

20: Wi,j ← 1− di+dj
2n ∇Calculating weight matrix(W)

21: Gi,j ← Ui,j ×Wi,j

22: endfor
23: endfor

3.4.4. Multilayer GCN

The contextual feature, Hc, from BERT, along with the dependency-enhanced graph
serves as the input to the first GCN layer. The output of each GCN layer as well as the
dependency-enhanced graph continue to be utilized as the new input to the next GCN
layer. By sequentially propagating through l layers of GCN, we obtain the final contextual
feature representation, Hl ∈ Rn×hdim . In GCN, each node’s representation is updated based
on information from its neighboring nodes. At the l-th GCN layer, the state of each node is
updated as follows:

hl
i = ReLU(Gihl−1

i W l + bl) (15)

Hl =
{

hl
1, hl

2, . . . , hl
n

}
(16)

3.5. Feature Fusion

To enrich the final feature representation, hp, for classification, we perform mean
pooling on the semantic feature, Hsem, the feature representation Hl after l layers of GCN
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and contextual encoding, Hc. Subsequently, we concatenate these pooled representa-
tions together:

hsem
avg =

∑n
1 hsem

i
n

(17)

hl
avg =

∑n
1 hl

i
n

(18)

hc
avg =

∑n
1 hc

i
n

(19)

hp =
[

hsem
avg ⊕ hl

avg ⊕ hc
avg

]
(20)

3.6. Sentiment Classifier

Once we acquire the final feature representation, hp, we input it into a fully connected
layer and then perform softmax normalization to generate the probability distribution,
p ∈ Rdp , of different sentiment polarities:

p = softmax(Wphp + bp) (21)

where dp is the same as the dimension of the sentiment labels. Wp ∈ Rdp×dh and bp ∈ Rdp

are the learnable matrix and bias.
The parameters of our model are updated using the gradient descent algorithm. The

objective of training the model is to minimize the cross-entropy loss with L2 regularization:

L(θ) =
S

∑
i=1

C

∑
j=1

p̂j
i log

(
pj

i

)
+ λ‖Θ‖2 (22)

where S contains all sentence–aspect pairs, C is the collection of sentiment polarities, p̂j
i

is the real distribution of sentiment, Θ represents all trainable parameters and λ is the
coefficient for the L2 regularization term.

4. Experiment
4.1. Datasets and Experiment Setting

To evaluate the generalizability of LDEGCN, we conducted experiments on the follow-
ing five benchmark datasets: Twitter, consisting of Twitter posts [28] and restaurant and
laptop reviews from SemEval 2014 Task 4 [29], SemEval 2015 task 12 [30] and SemEval 2016
task 5 [31]. All five datasets consist of three sentiment polarities: positive, negative and
neutral. Each dataset includes sentences that are annotated with marked aspects and their
corresponding polarities. Table 2 presents the statistical information for these datasets.

Table 2. Statistics of the datasets.

Dataset Type Positive Negative Neural

Twitter Train 1561 3127 1560
Test 174 346 173

Lap14 Train 994 464 870
Test 341 169 128

Rest14 Train 2164 637 807
Test 728 196 196

Rest15 Train 912 36 256
Test 326 34 182

Rest16 Train 1240 69 439
Test 469 30 117
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In our experiments, we utilized the spacy (https://spacy.io, accessed on 1 December
2022) tool to construct the dependency syntactic tree of the given sentences. We employed
the pre-trained BERT (https://github.com/huggingface, accessed on 1 August 2022) model
to encode the given sentences and obtain word embeddings with an initial dimensionality
of 768. For parameter settings, the BERT model was initialized with pre-trained parameters,
while the remaining trainable parameters were initialized using the Xavier initialization
method [32]. During the training, the model was trained with a batch size of 16 comments.
We employed a learning rate of 2× 10−5 with a cross-entropy loss function. The Adam
optimizer was utilized with a learning rate of 0.003. Dropout and early stopping techniques
were applied to prevent overfitting.

