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Abstract: Insufficient light, uneven light, backlighting, and other problems lead to poor visibility
of the image of an electric power operation site. Most of the current methods directly enhance the
low-light image while ignoring local strong light that may appear in the electric power operation site,
resulting in overexposure and a poor enhancement effect. Aiming at the above problems, we propose
a low-light image enhancement method for electric power operation sites by considering strong
light suppression. Firstly, a sliding-window-based strong light judgment method was designed,
which used a sliding window to segment the image, and a brightness judgment was performed
based on the average value of the deviation and the average deviation of the subimages of the
grayscale image from the strong light threshold. Then, a light effect decomposition method based
on a layer decomposition network was used to decompose the light effect of RGB images with the
presence of strong light and eliminate the light effect layer. Finally, a Zero-DCE (Zero-Reference
Deep Curve Estimation) low-light enhancement network based on a kernel selection module was
constructed to enhance the low-light images with reduced or no strong light interference. Comparison
experiments using the electric power operation private dataset and the SICE (Single Image Contrast
Enhancement) Part 2 public dataset showed that our proposed method outperformed the current
state-of-the-art low-light enhancement methods in terms of both subjective visual effects and objective
evaluation metrics, which effectively improves the image quality of electric power operation sites in
low-light environments and provides excellent image bases for other computer vision tasks, such as
the estimation of operators’ posture.

Keywords: low-light image enhancement; strong light judgment; light decomposition; Zero-DCE;
electric power operation environment

1. Introduction

Intelligent video surveillance systems are frequently utilized in electric power op-
eration settings as a result of the advancement of computer vision and other artificial
intelligence technologies. Affected by weather, light, and other influences, there are prob-
lems such as insufficient light, uneven light, and backlight in the electric power operation
scene, which leads to poor image visibility, and the low-light image seriously affects the
accuracy of target detection and operator-behavior recognition tasks in the operation scene.
Figure 1 shows a comparison of low-light and normal images and their grayscale his-
tograms at an electric power operation site. A large number of misdetections and omissions
occur in low-light images (a) and (b) for the detection of skeletal keypoints of electric
power operators, which seriously affects the use of skeletal keypoints in the behavioral
monitoring of operators. Comparing the grayscale histograms, the grayscale histograms
of the low-light images show uneven pixel distribution, with pixels of a smaller grayscale
accounting for most of the pixels, while the grayscale distribution of the normal image (c) is
more balanced. Therefore, studying the low-light image enhancement method for electric
power operation sites is crucial for item detection and personnel behavior recognition at
the operation site.
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light effect. 
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method that takes strong light suppression into account, which is different from other 

current low-light enhancement methods from the perspective of practical applications in 

electric power operation, and considers both the overall low-light image and the presence 

of a strong light source in low light. Our contributions are summarized as follows: 

 We designed a strong light judgment method based on sliding windows, which used 

a sliding window to segment the image; a brightness judgment was performed based 

on the average value of the deviation and the average deviation of the subimages of 

the grayscale image from the strong light threshold in order to search for strong light. 

 We used a light effect decomposition method based on a layer decomposition net-

work to decompose the light effects of RGB images in the presence of strong light to 

eliminate the light effect layer and to reduce the interference of strong light effects on 
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tion module, with a significant decrease in the number of parameters (Params) and 

the number of floating-point operations (FLOPs) compared with the original Zero-
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Figure 1. Comparison between low-light and normal images. (a,b,d) is a low-light image, where
(d) contains local strong lighting. (c) is the normal-illuminated image.

Due to the special characteristics of the electric power industry, strong light sources
are often used to augment light operations at night; for example, in Figure 1 image (d),
although the strong light source enhances the local brightness, it interferes with the low-
light enhancement, resulting in local overexposure. So, the low-light image enhancement
of the electric power operation site needs to be considered as a suppression of the strong
light effect.

For electric power operation sites, we suggest a low-light image enhancement method
that takes strong light suppression into account, which is different from other current
low-light enhancement methods from the perspective of practical applications in electric
power operation, and considers both the overall low-light image and the presence of a
strong light source in low light. Our contributions are summarized as follows:

• We designed a strong light judgment method based on sliding windows, which used
a sliding window to segment the image; a brightness judgment was performed based
on the average value of the deviation and the average deviation of the subimages of
the grayscale image from the strong light threshold in order to search for strong light.

