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Abstract: Point cloud data are used to create an as-built building information model (as-built BIM)
that reflects the actual status of any building, whether being constructed or already completed.
However, indoor clutter objects in the point cloud data, such as people, tools, and materials, should
be effectively eliminated to create the as-built BIM. In this study, the authors proposed a novel method
to automatically remove indoor clutter objects based on the Manhattan World assumption and object
characteristics. Our method adopts a two-dimensional (2D) projection of a 3D point cloud approach
and utilizes different properties of indoor clutter objects and structural elements in the point cloud.
Voxel-grid downsampling, density-based spatial clustering (DBSCAN), the statistical outlier removal
(SOR) filter, and the unsupervised radius-based nearest neighbor search algorithm were applied to
our method. Based on the evaluation of our proposed method using six actual scan datasets, we
found that our method achieved a higher mean accuracy (0.94), precision (0.97), recall (0.90), and F1
core (0.93) than the commercial point cloud processing software. Our method shows better results
than commercial point cloud processing software in classifying and removing indoor clutter objects
in complex indoor environments acquired from construction sites. As a result, assumptions about the
different properties of indoor clutter objects and structural elements are being used to identify indoor
clutter objects. Additionally, it is confirmed that the parameters used in the proposed method could
be determined by the voxel size once it is decided during the downsampling process.

Keywords: point cloud; indoor clutter objects; as-built BIM; two-dimensional projection; DBSCAN

1. Introduction

An as-built building information model (BIM) is an innovative tool for construction
management such as quality control, progress monitoring, inspection, safety monitoring,
and so forth [1–5]. Additionally, as-built BIM is also useful for the control and monitoring
of automated construction equipment and robots [6,7]. In order to create an as-built BIM, it
is necessary to collect the actual status of construction sites or an existing building. The
most common methods to gather status data are laser scanning or photogrammetry [8],
and their output is point cloud data. However, the point cloud data typically includes
unnecessary objects, such as people, tools, and materials, which are considered clutter in
the point cloud data [9,10]. These clutter objects can negatively impact the accuracy and
speed of automated as-built BIM creation, particularly in terms of point-cloud semantic
segmentation of building elements [11,12]. Therefore, it is critical to remove these indoor
clutter objects from the point cloud. Removing outdoor clutter objects from point cloud
data can be easily accomplished manually. However, it is relatively difficult to remove
indoor clutter objects due to the large number of items and their interconnection with
building elements such as floors, walls, and ceilings [13]. Therefore, manual elimination
of indoor clutter objects is an inefficient process, which is why automation is necessary to
develop efficient as-built BIM creation methods [14].
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Removing indoor clutter objects intersects with several research areas, including the
automatic creation of as-built BIM, the automation of two-dimensional (2D) floor plan
generation, and point cloud semantic segmentation. The authors believe that removing
indoor clutter objects could enhance the outcomes of critical processes in Scan-to-BIM,
such as point cloud semantic segmentation, line fitting, and plane fitting. The proposed
method aimed to obtain an x–y plane from which indoor clutter objects were removed. The
obtained x–y plane could be used to remove indoor clutter objects from the point cloud.

The most typical method for removing indoor clutter objects is the line-fitting-based
method. The line-fitting-based approach identifies outliers using obtained lines or planes
that represent the additional elements that need to be preserved [9,10,14–16]. However, the
line-fitting-based method often ignores certain types of elements, such as indoor columns
or walls, depending on their parameter values defined a priori, and it may not accurately
reflect the thickness of inner walls [14,16]. Furthermore, while an appropriate horizontal x–
y plane is essential, related studies have either manually selected this plane or determined it
based on a z-axis value. Another category of removal methods are feature-based approaches.
However, it is challenging to set an appropriate parameter value in clustering [17,18], and
there is a limitation near the contact area of different objects [19]. In order to overcome
these limitations, active research is being conducted on methods that use geometric features
such as the normal vectors [18,20–22], as well as those that use features extracted from deep
learning models, such as pointNet [23]. Recently, deep learning models have been utilized
to conduct semantic segmentation into learned classes. Subsequently, these models label
any unlearned point cloud as clutter. While these methods classify structural elements
based on distinct geometric features, distinguishing elements with similar features, such as
walls and columns, remains challenging. Furthermore, removing indoor clutter objects that
have geometrical features similar to structural elements poses a significant challenge.

