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Abstract: The advent of molecular tools, and particularly next-generation sequencing, has dramat-
ically changed our knowledge of the diversity of microbial life on Earth. In recent decades, many
studies on different terrestrial environments have described the intriguing diversity and abundance
of Euzebyales/Euzebyaceae/Euzebya, yet its role in the geochemical cycle of elements is unknown. In
addition, as far as we know, no Euzebya isolates have been obtained from terrestrial niches. In this
review, it is shown that Euzebya and other haloalkaliphilic bacteria can thrive under harsh conditions,
such as high concentrations of sodium and/or calcium, high electric conductivity and alkaline pH,
highly variable temperatures, and water fluctuations. These conditions are quasi-extreme in the
studied terrestrial environments. However, the culture media used so far for isolation have failed to
reproduce the original conditions of these terrestrial ecosystems, and this is likely the reason why
strains of Euzebya and other bacteria that inhabit the same niche could not be isolated. It is expected
that culture media reproducing the environmental conditions outlined in this review could cope with
the isolation of terrestrial Euzebya and other haloalkaliphilic genera.

Keywords: Euzebya; biofilms; caves; soils; rhizospheres; saline and hypersaline environments

1. Introduction

In terms of microbial diversity, the oceans represent the largest biosphere habitat,
containing about 70% of the prokaryotic biomass [1]. In recent decades, interest in the
bioactive compounds from marine bacteria has grown enormously [2–8], and many works
have focused on rare marine Actinomycetota [9–13]. One of the most intriguing and rare
genera of marine Actinomycetota is Euzebya. No terrestrial Euzebya has been isolated so far.

The genus Euzebya was described by Kurahashi et al. [14] to accommodate a Gram-
positive actinobacterial strain isolated from the epidermis of Holothuria edulis, a sea cu-
cumber collected in the Sea of Japan. The strain was characterized by a reddish-orange or
tangerine color and was able to grow in sodium chloride concentrations of 0.5–12%, but
no growth was observed in the absence of sodium chloride or at a concentration of 15%.
Optimal growth temperatures were in the range of 20–28 ◦C and pH 7–9. No growth was
obtained at pH 6 or 10. The type strain is Euzebya tangerina from the new order Euzebyales
and the new family Euzebyaceae [14]. A second member of the genus, Euzebya rosea, was
isolated from the waters of the East China Sea and showed a light pink color, optimal
growth at 25–30 ◦C, and pH 6–7. Optimal sodium chloride concentrations were 1–4% [15].

Euzebya pacifica was the third species of the genus, isolated from seawater collected at
150 m depth in the Eastern Pacific Ocean [16]. Colonies were pink, with optimal growth at
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30–35 ◦C, in sodium chloride concentrations of 1–2%, and pH 6.5. This last species could
grow in the absence of sodium chloride. The complete genome sequence of E. pacifica
revealed its ecological roles in marine carbon, nitrogen, phosphorus, and sulfur cycles [17].
In general, the three marine species of Euzebya are characterized by their tolerance to
relatively high sodium chloride concentrations, growth at neutral pH (7), and temperatures
from 20 to 35 ◦C.

The advent of molecular tools, particularly next-generation sequencing (NGS), has
dramatically changed the knowledge of the diversity of microbial life on Earth. In recent
decades, many studies on different terrestrial environments, including caves [18–36], have
described the diversity and abundance of Euzebyales/Euzebyaceae/Euzebya; however, as far
as we know, no Euzebya isolates have been obtained from terrestrial niches. This prompted
us to review the habitats where Euzebya sequences were found and their ecological require-
ments in order to understand the failures in the adoption of isolation protocols that led to the
lack of terrestrial isolates. The diversity and abundance of Euzebyales/Euzebyaceae/Euzebya
in most terrestrial environments are intriguing and its role in the geochemical cycle of
elements is unknown, and thus the isolation of Euzebya strains could help to understand
why this abundant bacterial genus is distributed worldwide, even in extreme environments.