• We used a light effect decomposition method based on a layer decomposition network
to decompose the light effects of RGB images in the presence of strong light to eliminate
the light effect layer and to reduce the interference of strong light effects on the
enhancement of low-light images.

• We constructed a Zero-DCE low-light enhancement network based on a kernel selec-
tion module, with a significant decrease in the number of parameters (Params) and the
number of floating-point operations (FLOPs) compared with the original Zero-DCE;
the subjective visual quality and objective evaluation metrics of the enhanced images
outperformed those of other current state-of-the-art methods.

2. Related Work

The weather, light, and other environmental factors frequently have an impact on
the image quality in real settings, which causes some image information to vanish in
the dark and present low light. Traditional enhancement methods and deep-learning-
based enhancement methods make up the two primary categories of low-light picture
improvement research.

The histogram equalization [1], gamma correction [2], and Retinex theory [3]-based
conventional low-light image enhancing methods are among the more reliable ones. Among
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them, histogram equalization stretches the grayscale histogram of the image from a more
concentrated grayscale interval to the entire grayscale range, expanding the range of
grayscale values in the image and improving the image contrast and part of the detail
effect, but it is prone to chromatic aberration and the grayscale merging loses the detail
information. Gamma correction adjusts the parameters to change the magnitude of the
enhancement of the image luminance by a non-linear function, which also loses the detail
information and generates a large amount of noise. The theoretical basis of the Retinex
model is the three-color theory and color constancy, which removes or reduces the influence
of the incident image by the same method to preserve the image of the essential reflective
properties of the object as much as possible. Retinex theory has been the subject of ongoing
research, leading to the development of algorithms like SSR (single-scale Retinex) [4],
MSR (multi-scale Retinex) [5], and MSRCR (multi-scale Retinex with color recovery) [6].
Traditional algorithms have the advantages of a fast processing speed and easy deployment,
but they lack references to real lighting conditions and suffer from problems such as noise
being retained or amplified, artifacts, and color deviations.

From both supervised and unsupervised learning viewpoints, low-light image en-
hancement methods based on deep learning can be distinguished. Lore et al. proposed
LLNet (Low-Light Net) [7] for supervised learning. This network adopts the traditional self-
encoder and decoder structures and improves image contrast and denoising by stacking
sparse denoising self-encoders, but in order to easily obtain the paired dataset, artificially
synthesized low light and noise images are used during the training process, which leads
to poor generalization ability and enhancement effects in real scenes. RetinexNet [8], a
convolutional neural network approach that Wei et al. proposed, is based on the Retinex
theory. The input image is segmented into reflection and illumination maps by a Decom-
Net subnetwork and the Enhance-Net subnetwork is utilized to adjust and estimate the
illumination maps in order to obtain the image after boosting the contrast. Limited by the
ideal state of Retinex theory, this algorithm suffers from serious color deviation problems
when enhancing extremely dark light images and multi-color light night images. To correct
exposure and underexposure from coarse to fine, Afifi et al. presented LMSPEC (Learning
Multi-Scale Photo Exposure Correction) [9], which formulated the exposure correction
problem as two subproblems—color enhancement and detail enhancement—and used a
DNN (deep neural network) model, which was trained in an end-to-end manner to correct
global color information first and then improve image details; however, the network design
was too complex and the network was not able to constrain the color information of a
region of an image when the region was completely saturated. In the field of unsupervised
learning, EnlightenGAN [10] is a low-light image improvement technique proposed by
Jiang et al., based on a generative adversarial network (GAN). It includes a U-Net with
an attention mechanism as a generator and a pair of “global–local” discriminators [11].
So that the low-light image may be converted back into a high-contrast image, the gener-
ator is trained by evaluating the difference feedback between the discriminator and the
normal light HD image. EnlightenGAN solves the problem of not having easy access to
“paired datasets” in supervised learning. Considering that GAN-based algorithms are not
stable during the training process, Guo et al. proposed Zero-DCE [12] from the point of
view of image depth profile estimation, designing a higher-order depth curve that could
automatically map a dark light image to an enhanced version, LE. By estimating the depth
higher-order curve of the input image, the LE curve is used as the target to guide the
network in pixel level adjustment of low-light images. The Zero-DCE network structure
is designed to be simple, able to train image datasets of different scenes quickly, and has
a strong generalization capability. Jin et al. [13] proposed an unsupervised method by
combining layer decomposition with light effect suppression; namely, UNIE (Unsupervised
Night Image Enhancement). The decomposition network learns to decompose the light
effect as well as shading and reflectance layers under the guidance of an unsupervised
specific prior loss. The light effect suppression network further suppresses the light effect
while enhancing the illumination of dark regions; structural and high-frequency coherence
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losses were proposed in order to recover background details and reduce illusions and
artifacts. Radulescu et al. [14] decomposed an image into representations in the frequency
domain in order to refine the image rendering. Various image decomposition methods
provide new ideas for the light effect decomposition of the special power operation site in
this paper.