This study proposes an indoor clutter object removal method that works even when
the geometric features of indoor clutter objects are similar to those of structural elements.
Additionally, the proposed method can extract a representative line of structural elements
and identify indoor clutter objects and structural elements based on the Manhattan World
(MW) assumption. The study is based on the following two assumptions:

• Structural elements, such as columns and walls, are in contact with the floor and ceiling.
• Indoor clutter objects mainly exist on the floor and do not extend to the ceiling.

The proposed method was developed based on these two assumptions and the 2D pro-
jection approach. The method uses voxel-grid downsampling, DBSCAN, a statistical outlier
removal (SOR) filter, and an unsupervised radius-based nearest neighbor search algorithm.

2. Literature Review

The proposed method was developed based on a 2D projection approach of the point
cloud. In this section, the authors provide an overview of the literature on line-fitting-based
and feature-based methods.

2.1. Line-Fitting-Based Method

The following studies utilized the line-fitting-based method to extract structural ele-
ment lines. The RANSAC-based method is a model-fitting method that can perform well
in the presence of outliers [24]. It is particularly suitable for fitting 2D lines or planes of
structural elements from a point cloud. Babacan et al. [10] created various horizontal slices
based on the floor and ceiling to create as-built BIMs. The horizontal slice with the fewest
indoor clutter objects was selected for RANSAC application. The 2D line derived from
the structural elements was used in the as-built BIM. Pouraghdam et al. [15] selected the
horizontal slice intended for RANSAC applications 0.3 m below the ceiling. Gankhuyag
and Han [14] determined the z-coordinate of the floor and the ceiling to determine in-
door height. The horizontal slice for RANSAC application was then extracted from the
z-coordinate, which was estimated based on the multiplication of the threshold and the
indoor height.
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The RANSAC-based method is directly applicable to both horizontal slices and point
clouds. When applied to point clouds, the RANSAC-based method includes fitting the
plane of walls or columns as general structural elements. Previtali et al. [9] applied
RANSAC to a point cloud to fit the plane of structural elements, and the location of
the plane after fitting was used in as-built BIM modeling. Wang et al. [16] used RANSAC
to detect wall candidates from a point cloud. The detected wall candidate was used in the
line segment, and a 2D floor plan was created.

Several studies applied other line-fitting methods to obtain more accurate lines of
structural elements. Kim and Lee [25] applied a voxelization-based method to obtain
structural element lines. They utilized the horizontal slice between the floor and ceiling,
which is the most clutter-free slice. Martens and Blankenbach [26] adopted morphological
operations on the x–y plane of a point cloud to remove indoor noise. Wu et al. [27] devel-
oped a Modified Ring-Stepping Clustering (M-RSC) method to extract structural element
lines in complex indoor environments. However, their method involved a manual task
to remove indoor clutter object data. Macher et al. [28] applied the Maximum Likelihood
Estimation SAMple Consensus (MLESAC) method to extract structural element lines. After
that, the indoor clutter objects were removed from the structural element point that was
obtained from the structural element line.

The line-fitting-based method can generate a point cloud of structural elements and
2D floor plans, considering indoor clutter objects in the point cloud. Notably, the RANSAC-
based approach has been robustly employed to extract lines or planes of structural elements.
However, it struggles to accurately represent the thickness of inner walls or columns due to
the challenges in optimizing the right parameters. Furthermore, line-fitting-based methods
are required to select an appropriate horizontal slice. However, it is difficult to define the
appropriate horizontal slice that is least affected by the indoor clutter object data.

2.2. Feature-Based Method

The feature-based method was primarily developed for semantic segmentation, and
several studies have applied this approach to segment indoor point clouds. These methods
can be categorized into clustering-based methods and deep learning-based methods.

The clustering-based method segments targets, such as the structural elements and the
indoor object, and accounts for the indoor clutter objects using an approach that determines
the point cloud of the clutter aside from the target. For example, Yang and Wu [22] used
pointNet features to perform clustering-based segmentation of point clouds by applying
DBSCAN to two selected features. Yao et al. [29] applied supervoxel and DBSCAN to
remove the point cloud of the floor, while Chen et al. [19] proposed a new density-based
clustering method to segment indoor objects. Czerniawski et al. [18] determined the normal
vector from the point cloud and applied DBSCAN to the generated sparse normal space
to preserve indoor objects and remove planar elements. Stojanovic et al. [12] segmented
a point cloud based on the z-axis into three segments for the construction of an as-built
BIM and used the point cloud of the middle segment to create the floor plan. They applied
k-means clustering to the x–y plane to extract the structural elements. Romero-Jarén
and Arranz [30] proposed an automatic segmentation and classification method based on
geometric feature clustering. The indoor clutter was categorized into virtual other objects,
virtual objects on the floor, and virtual objects on the ceiling. The main approach of this
study was based on the fact that indoor clutter objects have non-planar characteristics.