2. Metagenomic Detection of Euzebya in the Environment: Caves

Caves are mineral environments, often oligotrophic in nature. Rocks, speleothems,
and mineral deposits, such as moonmilk, are colonized by microbial communities, which
develop as colored biofilms [18–20]. To our knowledge, the first report on the occurrence of
Euzebya in caves was in a study by Cuezva et al. [18]. In Altamira Cave, Spain, sequences
with 82–92% similarity to the nearest relative Euzebya tangerina were retrieved from grey
biofilms, suggesting that they probably represented an unknown species. Euzebya rep-
resented 72.8% of the clones retrieved from the grey biofilms [18]. Riquelme et al. [19]
recovered representatives of Euzebyales from colored microbial mats found in volcanic caves
in the Azores, Hawai’i, and New Mexico, and stated that the different clades obtained sug-
gested a significant diversity within the sequences found. Other papers reported Euzebya
sequences from caves in different geographical regions [21–36] (Table 1).

The composition of microbial communities was found to be dependent on geochemical
and microclimatic parameters. In this context, Frazier [29] reported the high relative
abundance of Euzebya (up to 30.7%) in one cave and its negligible occurrence (up to 0.2%) in
another cave from mineralogically similar formations located 65 km apart. The difference
in abundance was attributed to flooding and clay deposition in the Euzebya-rich cave. Also
interesting was the abundance of Euzebyaceae in pink biofilms from Pindal Cave, Spain
(7.0–16.0%), coincident with the pink color of the three described Euzebya species [36].

A recent study was conducted on the biofilms present in Covadura Cave, located in
the gypsum karst of Sorbas, Almeria, Spain. The karst comprises over 100 km of passages
within the six most important caves (Covadura Cave, GEP Complex, C3 Cave, Gypsum
Cave, Treasure Cave, and Water Cave), which are subject to condensation–dissolution
mechanisms. Water condensation on the cooler walls of Covadura Cave takes place mainly
during the dry period (July to October) and the biofilms show water droplets on their
surface. Biofilm proliferation has been associated with the strong condensation existing
in some caves [36], as condensation favors the colonization of cave walls by microorgan-
isms [18,19].

The data revealed that Euzebyaceae were abundant in Covadura Cave white biofilms
collected in 2010, but their relative abundance was drastically reduced in the 2022 sampling
(Table 1). This could be associated with the severe droughts, the last of which occurred
between 2017 and 2018, and which continue until now. In the yellow biofilms, the decrease
in abundance was lower.
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Table 1. Occurrence and relative abundance of Euzebyales/Euzebyaceae/Euzebya in caves.

Cave Abundance % Taxa Type of Sample References

Altamira Cave, Spain n.a. Euzebya Grey biofilms [18]

Volcanic caves, Portugal, USA n.a. Euzebyales Biofilms [19]

Hawai’i lava caves, USA n.a. Euzebya Biofilms [20]

Heshang Cave, China n.a. Euzebya Weathered rocks [21]

Laugerie-Haute shelter, France 2.6 * Euzebya Biofilms [22]

Scarisoara Ice Cave, Romania n.a. Euzebya Ice core [23]

Honda del Bejenado Cave, Spain 43.9 * Euzebya Yellow biofilms [24]

B2 Cave, India 1.16 Euzebyales Cave wall [25]

Honda del Bejenado Cave, Spain 31.7 Euzebya Yellow biofilms [26]

Fuente de la Canaria Cave, Spain 0.2–2.7 Euzebya Yellow
biofilms/moonmilk [26]

Bucara II Cave, Spain 2.9–11.0 Euzebya Pink deposit/moonmilk [26]

Llano de los Caños Cave, Spain 3.0 Euzebya Speleothem [26]

Yixing Shanjuan Cave, China 4.2 Euzebya Speleothem [27]

Chimalacatepec lava tube,
Mexico 6.2 Euzebya Stromatolite [28]

RN5 Cave, USA 30.7 Euzebya Biofilms [29]

RN5 Cave, USA 13.8 Euzebyaceae Biofilms [29]

KN14 Cave, USA 0.1 Euzebya Biofilms [29]

Royal Palm Cave, Galapagos n.a. Euzebya White biofilms [30]

Pukzing Cave, India n.a. Euzebya Cave sediments [31]