3. Methods

We suggest a low-light image enhancement method for electric power operation sites
considering strong light suppression, which includes a strong light judgment based on
a sliding window, light effect decomposition based on a layer decomposition network,
and Zero-DCE low-light enhancement based on a kernel selection module. For the input
low-light RGB image, a sliding window is used to search the image after grayscale trans-
formation and judge the strong light region; the layer decomposition network is used to
decompose the light effect of the strong light image and obtain the background layer after
the removal of the light effect layer. The low-light enhancement of the background layer
image is realized based on the Zero-DCE network of the kernel selection module. The
overall flowchart of the low-light image enhancement method for electric power operation
sites considering strong light suppression is shown in Figure 2.
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Figure 2. Flowchart of low-light image enhancement method for electric power operation sites.

3.1. Strong Light Source Judgment Based on a Sliding Window

The low-light RGB input image is first converted to grayscale and then 1/15 of the
grayscale image’s width is used as the side length a of the square sliding window (blue
box in Figure 3), which sequentially slides from the upper-left corner in the steps of a. Each
pixel point in the subimage has a gray value of x(i,j) (0 ≤ i < a, 0 ≤ j < a), with an x range
of 0–255. By calculating the gray-level average of 200 strong light subimages from (1), we
could determine the strong light grayscale threshold to be θ = 190.

AVGGray =
∑a−1

i=0 ∑a−1
j=0 x(i,j)

a× a
(1)
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Figure 3. Strong light search based on a sliding window. (a,b) are examples of two sets of strong light
search based on a sliding window, respectively. The blue boxes are sliding windows with a step size
of 1 and S-shaped search. The red boxes are the searched strong light.

Finally, the average value of the deviation (AVG) and average deviation (A.D.) is
calculated between each subimage and the strong light grayscale threshold (θ), further
calculating the brightness parameter S. When S > 1 and AVG > 0, it may be determined
that there is strong light in the image (red box in Figure 3).

The calculation formula of the average value of the deviation between the grayscale
image and the strong light threshold is:

AVG =
∑a−1

i=0 ∑a−1
j=0 (x(i,j) − θ)

a× a
(2)

The average deviation of the grayscale image from the strong light threshold is calcu-
lated as:

A.D. =
∑255

i=0 |i− θ − AVG| × H[i]
a× a

(3)

In the gray map, H[i] is the quantity of pixels of level i of gray. The luminance
parameter s is calculated as:

S =

∣∣∣∣AVG
A.D.

∣∣∣∣ (4)

3.2. Light Effect Decomposition Based on Layer Decomposition Network

An RGB image judged to be in the presence of strong light is fed into the layer
decomposition network [13], which is then decomposed into a light effect layer, a shading
layer, and a reflectance layer by means of three independent networks, φG, φL, and φR, and
unsupervised loss, as shown in Figure 4. The light effect decomposition results of the RGB
image are obtained as follows:

I = R⊗ L + G (5)
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Figure 4. Light effect decomposition based on layer decomposition network. I is the input image, G
is the light effect layer, L is the shading layer, R is the reflectance layer, and J is the background layer.

G = φG(I) is the light effect layer, L = φL(I) is the shading layer, R = φR(I) is the
reflectance layer, and ⊗ denotes element-by-element multiplication. In order to achieve
the effect of removing the strong light effect, we must first remove the light effect layer
G in order to obtain a background layer J = R⊗L that is unaffected by the light effect.
Low-light enhancement based on the background layer J reduces the interference of strong
light effects.