The deep learning-based method is widely used for semantic segmentation of point
clouds. In general, these methods identify and learn the key structural elements or pri-
mary objects of interest. They can also classify any unlearned point cloud as clutter.
Park et al. [2] applied pointNet [23] for semantic segmentation, and Kim and Kim [31] ap-
plied DGCNN [32]. Perez-Perez et al. [33] developed their own model to apply scan-to-BIM.
Besides, other deep learning models such as RandLa-Net [34] and pointNet++ [35] have
recently been actively developed and applied to Scan-to-BIM research [36,37], segmenting
both structural elements and indoor clutter objects. However, the classification perfor-
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mance between objects with similar geometric features, such as walls and columns, is still
unsatisfactory. Therefore, if certain indoor clutter objects have similar geometric features
with structural elements, it would be difficult to clearly identify those indoor clutter objects
as clutter.

As the literature above mentions, the feature-based method is effective in utilizing
the geometrical features of the object to be preserved. However, they have limitations in
accurately determining indoor clutter objects that have similar geometrical features to the
structural elements. Also, they tend to create errors when the clutter objects are close to
the structural elements. Therefore, the authors believe that if the indoor clutter objects
are removed before the semantic segmentation task, it may lead to more accurate as-built
BIM modeling.

3. Methods
3.1. Method Overview and Assumptions

The proposed method was designed to efficiently eliminate indoor clutter objects from
the point cloud data obtained from a construction site. It is based on the assumptions that
the structural elements are connected from the floor to the ceiling and that indoor clutter
objects exist mostly on the floor and are not connected from the floor to the ceiling. The
proposed method used voxel-grid downsampling, DBSCAN clustering, and the SOR filter
to accurately identify and remove indoor clutter while preserving the structural elements
in the point cloud.

Figure 1 illustrates the framework of the proposed method, which consists of seven
steps (a to g). First, the proposed method receives an original point cloud as input data,
as shown in Figure 1a. Subsequently, the point cloud near the floor and the ceiling is
eliminated, as shown in Figure 1b. This is done to ensure that the method focuses on the
indoor clutter on the floor, as the structural elements are assumed to be connected from the
floor to the ceiling. The voxel-grid downsampling is then applied to generate a uniform
point-cloud density, as shown in Figure 1c. This process reduces the computational burden
and allows for faster processing. The x- and y-coordinates are then extracted from the point
cloud that was downsampled with the voxel grid, as shown in Figure 1d.
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Next, the extracted x- and y-coordinates of the structural element candidates are
clustered through DBSCAN, as shown in Figure 1e. DBSCAN is used to group the points
with similar spatial coordinates into clusters, which helps identify the structural elements.
The SOR filter is then applied to obtain more accurate structural element candidates, and
the indoor clutter objects are removed, as shown in Figure 1f. The SOR filter is used to
smooth the surface of the structural element candidates and remove the remaining noise
data. Finally, the obtained structural element candidates are used to search the structural
elements in the point cloud using an unsupervised radius-based nearest neighbor search
algorithm, as shown in Figure 1g. Once the voxel size is determined, the proposed method
operates automatically, except for the SOR filtering step. The parameters required for each
step are automatically determined based on the voxel size. The details of these steps are
explained in Section 3.2.