4.2. Comparative Models

To evaluate the performance of LDEGCN, we compared it with the baseline models
and many state-of-the-art models. The specific methods are as follows:

IAN [8] learns the relationship between contexts and aspects using an interactive
attention network.

AOA [9] prioritizes the crucial parts of a sentence through the attention-over-attention
module and extracts the interactive feature between context and aspect words.

BERT-SPC [32] inputs the sequence in the form of “[CLS] sentence [SEP] aspect [SEP]”
into the pre-trained BERT model for prediction.

AEN-BERT [25] employs an attention encoder network to model the relationship
between contexts and targets.

ASGCN [11] initially introduces the method of constructing an adjacency graph using
the syntactic dependency tree of a sentence.

DGEDT-BERT [33] introduces an enhanced dual-transformer network to jointly exam-
ine flat representations and graph-based representations.

BERT4GCN [34] combines the intermediate outputs of BERT with the positional
information between words to enhance the GCN encoding process.

T-GCN [17] utilizes a multiple-layer type-aware GCN for comprehensive learning of
different edge relationships.

DualGCN [15] introduces a dual-graph model that simultaneously considers the syn-
tactic structure and semantic relations. Furthermore, the SynGCN and SemGCN networks
are integrated using a bidirectional BiAffine module.

SSEGCN [16] integrates the attention matrix and the syntactic mask matrix to facilitate
the interaction between syntactic structure and semantic information.

4.3. Results and Analysis

To validate the effectiveness of LDEGCN, we compared it against previous benchmark
methods. We adopt accuracy and macro-averaged F1 as evaluation metrics because accu-
racy is widely used in classification tasks and macro-averaged F1 scores are suitable for
datasets with class imbalance.

Compared to traditional attention-based models, LDEGCN mitigates the noise intro-
duced by the attention mechanism, which could misguide the model to learn information
irrelevant to aspects. In contrast to GCN-based models, LDEGCN incorporates sentiment
knowledge and weights the dependency items based on sentiment scores and dependency
types, allowing for better utilization of syntactic dependency information.

Detailed results are presented in Table 3, which demonstrates the superior perfor-
mance of LDEGCN. Across the four SemEval task datasets, LDEGCN outperforms most of
the previous models and achieves near-optimal or even optimal results on some datasets.
This highlights the model’s ability to effectively leverage syntactic dependency information
to extract ample syntactic and semantic features for sentiment classification. Regrettably,
LDEGCN does not perform as well on the Twitter dataset as it does on other datasets. This
could be due to the incomplete and colloquial nature of comments on Twitter, making it
challenging for the dependency tree to accurately parse the sentence components. Never-

https://spacy.io
https://github.com/huggingface
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theless, the strong performance on other datasets still affirms the effectiveness of LDEGCN
for ABSA.

Table 3. Experimental results on five datasets. (Acc represents accuracy, F1 represents Macro-F1 score.
The best results are displayed in bold, the second-best results are underlined.)

Model
Twitter Lap14 Rest14 Rest15 Rest16

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

IAN 72.50 70.81 72.05 67.38 79.26 70.09 78.54 52.65 84.74 55.21
AOA 72.30 70.20 72.62 67.52 79.97 70.42 78.17 57.02 87.50 66.21

BERT-SPC 75.92 75.18 77.59 75.03 84.11 76.68 83.48 66.18 90.10 74.16
AEN-BERT 74.54 73.26 79.93 76.31 83.12 73.76 82.29 63.41 88.96 70.31

ASGCN 72.15 70.40 75.55 71.05 80.77 72.02 79.89 61.89 88.99 67.48
DGEDT 77.90 75.40 79.80 75.60 86.30 79.89 84.00 71.00 91.90 79.00

BERT4GCN 74.73 73.76 77.49 73.01 84.75 77.11 - - - -
T-GCN 76.45 75.25 80.88 77.03 86.16 79.95 85.26 71.69 92.32 77.29

DualGCN 77.40 76.02 81.80 78.10 87.13 81.16 - - - -
SSEGCN 77.40 76.02 81.01 77.96 87.31 81.09 - - - -