The layer decomposition network uses a series of unsupervised losses; in the initial
phase of training, G and L are supervised using Gi and Li to directly calculate the L1 loss:

Linit = |G− Gi|1 + |L− Li|1 (6)

where Gi is the smooth map generated by second-order Laplace filtering on the input image
and Li is the grayscale map generated by taking the maximum of the three channels at
each position of the input image. In addition, the gradient map of G has a short-tailed
distribution; i.e., the map of G is smooth with small gradients and almost no large gradients,
while the gradient map of J (J = R⊗L) has a long-tailed distribution. With the help of this
property, a loss called Gradient Exclusion Loss is used, which makes it possible to separate
the G and J layers in the gradient space. The definition of Gradient Exclusion Loss is
as follows:

Lexcl =
3

∑
n=1
‖tanh

(
λG↓n

∣∣∣∇G↓n
∣∣∣) ◦ tanh

(
λJ↓n

∣∣∣∇J↓n
∣∣∣)‖

F

(7)

where G↓n and J↓n denote G and J after sampling under bilinear interpolation, the parame-
ters λG↓n and λJ↓n are normalization factors, and ‖·‖F is the Frobenius paradigm number.
The Frobenius paradigm is a matrix paradigm defined as follows:

‖A‖F =

√√√√ m

∑
i=1

n

∑
j=1

∣∣aij
∣∣2 =

√
trace(A∗A) =

√√√√min(m,n)

∑
i=1

σ2
i (8)

where A* is A’s conjugate transposition and σi represents A’s singular value. The loss
of color constancy is set to the following amount in order to reduce color shift in the
decomposition output and equalize the range of intensity values of the three-color channels
in the background picture J.

Lcc = ∑
(c1,c2)

(∣∣∣Jc1 − Jc2
∣∣∣
1

)
(9)



Appl. Sci. 2023, 13, 9645 7 of 17

where (c1, c2)∈{(r, g), (r, b), (g, b)} represents the combination of two-color channels. For the
decomposition task, it is also required that the predicted combination of three layers also
recovers the original input image, setting the reconstruction loss as follows:

Lrecon = |I − (R⊗ L + G)|1 (10)

Each unsupervised loss is multiplied by its respective weight and the decomposition
process is balanced by the experiments of [13] by setting λinit and λexcl to 1 since they are
on the same scale. λrecon is set to 0.1 and λcc = 0.5, taken from [12].

3.3. Zero-DCE Low-Light Enhancement Network Based on a Kernel Selection Module

The low-light enhancement is disturbed by noise, which loses the local information
around the noise, resulting in blurred images. To solve this problem, inspired by SKNet
(Selective Kernel Networks) [15], we propose a Zero-DCE low-light enhancement network
based on a kernel selection module. The low-light image is taken as the input, the curve
parameter maps are learned using DCE-KSNet (Deep Curve Estimation Network Based on
a Kernel Selection Module), and then the low-light image is adjusted at the pixel level by
the luminance enhancement curves. An enhanced image is obtained after several iterations.
The network framework is shown in Figure 5.
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The luminance enhancement curve is:

LEn(x) = LEn−1(x) + An(x)LEn−1(x)(1− LEn−1(x)) (11)

where An signifies the curve parameter map with a size equal to the input image, x denotes
the image pixel coordinates, and n denotes the number of iterations. After the above
equation, each pixel of the input image is endowed with an optimal higher-order curve
that enables it to dynamically adjust its brightness.

DWConv (depthwise separable convolution) [16] is used in place of a regular convo-
lution in DCE-Net (Deep Curve Estimation Network) in order to decrease the number of
parameters and computing effort. The deep convolution block separately convolves each
channel to extract the data for a single channel and then extends or compresses the input
feature maps’ channels by a 1 × 1 point-by-point convolution block to produce feature
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maps of the desired size. The deep separable convolution kernel can drastically reduce
the number of parameters in the network compared with a regular convolution kernel
while essentially maintaining network accuracy. Noise interference can be reduced by
fully utilizing spatial features and using different scales of receptive fields for multi-scale
fusion. In terms of multi-scale feature fusion, most of the existing methods are based
on a feature pyramid structure, combining features by way of an element addition or a
series connection, which ignores the spatial and channel specificities of the features of
different scales, although it can combine feature maps of different scales. A three-branch
kernel selection module is added, as shown in Figure 5, after the 7th convolutional layer of
DCE-Net to adaptively adjust the receptive field size, dynamically select the appropriate
path, and reduce the impact of noise on the low-light enhancement.