Altamira Cave, Spain 33–79 Euzebyaceae White biofilms [32]

Altamira Cave, Spain 20–42 Euzebyaceae Light brown biofilms [32]

Heshang Cave, China n.a. Euzebya Weathered rocks [33]

Moon National Monument, USA n.a. Euzebya Biofilms/Speleothems [34]

Geomunoreum lava tubes, Korea 0.3–0.7 Euzebya Microbial mats [35]

Pindal Cave, Spain 7.0–16.0 Euzebyaceae Pink biofilms [36]

Covadura Cave, Spain

48.4–52.5
0.1–21.7
0.7–10.4
3.4–9.0

Euzebyaceae
Euzebyaceae
Euzebyaceae
Euzebyaceae

White biofilms (2010)
White biofilms (2022)
Yellow biofilms (2010)
Yellow biofilms (2022)

Unpublished
report

n.a., data not available. * Abundance of clones.

Euzebya was also abundant in volcanic caves. The genus was found in caves in the
Azores, Canary Islands, Galapagos, Hawai’i, Idaho, Tennessee, and Mexico [19,20,24,26,28–
30,34]. Gonzalez-Pimentel et al. [24] stated that yellow biofilms from a cave on the Canary
Island of La Palma were dominated by metabolically active Euzebya (43.9% RNA clones
vs. 26.0% DNA clones). In the other three La Palma caves [26], the relative abundance of
Euzebya was lower (Table 1).

La Palma caves are characterized by the leaching of dissolved organic matter from
the soil surface, and its transport inside the cave is favored by the low thickness and high
porosity of the volcanic rock [37]. Euzebya colonizes the mineral formations and deposits in
caves, usually at an alkaline pH (8–10), where it develops as biofilms of different colors.
The wide distribution in karstic, volcanic, and gypsum caves all over the world indicates
that terrestrial Euzebya can thrive in these humid, largely mineral environments [38].
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3. Euzebyales in Extreme Environments

Saline and hypersaline terrestrial environments include salt mines, sediments of desic-
cated salt lakes, saline and alkaline soils, salt marshes, etc. These environments often have
salt concentrations higher than that of seawater and support halophilic microorganisms
that have adapted to deal with extreme environmental parameters (high salt concentra-
tions, temperatures, and pH), although their community composition and structure vary
depending on salinity fluctuations in the environment [39].

The occurrence of Euzebya in these environments has been reported in numerous
studies [40–55], denoting the ability of the members of this genus to prosper in habitats
with high salt concentrations (Table 2).

Interestingly, the wide occurrence of Euzebya and its haloalkaliphilic relatives has
been registered in the drained sediments of former Mexican lakes (Texcoco and Rincon de
Parangueo) [40,45], and the Songnen Plain of Northeast China, one of the three regions
with extensive saline–sodic soils in the world [50–53].

The Texcoco Lake sediments are characterized by a very high pH (10) and an electric
conductivity (EC) of up to 179.8 dS m−1 [40,42,44]. There, Euzebya was one of the dominant
bacterial genera with relative abundances >10% [42]. It has been reported that organic
carbon additions to the sediments increased Euzebya abundance [42].

In the Songnen Plain of Northeast China, with very high pH (>10) and high EC, Euzebya
showed high relative abundance [50,52], as well as a high sodicity/salinity niche preference,
however, the genus was depleted or absent when sodicity/salinity decreased [51].

In other highly saline environments, such as salt marshes, mines, and lake soils,
Euzebya was detected in the rhizosphere of halophytic plants [41,43,47–49,54].

Chen et al. [56], using comparative genomics, investigated the salt adaptation mech-
anism of species within the class Nitriliruptoria, including Euzebya tangerina and E. rosea.
They showed that the Nitriliruptoria species possess specific salt tolerance mechanisms.

Deserts, covering around 33% of the planet’s surface, have been explored in search of
extremophilic and extremotolerant Actinomycetota producing novel bioactive
compounds [57–60]. However, the use of molecular tools (next-generation sequencing)
revealed dominant members of the extremophilic microbial communities that have not
been yet isolated. They included Euzebya, both in cold environments (Antarctica) and hot
deserts (Atacama, Sahara, Colorado Plateau, etc.) [61–72] (Table 2).