3.2. Removal of the Floor and Ceiling

The proposed method was developed based on the Manhattan World assumption.
According to the abovementioned assumptions, the histogram of the number of points
according to the z-coordinate of the point cloud shows a sharp rise near the floor and
ceiling, as seen in Figure 2a. However, there may be outdoor outliers of the target object
based on the z-axis. To consider these outliers, the proposed method uses the average
of the number of points based on the z-axis. This method automatically obtains the z-
coordinates of the floor and ceiling by following these steps: (1) determining the average
value of the number of points according to the z-coordinate; (2) preserving only the z-
coordinate that has a greater number of points than the average number of points, as
shown in Figure 2b; (3) distinguishing the low-ranking 30% and high-ranking 30% data
based on the z-coordinate from the preserved z-coordinate and number of points data; and
(4) determining the z-coordinates at which the number of points is maximized from the
low- and high-ranking 30% data as the floor and ceiling z-coordinates, respectively.
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The obtained floor and ceiling z-coordinates were used to remove the floor and ceiling.
For this purpose, the value that added 0.2 m to the floor’s z-coordinate (Z f loor) was defined
as Zmin (for the data intended to be preserved), as shown in Equation (1). In addition, the
value that subtracted 0.2 m from the ceiling’s z-coordinate (Zceiling) was defined as Zmax (for
the data intended to be preserved), as shown in Equation (2). Zmid was determined using
Equation (3), according to the determined Zmin and Zmax. The determined Zmin, Zmid, and
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Zmax were used to determine the parameters of the DBSCAN, SOR filter, and unsupervised
radius-based nearest neighbor search algorithm in conjunction with the voxel size (used in
the voxel-grid downsampling that will be performed subsequently). Figure 3 shows the
data from which the floor and the ceiling were removed based on the z-coordinate of the
determined Zmin and Zmax.

Zmin = Z f loor + 0.2 (1)

Zmax = Zceiling − 0.2 (2)

Zmid =
|Zmax − Zmin|

2
(3)
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3.3. Voxel-Grid Downsampling

The point density of a point cloud obtained by a three-dimensional (3D) scanner varies
depending on the distance between the scanner and the target of scanning. Objects that
are far from the 3D scanner have a lower point density, whereas objects that are close to
each other have a relatively higher point density. Meanwhile, the proposed method applies
DBSCAN based on the x- and y-coordinates of the point cloud. From the perspective of
DBSCAN operating on the x- and y-coordinates, the desired results cannot be obtained
if the point density of the point cloud is not uniform. Therefore, to apply the proposed
method, it is necessary for the point cloud to have a uniform point density. To achieve
this, the method uses voxel-grid downsampling. Voxel-grid downsampling creates a voxel
with a length equal to the previously defined voxel size, as shown in Figure 4. The voxel-
grid downsampling recreates the representative point located at the center of the voxel
instead of the points located inside the voxel. The voxel size was set to 0.05 m, which
was appropriate for reducing the weight of the point cloud while preserving the shapes of
the inner columns or the thickness of the inner wall. The authors utilized the voxel-grid
downsampling algorithm in Open3d (ver. 0.17.0).

3.4. Extraction of XY Coordinates from the Point Cloud between Zmid and Zmax

The x- and y-coordinates of the points to be used for DBSCAN are extracted between
Zmid and Zmax based on the z-axis. This is based on the second assumption in this study, that
indoor clutter objects mainly exist on the floor and do not extend to the ceiling. The purpose
of DBSCAN is to extract the x- and y-coordinates of the structural elements. Therefore, the
proposed method uses the x- and y-coordinates between Zmid and Zmax—which have a
small impact on the indoor clutter objects—to increase the efficiency of DBSCAN.
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Figure 4. Concept of voxel-grid downsampling in the Open3D library.

Figure 5a shows the x–y plane where the x- and y-coordinates are plotted from the
total point cloud between Zmin and Zmax. Figure 5b shows the x–y plane where the x- and
y-coordinates are plotted from the point cloud between Zmid and Zmax. It can be identified
that the indoor clutter objects are less prevalent in Figure 5b than in Figure 5a. Therefore,
the extraction of the x- and y-coordinates from the point cloud between Zmid and Zmax is
more efficient for DBSCAN.
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with voxel-grid downsampling. (a) Plot of the x–y plane with x- and y-coordinates extracted between
Zmin and Zmax; (b) plot of the x–y plane with x- and y-coordinates extracted between Zmid and Zmax.

3.5. DBSCAN

DBSCAN requires two parameters: min points and epsilon. In the proposed method,
the min points and epsilon are determined from the voxel size, Zmid, and Zmax. Figure 6
shows an example of the point arrangement of a wall downsampled to a voxel size of
0.05 m as an ideal case. The height of the input point cloud data was determined as the
difference between Zmid and Zmax, and the points were arranged at 0.05 m intervals. When
viewed from the top (x–y plane), a cluster is formed in which an integer number of points
divided by 0.05 m from the height of the input point cloud data gather at one point on the
x–y plane.