Convolution kernels of sizes 3, 5, and 7 are used to process the input feature map U
to produce the output feature maps U’, U′′, and U′′′, with the 5 × 5 convolution kernel
being made up of two 3 × 3 dilated convolutions. The three are then added to produce
Ũ to integrate the data from all branches. Ũ is embedded into the global information s by
GAP (Global Average Pooling).

sc = Fgap(Ũc) =
1

H ×W

H

∑
i=1

W

∑
j=1

Ũc(i, j) (12)

The dimensions of the feature map are H and W; s is then passed through the fully
connected layer to produce a compact feature map z ∈ Rd×C:

z = Ff c(s) = δ(B(Ws)) (13)

where B is the batch normalization process, δ is the RELU activation function, and W ∈ Rd×C

and d values are controlled by the compression ratio r:

d = max(
C
r

, L) (14)

where L is the minimum value of d, generally taken as L = 32.
In order to obtain weights at different spatial scales and, thus, the weighted fusion

information for different sensory fields, a Softmax operation in the direction of the vector
z-channel is obtained:

αc =
eAcz

eAcz+eBcz+eCcz

βc =
eBcz

eAcz+eBcz+eCcz

γc =
eCcz

eAcz+eBcz+eCcz

(15)

where A, B, C ∈ RC×d, and Ac ∈ R1×d denote the cth row of A, αc is the cth element of α,
and α is the weight vector of U’. Finally, the feature maps processed by different-sized
convolutional kernels are multiplied with their corresponding weight vectors to obtain the
final output feature maps:

Vc = αc ·U′ + βc ·U′′ + γc ·U′′′
αc + βc + γc = 1

(16)

where V = [V1, V2, . . ., Vc] and Vc ∈ RH×W.
In order to enable the network to complete training with zero reference information,

a series of non-reference losses is employed, including spatial consistency loss, exposure
control loss, color constancy loss, and luminance smoothing loss.
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(1) Spatial Consistency Loss

To prevent a significant change in the value of a pixel’s adjacent pixels between the
original image and the enhanced version, the error Lspa is set as follows:

Lspa =
1
K

K

∑
i=1

∑
j∈Ω(i)

(∣∣(Yi −Yj
)∣∣− ∣∣(Ii − Ij

)∣∣)2 (17)

where K is the number of localized regions and Ω(i) is the four adjacent domains (up, down,
left, and right) centered on region i. As seen in Figure 6, we set the size of the localized
regions to 4 × 4; I and Y are the average intensity values of the localized regions in the
input low-light image and the enhanced image, respectively.
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(2) Exposure Control Loss

The exposure control loss indicates the distance between the average intensity value
and the ideal exposure value E so that the image is enhanced with a good exposure value
with the following equation:

Lexp =
1
M

M

∑
k=1
|Yk − E| (18)

where Y represents the local region’s average intensity value in the enhanced image; E is
the ideal RGB color space’s gray level [17,18], which is set to 0.6 [12]; and M is the number
of 16 × 16 non-overlapping regions.

(3) Color Constancy Loss

According to the gray world color constancy assumption [19], each sensor channel’s
color is averaged over the entire image and the loss of color constancy is used to correct any
potential color deviations in the enhanced image. An adjustment relationship is established
between the three RGB channels to ensure that their average values are as similar as possible
to their average values after the enhancement of the image.

Lcol = ∑
∀(p,q)∈ε

(Jp − Jq)
2, ε = {(R, G), (R, B), (G, B)} (19)

where Jp and Jq denote the average intensity values of channels p and q, respectively, and
(p, q) denotes the set of channels belonging to ε.
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(4) Luminance Smoothing Loss

To maintain a monotonic relationship between surrounding pixels or to lessen the
impact of brightness changes between adjacent pixels, a lighting smoothing loss is added
to each curve parameter mapping.

LtvA =
1
N

N

∑
n=1

∑
c∈ξ

(
|∇x Ac

n|+
∣∣∇y Ac

n
∣∣)2, ξ = {R, G, B} (20)

where N denotes the number of iterations, Ac
n denotes the curve parameter map of each

channel, ∇x denotes the horizontal gradient of the image, ∇y denotes the vertical gradient
of the image, and ξ denotes the RGB three-channel color.

The total network loss is the sum of the above four losses.