Table 2. Occurrence of Euzebyales/Euzebyaceae/Euzebya in extreme environments.

Location Taxa Type of Sample References

Saline and hypersaline environments

Texcoco, Mexico Euzebya Soil [40]

Dafeng, Jiangsu, China Euzebya Soil/Rhizosphere [41]

Texcoco, Mexico Euzebya Soil [42]

Khewra salt mines, Pakistan Euzebya Soil/Rhizosphere [43]

Texcoco, Mexico Euzebya Soil [44]

Rincon de Parangueo, Mexico Euzebyales Sediment [45]

Rincon de Parangueo, Mexico Euzebya Sediment [46]

Chaka Salt Lake, China Euzebya Rhizosphere [47]

Jeddah, Saudi Arabia Euzebya Soil/Rhizosphere [48]

Lebrija, Seville, Spain Euzebya Soil/Rhizosphere [49]

Songnen Plain, Jilin, China Euzebya Soil [50]
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Table 2. Cont.

Location Taxa Type of Sample References

Songnen Plain, Jilin, China Euzebya Soil [51]

Songnen Plain, Jilin, China Euzebya Soil [52]

Songnen Plain, Jilin, China Euzebya Soil [53]

Daqing, Heilongjiang, China Euzebya Soil/Rhizosphere [54]

Hisar, Haryana, India Euzebya Soil [55]

Cold and hot deserts

Victoria Valley, Antarctica Euzebya Rocks [58]

Atacama Desert Euzebya Rocks [59]

McMurdo Dry Valleys, Antarctica Euzebyales Soil [60]

McMurdo Dry Valleys, Antarctica Euzebyaceae Soil [61]

Australia/Northern Antarctica Euzebya Soil [62]

Cabo de Gata, Nijar Natural Park, Spain Euzebyaceae Soil [63]

North-Central Algeria Euzebya Soil/Rhizosphere [64]

Eastern Pamir, Tajikistan Euzebyaceae Rocks/soil crusts [65]

Mackay Glacier region, Antarctica Euzebyales Soils [66]

Colorado Plateau Desert, USA Euzebya Soil [67]

Northwest deserts of China Euzebya Soil [68]

Gurbantunggut Desert, Xinjiang, China Euzebya Soil/Rhizosphere [69]

Euzebya was one of the most frequently detected genera in Australian and Northern
Antarctica soils. There, Actinomycetota diversity increased with increasing pH and sodium
concentration, and this applies particularly to Euzebya [65].

The McMurdo Dry Valleys is the largest ice-free soil region in Antarctica. There,
Euzebyales were abundant only in the soil samples with moisture below 6.82% but largely
declined or were absent in the soil with moisture content above 15.57% [63]. In Victoria
Valley, within McMurdo Dry Valleys, two families, Euzebyaceae and Rubrobacteraceae, were
abundant (over 30%) in endolithic niches and less frequent in soils. It has been reported that
water availability largely conditioned the distribution of these actinobacterial families [64].

In Antarctica, the rock-inhabiting microbial communities are dominated by Cyanobac-
teria and Actinobacteria, particularly Euzebya, which also occupy hypolithic niches [63]. In
the cold mountain desert of Eastern Pamir in Tajikistan, Euzebya was present both in rocks
(endolithic) and in biological soil crusts [68].

In addition, Euzebya was found in endolithic niches in the hyperarid zone of the Atacama
Desert, Chile [62], and in soils from the Sahara, Colorado Plateau, and China [67,70–72].

4. Euzebyales in Soils and Other Diverse Environments

Table 3 shows the occurrence of Euzebya in agricultural and contaminated soils, and
other diverse environments [73–119].

Euzebya was found in the rhizosphere of Agave lechuguilla in the saline and oligotrophic
soils of Cuatro Ciénegas Basin, Mexico [76,81], as well as in other plant rhizospheres from
different regions [73,75,79,81,85,91,92,95].
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Table 3. Occurrence of Euzebyales/Euzebyaceae/Euzebya in soils and other diverse environments.