Appl. Sci. 2023, 13, 9636 8 of 18

Appl. Sci. 2023, 13, 9636 8 of 18 
 

m as an ideal case. The height of the input point cloud data was determined as the differ-
ence between 𝑍௠௜ௗ and 𝑍௠௔௫, and the points were arranged at 0.05 m intervals. When 
viewed from the top (x–y plane), a cluster is formed in which an integer number of points 
divided by 0.05 m from the height of the input point cloud data gather at one point on the 
x–y plane. 

Therefore, the ideal epsilon value of DBSCAN operating in the 2D projection x–y 
plane was set to 0.05 m, which is the same as the voxel size in the proposed method, as 
shown in Equation (4). The ideal min point value was an integer value that eliminated the 
decimal point of the value after the division of the height of the input data (arranged in 
0.05 intervals). In this study, the authors used an integer value obtained by subtracting 
two from the ideal min point value to account for possible omitted points, as shown in 
Equation (5). This approach allows for a more robust clustering result, even when some 
points may be missing from the data. Figure 7 shows the results following the use of the 
min points and the epsilon determined based on the height of the input data and the voxel 
size. The red points in Figure 7 indicate the data determined to be outlier points, and the 
black points include the core points and border points. The proposed method defines the 
structural element candidates as the core points and border points, which are the result of 
DBSCAN. The authors utilized DBSCAN algorithm in scikit-learn library (ver. 1.2.0). 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ൌ 𝑣𝑜𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 (4)

min 𝑝𝑜𝑖𝑛𝑡𝑠 ൌ ⌊|𝑍௠௔௫ െ 𝑍௠௜ௗ|𝑣𝑜𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 ⌋ െ 2 (5)

 
Figure 6. Example of point arrangement of two-dimensional (2D) density-based spatial clustering 
of applications with noise (DBSCAN) input data and top views of real scan data. 

 
Figure 7. DBSCAN results of the proposed method. 

Figure 6. Example of point arrangement of two-dimensional (2D) density-based spatial clustering of
applications with noise (DBSCAN) input data and top views of real scan data.

Therefore, the ideal epsilon value of DBSCAN operating in the 2D projection x–y
plane was set to 0.05 m, which is the same as the voxel size in the proposed method, as
shown in Equation (4). The ideal min point value was an integer value that eliminated the
decimal point of the value after the division of the height of the input data (arranged in
0.05 intervals). In this study, the authors used an integer value obtained by subtracting
two from the ideal min point value to account for possible omitted points, as shown in
Equation (5). This approach allows for a more robust clustering result, even when some
points may be missing from the data. Figure 7 shows the results following the use of the
min points and the epsilon determined based on the height of the input data and the voxel
size. The red points in Figure 7 indicate the data determined to be outlier points, and the
black points include the core points and border points. The proposed method defines the
structural element candidates as the core points and border points, which are the result of
DBSCAN. The authors utilized DBSCAN algorithm in scikit-learn library (ver. 1.2.0).

epsilon = voxel size (4)

minpoints =
⌊
|Zmax − Zmid|

voxel size

⌋
− 2 (5)
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3.6. SOR Filter

The structural element candidates obtained from DBSCAN include the locations of
structural elements, such as walls or columns, on the x–y plane. However, the points of
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indoor clutter objects may remain. If these coordinates are used to search the point cloud of
structural elements, which is used subsequently, it could result in errors associated with the
determination of the structural elements as indoor clutter objects. Therefore, it is necessary
to remove the x- and y-coordinates of indoor clutter objects. To achieve this, the proposed
method used the SOR filter in Cloudcompare (v2.1.2). The SOR filter eliminates noise data
based on the maximum distance, which is determined according to the standard deviation
multiplier threshold (sT ) to estimate the outlier and the number of points (k), which is used
to calculate the average distance (δ) and standard deviation (σ), as shown in Equation (6).

max distance = δ + sT × σ (6)

In the proposed method, the value of k for the SOR filter is set to the number of min
points obtained from DBSCAN. Additionally, sT is set to 0.1 considering a voxel size of
0.05 m. Figure 8a shows the structural element candidates before applying the SOR filter,
and Figure 8b shows the results after applying the SOR filter.
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3.7. Unsupervised Radius-Based Nearest Neighbor Search Algorithm