Ltotal = W1Lspa + W2Lexp + W3Lcol + W4LtvA (21)

where W1, W2, W3, and W4 are the weight values of the four losses, which are 1, 10, 5, and
1600, respectively [12].

4. Experiments

On different datasets, we ran comparison experiments with state-of-the-art methods.

4.1. Datasets

The SICE [20] Part 1 public dataset contains 2002 images with different exposures and
the SCIE Part 2 dataset contains 229 sets of labeled images with different exposures; the
private dataset of the electric power operation site is 500 images with different exposures,
provided by Baishan City Power Supply Company of State Grid Jilin Electric Power Co.
(Baishan City, China).

4.2. Environment Configuration

The experiments were performed on a server consisting of an Ubuntu version 18.04
operating system with a Linux kernel, Python 3.7, PyTorch 1.8.1+cu101, and an NVIDIA
Tesla T4 GPU (NVIDIA, Santa Clara, CA, USA).

4.3. Training and Testing

The Zero-DCE low-light enhancement network based on the a kernel selection module
was trained using the SCIE Part 1 dataset and the power job site private dataset, with a
learning rate of 0.001 and a total training epoch of 100. It was tested on the power job site
private dataset as well as the SICE Part 2 dataset.

4.4. Evaluation

For the private dataset of the electric power operation site without labeling, the
subjective visual effect and the number of human keypoints correctly detected by HRNet
(High-Resolution Net) [21] estimation model were used as the evaluation metrics for the
superiority of the image enhancement effect. For the labeled SCIE public dataset images,
PSNR (peak signal-to-noise ratio) and SSIM [22] (structural similarity) were used as the
evaluation metrics, which were calculated using MATLAB built-in functions.

When comparing the quality of a low-light augmented image to a true labeled image,
the PSNR, an engineering term that describes the ratio of the highest achievable strength of
a signal to the power of the destructive noise that influences its representation accuracy,
was utilized. The definition of PSNR for an original image I of size m × n and a processed
image K is:

PSNR = 10× log10

(
MAX2

I
MSE

)
(22)
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where the MSE (mean square error) is:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]
2

(23)

MAXI indicates the maximum value of the image point color. Each pixel has a value of
255 when it is represented in 8-bit binary and 2B − 1 when it is represented in B-bit binary.
The higher the PSNR, the less distortion there is and the closer it is to the original image.

SSIM is a metric used to compare two pictures. Two images—the real labeled image
and the low-light enhanced image—were used to calculate the SSIM. The two photos’
SSIMs were calculated as follows:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (24)

where µx is the mean value of x, σ2
x is the variance of x, y is the same, σxy is the covariance

of x and y, c1 = (k1L)2 and c2 = (k2L)2 are constants used to maintain stability, and L is the
dynamic range of the pixel values. k1 = 0.01 and k2 = 0.03. The structural similarity had
a range from 0 to 1 and the value of the SSIM was equal to 1 when the two images were
exactly alike.

In order to evaluate the light weight of the model, the number of parameters (Params)
and the number of floating-point operations (FLOPs) in the network were used as evalua-
tion metrics.

4.5. Results
4.5.1. Luminance Enhancement Curve Effectiveness Experiment

Figure 7 shows an example of the curve parameter plot An for the three RGB channels,
demonstrating the validity of the luminance enhancement curve (Equation (11)). For
visualization, we averaged the curve parameter plots over eight iterations and normalized
the values to the range [0, 1]. The average best-fit curve parameter plots for the R, G, and
B channels were denoted by the letters AR

n , AG
n , and AB

n , respectively. Heat maps were
used to visualize the mappings, as shown in Figure 7 images (b), (c), and (d). There were
correlations and differences between the three channels of the low-light image, as seen
by the best-fit parameter maps for the various channels, which had similar tuning trends
but with distinct values. It can be seen that for any of the RGB channels, the enhancement
values were smaller in the bright regions and larger in the dark regions.
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4.5.2. Ablation Experiment of Each Loss