Our model 76.43 75.22 81.25 78.17 86.34 81.16 85.42 72.05 91.56 79.45

4.4. Ablation Study

To investigate the effectiveness of each module in LDEGCN, extensive ablation
experiments were conducted. The results are presented in Table 4, where “w/o” de-
notes “without”. The ablation experiments clearly demonstrate that excluding any com-
ponent from the complete model leads to a degradation in performance. This under-
scores the indispensability of all components, as each one contributes uniquely to the
model’s performance.

Table 4. Ablation experiment.

Model
Twitter Lap14 Rest14 Rest15 Rest16

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

W/o SEM 75.73 74.10 80.13 76.81 85.62 80.07 84.87 71.42 90.8 77.65
W/o SenticNet 75.02 73.07 80.09 76.64 85.09 77.96 83.23 68.54 89.98 76.71

W/o type 75.43 74.22 80.88 77.52 85.26 78.74 84.56 70.88 90.59 77.45
W/o LCW 76.16 74.94 80.41 77.12 85.68 79.20 84.98 71.24 91.07 78.37

W/o LDEGCN 74.49 72.44 79.62 75.65 84.82 77.14 82.29 67.59 88.97 73.26

It can be observed that (1) removing the semantic feature extraction module (w/o
SEM) resulted in a noticeable drop in performance, indicating that the semantic feature
extraction module plays a crucial role in reducing noise and learning the presentation
of aspect-related semantic features; (2) the removal of SentiNet (w/o SenticNet) and de-
pendency type (w/o type) both resulted in a decrease in model performance, indicating
that they both assist the model in focusing on more informative dependencies. External
sentiment knowledge provides additional information about emotions to better under-
stand and express sentiment-related aspects. Meanwhile, specific sets of dependencies aid
the model in emphasizing crucial dependency relationships when modeling connections
between words; (3) the removal of the LCW method leads to a slight decline in model
performance, suggesting that utilizing the local context weight method on the graph can
reduce attention to irrelevant features and alleviate issues related to long-distance depen-
dencies; and (4) the significant degradation in performance was observed when the entire
LDEGCN module was removed underscores the effectiveness of LDEGCN in providing
sentiment information to the dependencies between context and aspect. This enables the
model to obtain more accurate sentiment features and enhance the prediction performance
for aspect-specific sentiment.
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Overall, our ablation study provides compelling evidence for the effectiveness of each
module in the LDEGCN model, demonstrating their unique contributions to achieving
superior performance in sentiment analysis tasks.

5. Discussion
5.1. The Influence of the Number of Layers (L)

Selecting an appropriate number of GCN layers (L) is beneficial for model performance,
so we explored the impact of different L values, as shown in Figure 5. The results indicate
that when L = 2, the Acc and F1 scores are the highest across all datasets.

Figure 5. Impact of GCN layer, L, on the model effect.

The aspect “food” has different syntactic distances from the context. With a single
GCN layer, each word node aggregates feature information from adjacent word nodes.
Therefore, the aspect “food” captures feature information only from the context with an
SD of 1. When L is 1, it is evident that “the” and “is” do not provide sufficient information.
With two GCN layers, “food” captures important sentiment features from the context
words “really”, “not” and “delicious” with an SD of 2. However, if L is set to 3 or more, it
introduces irrelevant feature information, such as the positive sentiment feature from the
word “romantic”.

In summary, when L = 1, our model fails to capture sufficient aspect-contextual
feature information, which may lead to incorrect judgments. When L = 2, the aspect
“food” itself has high semantic importance, and the semantic importance of “really”, “not”,
and “delicious” increases, which benefits our model. However, when L = 3 or more, the
distribution of semantic importance in the context becomes dispersed, making it difficult
for the aspect “food” to focus on important information. A visualization of the attention
distribution from Layer 1 to Layer 3 is shown in Figure 6.