The refined structural element candidates obtained through SOR filtering were used
to identify structural elements within the original point cloud. However, these structural
element candidates do not directly correspond to the original point cloud due to the
application of voxel-grid downsampling. To address this issue, nearest neighbor search
algorithms such as unsupervised k-nearest neighbor search and unsupervised radius-
based nearest neighbor search can be employed. In this study, the authors applied the
unsupervised radius-based nearest neighbor search algorithm, which could determine the
radius value based on the voxel size, as the setting for the k value in k-nearest neighbor
was unclear. The radius value was set at 0.1 m, taking into consideration the voxel size
of 0.05 m.

To ensure the effective operation of the unsupervised radius-based nearest neighbor
search algorithm, a data structuring method must be selected. Popular options for data
structuring include KD-tree and ball-tree, which can significantly reduce computational
costs for nearest neighbor search. In this study, the results obtained from applying KD-
tree and ball-tree to the original point cloud (52,150,674 points) and the downsampled
point cloud (106,391 points) were compared. The comparison results are summarized in
Table 1. When applied to the original point cloud, the ball-tree method took 1 min and
48 s, while the KD-tree method took 2 min and 11 s. Furthermore, when applied to the
downsampled point cloud, the ball-tree method took 0.2 s, while the KD-tree method took
0.4 s. Consequently, this study employed the unsupervised radius-based nearest neighbor
search algorithm using the ball-tree method for the exploration of structural elements within
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the original point cloud. Figure 9 shows the results of classifying indoor clutter objects
and structural elements based on the proposed method. The authors utilized scikit-learn
library (ver. 1.2.0).

Table 1. Comparison of KD-tree and ball-tree methods for the unsupervised radius-based nearest
neighbor search algorithm (radius = 0.1 m).

Data Structuring Method Original Point Cloud
(52,150,674 Points)

Downsampled Point Cloud
(106,391 Points)

KD-tree 2 m 11 s 0.4 s
Ball-tree 1 m 48 s 0.2 s
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unsupervised radius-based nearest neighbor search algorithm (red points: structural elements; blue
points: indoor clutter objects).

4. Experiments
4.1. Experimental Data

To perform a comprehensive performance evaluation of the proposed method, six
actual scan datasets were used in this study. Four of these datasets were point cloud data
obtained from the parking lot, basement, and apartments 1 and 2 of an apartment complex
construction site. The remaining two datasets were point cloud data obtained from lecture
rooms 1 and 2 at Inha University. Figure 10 shows the six experimental datasets after
voxel-grid downsampling and removal of floors and ceilings. Detailed descriptions of these
datasets can be found in Table 2.

Table 2. Details of datasets used in this study.

Dataset Initial Number of
Points (Size)

Downsampled Points
(Size)

Volume Size of Point
Cloud (m) Indoor Complexity

Parking lot 158,575,772 (6.3 GB) 877,184 (10.0 MB) 100.5 × 52.6 × 2.2 high

Basement 16,518,293 (0.7 GB) 333,587 (3.8 MB) 26.3 × 21.6 × 2.5 low

Apartment 1 121,652,038 (3.9 GB) 149,896 (1.7 MB) 10.2 × 16.7 × 2.3 low

Apartment 2 52,150,675 (1.4 GB) 106,391 (1.2 MB) 15.4 × 9.9 × 2.3 low

Lecture room 1 22,082,415 (0.7 GB) 65,027 (0.8 MB) 12.6 × 7.7 × 2.2 high

Lecture room 2 43,856,412 (1.4 GB) 116,533 (1.9 MB) 12.6 × 15.5 × 3.3 high
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4.2. Performance Evaluation and Metrics

To evaluate the proposed method’s performance appropriately, this study applied
voxel-grid downsampling and removed the floor and ceiling from the point cloud data.
The ground truth data was manually labelled and classified into structural elements and
indoor clutter objects. The red points indicate the structural elements, while the blue points
indicate indoor clutter objects. This study compared the ground truth labels with the
results of classifying the six experimental datasets into structural elements and indoor
clutter objects using the proposed method.