To demonstrate the effectiveness of the four losses, we conducted ablation experiments.
The low-light enhancement effects are shown in Figure 8, where (a) is the input low-light
image; (b) is the low-light enhancement result, including four kinds of losses, where the
brightness and color have reached the ideal effect; (c) is the result of removing the spatial
consistency loss (Lspa) and the image contrast is significantly reduced, such as part of
the character’s clothes; (d) is the result of removing exposure control loss (Lexp), where
the low-light area of the image has not been enhanced and is still dark; (e) is the result
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of removing color constancy loss (Lcol), where the image has obvious color loss and the
overall color turns green; and (f) is the result of removing luminance smoothing loss
(LtvA), where the image has obvious artifacts, seriously affecting the visual effect. Through
the ablation experiments of each loss, it can be seen that the four different losses had
different contributions to low-light enhancement; removing any one made the low-light
enhancement effect worse.
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In order to prove the effectiveness of Lspa more objectively, the input original image,
the image enhanced by including the four losses, and the image enhanced by removing Lspa
were converted to double type and a mesh map luminance visualization was carried out
using MATLAB. As shown in Figure 9, image (b) with Lspa included had a roughly similar
luminance structure to the input original image (a), while image (c) with Lspa removed
had a high overall luminance and a reduced contrast, which further demonstrated the
importance of Lspa in preserving the differences in the neighboring regions between the
input image and the enhanced image.
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4.5.3. Low-Light Enhancement Effect Comparison Experiment

Comparative experiments with other state-of-the-art methods were performed on the
SICE Part 2 public dataset and a private dataset of electric power job sites, respectively, to
show the efficacy of our low-light enhancement method. Other state-of-the-art methods
were selected as UNIE [13], EnlightenGAN [10], LMSPES [9], and Zero-DCE [12]. As the
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private dataset of the electric power operation site had no labels corresponding with the
original image, it could not be judged by objective PSNR and SSIM indexes so the subjective
visual effect and the number of correctly detected keypoints were used as the evaluation
indexes. In terms of keypoint detection, we used Faster-RCNN [23] as a human detector
and HRNet for keypoint detection. The comparison results are shown in Figures 10 and 11,
demonstrating the subjective visual enhancement effect and the number of keypoints
correctly detected; thus, this paper’s method was superior to other state-of-the-art methods.
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Figures 12 and 13 show a comparison experiment of the image enhancement of a
low-light scene of an electric power operation with localized strong light. Our approach
was superior to existing approaches in that it improved low-light images while preventing
overexposure to strong light. It also provided better overall image visualization and
noise control.
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Figure 13. The second group of comparative experiments of low-light enhancement at an electric
power operation site in the presence of strong light.

Image visualization is subjective, so we also used PSNR and SSIM as evaluation
metrics and conducted comparison experiments using the SICE Part 2 public dataset. The
metrics were calculated using MATLAB for the images enhanced by different methods and
labeled images, respectively. PSNR and SSIM were taken as the average of 100 images.
Figure 14 shows the visualization comparison with other advanced methods after low-light
enhancement and Table 1 displays the findings from a comparison of PSNR and SSIM.
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Table 1. Comparison results of PSNR and SSIM for Part 2 testing dataset.

Method PSNR ↑ SSIM ↑
UNIE [13] 12.31 0.41

EnlightenGAN [10] 16.06 0.53
LMSPEC [9] 15.64 0.50

Zero-DCE [12] 16.31 0.59
Ours 18.28 0.62

↑ indicates that the higher the value, the better.

4.5.4. Model Complexity Comparison Experiment

In order to lighten the network, we used depth-separable convolution to replace the
ordinary convolution. The Params and FLOPs of the Zero-DCE low-light enhancement net-
work based on the a kernel selection module (excluding the strong light judgment method
and the light effect decomposition method) were substantially reduced compared with the
original Zero-DCE. As shown in Figure 15, the Params were about 65% of the original and
FLOPs were about 60% of the original when the input image size was 1200 × 900 × 3.
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5. Conclusions

This paper proposes a low-light image enhancement method for an electric power
operation site considering strong light suppression. Firstly, a sliding-window-based strong
light judgment method was designed, then a light effect decomposition method based
on a layer decomposition network was used. Finally, a Zero-DCE low-light enhancement
network based on a kernel selection module was constructed. Through the joint training of
the private and public datasets of the electric power operation site, the visual effect and the
number of correctly detected keypoints of the human skeleton were identified. PSNR and
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SSIM were used as the evaluation indexes for the comparative experiments. The method
proposed in this paper outperformed the other state-of-the-art low-light enhancement
methods in all the evaluation indexes, which effectively improved the image quality of the
low-light environment of the electric power operation site.
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