Location Taxa Type of Sample References

Soils

Unknown, China Euzebya Soil/Rhizosphere [73]

Valle del Yaqui, México Euzebya Soil [74]

Unknown, Korea Euzebyaceae Soil/Rhizosphere [75]

Cuatro Cienegas Basin, Mexico Euzebya Soil/Rhizosphere [76]

Lublin region, Poland Euzebyaceae Soil [77]
Beijing, China Euzebya Soil [78]

Dingxi, China Euzebya Rhizosphere [79]

Fogo Island, Cape Verde Euzebya Volcanic soils [80]

Cuatro Cienegas Basin, Mexico Euzebya Soil/Rhizosphere [81]

Hotan City, Xinjiang Uygur, China Euzebya Soil [82]

Pernambuco, Brazil Euzebyaceae Soil [83]

Outside a sabkha, Abu Dhabi Euzebyales Soil [84]

Qapqal County, Xinjiang, China Euzebyaceae Soil/Rhizosphere [85]

Zaragoza, Spain Euzebya Soil [86]

Weizhou and Xieyang Islands, China Euzebya Volcanic soils [87]

Springfield Farm, Western Cape, South Africa Euzebya Peatlands [88]

Omaha/Lincoln, Nebraska, USA Euzebya Soil [89]

International Centre for Insect Physiology, Kenya Euzebyaceae Soil [90]

Sugarcane Research Institute, Nanning, China, Euzebya Soil/Rhizosphere [91]

Hetao Ningxia Plain, China Euzebya Soil/Rhizosphere [92]

Different Russian regions and Antarctica Euzebya Soils [93]

Saline–alkali regions, Northeastern China Euzebya Soil [94]

Jinzhong City, Shanxi Province, China Euzebya Soil/Rhizosphere [95]

Contaminated soils

Daqing oilfield, China Euzebya Oil polluted soil [96]

Kuwait Euzebya Oil polluted soil [97]

Shandong Province, China Euzebya Bauxite residue [98]

Northwest region of Bangladesh Euzebya As-polluted soil [99]

Copper mine, Miami, Arizona, USA Euzebyaceae Mine waste rock [100]

Xinjiang, Northwest China Euzebya U repositories [101]

Diverse environments

Mausoleo Cuadrangular, Carmona, Spain Euzebya Roman tomb [102]

Cambodian aquifer Euzebya As-rich sediments [103]

EsTrenc saltern, Mallorca, Spain Euzebya Brine/Rhizosphere [104]

Akkol salt lake, Russia Euzebyaceae Lakeshore [105]

Pozo de la Higuera, Almeria, Spain Euzebya Irrigation waters [106]

Houssaye Point, Erquy, France Euzebya Marine lichens [107]

Wawel Royal Castle, Krakow, Poland Euzebyaceae Building stones [108]

Potter Cove, Antarctica Euzebya Seawater [109]
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Table 3. Cont.

Location Taxa Type of Sample References

Bentonite deposit, Almeria, Spain Euzebya Bentonite [110]

Coral reefs, Lakshadweep, India Euzebya Demosponges [111]

Dogs, USA Euzebya Feces [112]

Coastal waters, Yantai City, China, Euzebya Bacterioplankton [113]

Dogs, USA Euzebya Vomit [114]

Dogs, USA Euzebya Oral cavity [115]

Human microbiome Euzebya Urogenital [116]

Human microbiome Euzebya Oral cavity [117]

Human microbiome Euzebya Cerebrospinal fluid [118]

West coast of India Euzebya Seawater [119]

Euzebya is represented in soils all over the world [74,77,78,80,82–84,86,89,90,93,94].
Several authors have reported the occurrence of Euzebya in clean and healthy soils and
its absence in polluted soils [77,96,97]. However, Euzebya has also been found in bauxite
residue disposal areas and copper mine wastes [98–101].