Figure 6. Visualization of semantic weights for different L.
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5.2. The Impact of Sentiment Words with Different Scores

To investigate the impact of sentiment words with different intensity levels on model
performance, we sorted all sentiment words in descending order based on the absolute
values of their sentiment scores. We constructed the dependency-enhanced graphs using an
equal number of sentiment words from different score ranges and conducted experiments
on the Rest14 dataset. The result is shown in Figure 7, revealing that using sentiment words
with higher scores to construct the LDE graph yielded better performance. This indicates
that sentiment words with stronger polarity contribute to higher word correlations within
sentences, resulting in more accurate derived word correlation graphs. In other words, the
stronger the sentiment tendency of the sentiment words, the stronger the word correlations
in the sentence, leading to more precise word correlation graphs.

Figure 7. The impact of sentiment words with different scores.

5.3. Visualization of LDEG

To validate the effectiveness of LDEG, we present heatmaps to visually illustrate the
construction process from a standard dependency graph to a local dependency-enhanced
graph. The intensity of colors in the heatmaps represents the correlation between different
words, with darker colors indicating stronger correlations. In Figure 8a, an adjacency matrix
constructed from the syntactic dependency tree is utilized to visualize the dependency
relationships between nodes. However, the equal treatment of these dependency edges
hinders the identification of their relative importance. To overcome this limitation, we
incorporate external sentiment knowledge, as depicted in Figure 8b, enabling the model
to focus on words with prominent sentiment tendencies. Recognizing the significance of
aspects in sentiment analysis tasks, we enhance the dependency edges directly connected
to the aspects. Additionally, considering the varying importance of different dependency
types, we further enhance attention toward dependencies within specific sets, as illustrated
in Figure 8c. Nevertheless, we observe that the dependency relationship between “is” and
“romantic” receives excessive attention, which is undesirable since “romantic” does not
modify the aspect term “food”. To address this issue, we employ the LCW method on
the graph. As demonstrated in Figure 8d, the attention between “is” and “romantic”, as
well as “is” and “environment”, is reduced. This allows the model to effectively aggregate
feature information from important contextual words, ensuring focus on the relevant and
informative aspects of the input text.
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(a) (b)

(c) (d)

Figure 8. Visualization of LDE. (a) Dependency graph; (b) enhanced by SenticNet; (c) enhanced by
aspect and dependency type; (d) enhanced by LCW.

6. Conclusions and Future Work

In this study, we propose a novel model LDEGCN that combines external sentiment
knowledge and dependency types to address the issues of noise introduced by tradi-
tional attention mechanisms and the inefficient utilization of syntactic dependency trees.
LDEGCN achieves second-best accuracy and the best F1 score on the “Lap14” dataset.
There are significant improvements in the “Rest14”, “Rest15” and “Rest16” datasets as
well, with notable advancements in the “Rest15” dataset. The accuracy and F1 score both
reach their best values, surpassing the second-best results by 0.16% and 0.36%, respec-
tively. This success can be attributed to the collaborative impact of various modules in
our model. The “SEM” module enhances semantic feature extraction through multi-head
interactive attention and multi-head self-attention mechanisms. Additionally, SenticNet
and the specific dependency set, Sset, increase the focus on dependencies carrying more
sentiment information in the dependency graph. The LCW method, building upon the
dependency-enhanced graph, augments the attention toward local dependency elements.
Lastly, the feature fusion module combines extracted syntactic and semantic features with
overall semantic features to acquire more comprehensive hierarchical features.

In future research, our primary goal is to enhance the model’s performance when
handling insufficient syntactic dependency parsing, as text data in real-world applications
are often not well-formed. Additionally, we plan to evaluate the generalization perfor-
mance of our model by applying it to different domains and assessing its performance
on multilingual datasets. We will persist in developing methods that can explore deeper
interrelationships between aspects and uncover more profound and nuanced connections
between syntactic and semantic information.
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