The presence of Euzebya has been recorded in saltern and salt lakes, terrestrial and
sea waters, marine organisms [103–107,111,113,119], bentonite [110], animals [112,114,115],
and humans [116–118]. In addition, the genus was found on a sandstone surface, covered
by efflorescences, at the Wawel Royal Castle in Poland [108]. In a report on the microbial
communities of efflorescences from Roman tombs in the Carmona Necropolis, Spain, a
high number (60%) of clones showing a similarity of 87% with the genus Nitriliruptor were
retrieved. At the time of this study, 2009 [102], no Euzebya species had been described.
However, a further study [26] showed that these clones had 92.5% similarity with Euzebya
tangerina, while an updated revision of these clones showed a similarity of 91.7–92.7% with
Euzebya pacifica.

5. Relationship of Euzebyales with Other Members of Microbial Communities in
Diverse Environments

A review of all the reports available in the literature provided some insights into the
relationship of Euzebya with other taxa in different environments. In fact, several taxonomic
groups may inhabit the same niche as Euzebya. Thus, Euzebya is present in most caves
together with Crossiella, Rubrobacter, wb1-P19 (Nitrosococcales), and Gaiella, among other
genera [19,21,23,27–29,33–36]. Caves are characterized by high relative humidity, in most
cases near saturation, high mineral concentration, mainly of calcite in karstic and basaltic
rocks in volcanic caves, as well as alkaline pH. In some pristine caves, oligotrophy is an
environmental constraint.

In saline and hypersaline environments, the order Euzebyales is accompanied by
other orders common to these extreme environments, such as Nitriliruptorales, Rubrobac-
terales, Solirubrobacterales, Gaiellales, Acidimicrobiales, Oceanospirillales, Rhizobiales, KSA1
(Bacteroidetes), etc. [41,42,45,49–53]. Most members of these orders require high pH and
salt concentrations, and oligotrophy is common in these environments. There are a few
outstanding reviews on heavy metal resistance in halophilic Bacteria and Archaea [120–122].
These and other studies [123,124] revealed that the mechanism of heavy metal resistance is
associated with salinity tolerance and an increase in salinity and pH-enhanced tolerance to
toxic metals. Nitriliruptoria species possess salt tolerance mechanisms [56] and it is likely
that heavy metal resistance could also be attributed to Euzebya.

In deserts, Euzebya has been found together with Nitriliruptor, Rubrobacter, Solirubrobac-
ter, Gaiella, Halomonas, etc. [62,64,65,68–71]. Water availability is scarce in deserts and
environmental conditions become more challenging (e.g., strong oligotrophy and high
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mineral deposits). Most of these genera are known for their ability to resist extreme desic-
cation, high UV and ionizing radiation, temperature fluctuations, and high salinity and
metal concentrations [62]. In addition, the pink color of most species of these genera is due
to the presence of bacterioruberin, a carotenoid pigment with UV-protective properties.
It is suggested that Euzebya may possess most of the above-described characteristics, al-
though as far as we know no pigment identification has been reported for any of the three
marine species.

In soils, the co-occurrence of Euzebyales with Nitriliruptorales, Rubrobacterales, Solirubrobac-
terales, Gaiellales, Oceanospirillales, Rhizobiales, etc., is frequently reported [84,86–89], as
previously stated for caves, saline, hypersaline, and desert environments.

To summarize, some microbial lineages present in harsh terrestrial environments
show successful adaptation strategies and the ability to cope with available scarce nutrient
sources in unfavorable climatic and geochemical conditions.

6. Culture Media for the Isolation of Euzebya in Terrestrial Environments

From 90 papers reporting the occurrence of Euzebya in different environments
(Tables 1–3), only 13 described the isolation of bacteria, but only three marine species
of Euzebya were successfully isolated on marine culture medium with 1–2% of sodium
chloride, pH near 7, and at a temperature of 25 ◦C [14–16].

The terrestrial environments where Euzebya have been found are characterized by
haloalkaliphilic conditions, high pH (9–10), and high to moderate salt contents. The
availability of water in these ecosystems is widely variable, from dry conditions to 100%
relative humidity, which suggests the great adaptability of this genus. In addition, the
range of mean temperatures of these environments is highly variable, from −30 ◦C (winter
in McMurdo Dry Valleys) to >40 ◦C in deserts, with large daily temperature fluctuations in
each location.

The culture media used by different authors contained a wide array of carbon and
nitrogen sources (peptone, tryptone, starch, tyrosine, glycerol, asparagine, sodium ca-
seinate, malt extract, humic acid, glucose, oatmeal, etc.), mainly used for the isolation of
Actinomycetota. At the same time, the media rarely contained high concentrations of salts
(sodium or calcium), and the pH was not adjusted to the alkalinity ranges where terrestrial
Euzebya and other related bacteria are abundant. None of these attempts were able to isolate
strains of Euzebya, Nitriliruptor, Rubrobacter, Solirubrobacter, Gaiella, Halomonas, etc., which
clearly indicates that the culture media used failed to reproduce the ecological conditions
where these bacteria succeed.

As a matter of fact, Rubrobacter strains were isolated from biodeteriorated Roman
tombs and a church with abundant efflorescences using media developed for halobacteria
(DSMZ media 372, 1018, 1350) [125]. Three of these strains represented a new species,
Rubrobacter bracarensis, that grew on tryptone soya agar (TSA) with concentrations of 30%
NaCl, with an optimum at 3–10%, in contrast to other described species of Rubrobacter,
which did not grow at concentrations above 5–6% NaCl [126]. This proves that culture me-
dia mimicking the original ecological conditions can provide novel, not yet cultured strains.

7. Attempts to Isolate Euzebya from Pindal Cave

Pindal Cave is a shallow limestone cave formed through epigenic processes and
located very close to the surface. The cave is 590 m long and due to the geographical
location has a humid oceanic climate. The cave has a stable annual temperature (11.6 ◦C)
with only minor fluctuations throughout the year (<2 ◦C/year). This cave is well-ventilated
with relatively low annual average values of CO2 (680 ppm) and radon (950 Bq/m3) [36].

In Pindal Cave, pink biofilms primarily develop on the surface of calcite speleothems in
areas near the entrance and Euzebyaceae reached a relative abundance of 7–16% (Table 4); the
biofilms have a rough surface and are formed by aggregates of cells, mostly rounded, with
extensive filaments (Figure 1). Other abundant genera were Crossiella and wp1-P19. The eco-
logical significance of the five top taxa in Pindal Cave was discussed elsewhere [36,127,128].
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However, attempts to isolate Euzebya using different culture media failed. The follow-
ing media were used: nutrient agar (NA), B-4 medium [129], GYM Streptomyces medium
(DSMZ 65), Dimethylsulfone medium [130], TSA, diluted TSA/1000, and TSA supple-
mented with NaCl (3%) and MgSO4·7H2O (2%) (DSMZ 1350) [125]. In all these media, the
pH was near 7, and not as markedly alkaline as Euzebya requires (pH 9–10), as denoted
by their habitats; in other cases, the absence of relatively high NaCl concentrations likely
prevented its isolation.

Table 4. NGS relative abundances (%) of the top five taxa in samples from pink biofilms, Pindal Cave,
Spain [36].

Genus Sample Bal1 Sample Bal4

Euzebyaceae 16 7

Crossiella 8 7

wb1-P19 5 11

PLTA13 4 5

Nitrospira 3 3

Other genera 64 67Appl. Sci. 2023, 13, 9644  9  of  16 
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A culture-dependent approach revealed 33 isolates representing 19 identified species,
as listed in Table 5. The isolates were affiliated with the phyla Actinomycetota (three
genera) and Bacillota (five genera). Both phyla are widespread in nature [131–134] and the
genera isolated from pink biofilms were spore-forming bacteria. Remarkably, none of the
bacteria isolated were representatives of the top major taxa recovered by NGS (Table 4).
In fact, NGS of the pink biofilm revealed only Streptomyces with a relative abundance
of 0.01%, which was also isolated on culture media. The results indicated significant
differences in the bacterial communities detected in the pink biofilm when applying these
two different approaches.

Table 5. Strains isolated from pink biofilms, Pindal Cave, Spain.

Strain Culture Medium Identification (% Similarity) * Accession Number

R2-11 B-4 Peribacillus frigoritolerans (100) OR037511

R2-14 Dimethylsulfone Streptomyces sp. (99.89) OR037512

R2-15A TSA/1000 Streptomyces sp. (99.66) OR037513

R2-15B TSA/1000 Micromonospora chalcea (99.77) OR037514

R2-1 NA Bacillus altitudinis (99.89) OR037515

R2-5 TSA Bacillus thuringiensis (100) OR037516

R2-6 TSA Bacillus mojavensis (100) OR037517

R2-8 GYM Streptomyces Psychrobacillus vulpis (98.92) OR037518

R4-12 B-4 Paenibacillus peoriae (99.78) OR037519

R4-13 TSA/1000 Peribacillus frigoritolerans (100) OR037520

R4-14 TSA/1000 Streptomyces sp. (99.67) OR037521

R4-15 Dimethylsulfone Rhodococcus erythropolis (100) OR037522

R4-17 Dimethylsulfone Rhodococcus koreensis (99.31) OR037523

R4-3 GYM Streptomyces Psychrobacillus glaciei (99.77) OR037524

R4-4 NA Paenibacillus pabuli (99.78) OR037525

R4-5 NA Bacillus thuringiensis (100) OR037526

R4-6 TSA Psychrobacillus vulpis (98.92) OR037527

R4-7 TSA Peribacillus sp. (99.03) OR037528

R4-8 TSA Metabacillus sediminilitoris (99.03) OR037529

* Closest relative obtained by comparison with the NCBI database.

The inability of culture-dependent and independent methods to detect the same
bacterial species has already been reported [135,136]. Laiz et al. [137] stated that culture-
dependent techniques lead to an overestimation of the spore-forming bacteria, as shown in
Table 5. They found that the apparent abundance of these bacteria can be explained by the
fast growth of spores in the plates.

The failure in obtaining Euzebya isolates prompted us to review the ecological niches
where Euzebya can be found. The survey revealed that the environmental conditions
requested by Euzebya were not met in the culture media used thus far.

Culture media reproducing the environmental conditions outlined in this review, e.g.,
marine agar and SN medium (including 1/10 dilutions of these media), pH 9–10, and
sodium chloride concentrations around 3% or more, could allow the isolation of terrestrial
Euzebya and other haloalkaliphilic genera. Marine agar and SN medium [138] have been
used for the isolation of marine Euzebya [14–16]. Alternatively, for maintaining a high pH,
the medium Z8-NK, as described by Flores et al. [139], R2A, and/or other media with the
addition of trace elements, amino acids, vitamins, and simple carbon sources to a minimal
culture medium should be explored.
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8. Concluding Remarks

NGS technologies have allowed the detection of unknown microorganisms and ex-
tended our knowledge of the diversity of microbial life on Earth. However, the majority of
taxa are part of the yet-uncultured microbial dark matter that significantly contributes to
ecosystem functioning [140,141].

The data (Tables 1–3) indicate that Euzebya is present across the entire biosphere. The
question is whether their species were dispersed from marine sources to the terrestrial
environment or if they are truly terrestrial, not yet described, species.

In this review, it is shown that Euzebya and other bacteria can thrive under harsh con-
ditions, such as high concentrations of sodium and/or calcium, high electric conductivity,
alkaline pH, and highly variable temperature and water fluctuations. These ecological
conditions in the studied terrestrial environments are quasi-extreme.

Unfortunately, the culture media used so far for the isolation of Euzebya failed to
reproduce the original conditions of these harsh ecosystems and this could be the reason
why strains of Euzebya and other bacteria that inhabit the same niche were not isolated.

This review presents some of the pitfalls and limitations of commonly used culture
media and suggests possible solutions to challenges faced in isolating terrestrial Euze-
bya strains. The importance of combining high-throughput sequencing and cultivation
techniques is of the utmost interest for this task. Data on the physicochemical and environ-
mental parameters of the terrestrial ecosystems where Euzebya thrives should be taken into
account when designing appropriate culture media.

It is expected that the interest in the biogeochemical role and geographical distribution
of Euzebya will promote the optimization of culture media, and in this way, researchers will
be able to isolate novel Euzebya species from different terrestrial environments.
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