Moreover, the proposed method’s performance was compared with the Auto-Classify
Indoor function of commercial point cloud processing software. Auto-Classify Indoor auto-
matically classifies the point cloud into indoor elements, including walls, floors, ceilings,
and other remaining parts, using feature-based methods. The performance of the proposed
method was evaluated using metrics such as accuracy, precision, recall, and F1 score. These
metrics are calculated based on the values from the confusion matrix. True Positive (TP)
refers to the test results correctly identified as structural elements. True Negative (TN)
refers to the test results correctly identified as non-structural elements. False Positive (FP)
refers to the test results incorrectly identified as structural elements. False Negative (FN)
refers to the test results incorrectly identified as non-structural elements. Each metric is
calculated according to Equations (7)–(10).

Accuracy =
TP + TN

TP + FN + FP + TN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 score =
2× Precision× Recall

Precision + Recall
(10)
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4.3. Experimental Results

All experiments were performed on a PC running Windows 10, equipped with an
AMD Ryzen 9 5900X 12-Core Processor running at 3.70 GHz and 64 GB of RAM. This
study aimed to classify the six datasets described in Figure 10 and Table 2 into structural
elements and indoor clutter objects for removing indoor clutter objects in the point cloud.
Figure 11 displays the ground truth and classification results of the structural elements
and indoor clutter objects of the six datasets using the proposed method. The results of
the ground truth-based accuracy, precision, recall, and F1 score are summarized in Table 3.
The proposed method based on the six datasets achieved an average accuracy of 0.94, an
average precision of 0.97, an average recall of 0.90, and an average F1 score of 0.94. Table 4
presents the classification results of the experimental data into structural elements and
indoor clutter objects using the Auto-Classify Indoor function of commercial software.
Table 5 presents the processing times of the proposed method for each dataset. The times
were calculated except for the SOR filter step because it is manually performed. As observed
in our experiments, the SOR filter step required a time of 1 to 2 s for its operation using
commercialized software. Therefore, the times listed in Table 5 satisfactorily represent the
time needed for the operation of the proposed method. Figure 12 presents a graph that
compares the average performance of the proposed method and the Auto-Classify Indoor
function of commercial software.

Table 3. Performance outcomes of the proposed method.

Dataset Accuracy Precision Recall F1 Score

Parking lot 0.98 0.98 0.97 0.98
Basement 0.93 0.88 0.89 0.88

Apartment 1 0.96 0.99 0.97 0.98
Apartment 2 0.94 0.99 0.86 0.92

Lecture room 1 0.90 0.97 0.83 0.89
Lecture room 2 0.94 0.99 0.86 0.92

Average performance 0.94 0.97 0.90 0.93

Table 4. Performance outcomes of the Auto-Classify Indoor function of commercial software.

Dataset Accuracy Precision Recall F1 Score

Parking lot 0.86 0.93 0.73 0.81
Basement 0.78 0.62 0.80 0.70

Apartment 1 0.74 0.98 0.75 0.85
Apartment 2 0.79 0.82 0.87 0.84

Lecture room 1 0.90 0.98 0.84 0.91
Lecture room 2 0.97 0.95 0.97 0.96

Average performance 0.84 0.88 0.83 0.85

Table 5. Time taken to run the proposed methodology for each dataset.

Dataset Time (s)

Parking lot 300.3
Basement 38.2

Apartment 1 171.6
Apartment 2 65.3

Lecture room 1 28.2
Lecture room 2 62.4
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4.4. Discussion

The experimental results classified the structural elements and the indoor clutter of
the six datasets with an average accuracy of 0.94, an average precision of 0.97, an average
recall of 0.90, and an average F1 score of 0.93. In addition, the proposed method yielded
improved performances for all evaluation metrics in comparison to the Auto-Classify
Indoor function of the commercial software, as shown in Figure 12. In particular, all the
metrics from the parking lot dataset and the apartment 1 dataset were 0.96 or higher. The
improved performance of the apartment 1 dataset was attributed to the set’s relatively low
indoor complexity. Meanwhile, improved performance was observed in the case of the
parking lot’s dataset (among all datasets), despite its high indoor complexity.

The proposed method yielded higher performance than the feature-based Auto-
Classify Indoor function; this can be explained using Figure 13. Figure 13a shows the
point cloud that is classified into the indoor Auto-Classify function and the structural
elements, and Figure 13b is the actual target object. The highlighted area of Figure 13b is
where the plasterboard was loaded on the floor. Therefore, it is appropriate to remove the
plasterboard as indoor clutter objects. However, the point cloud of the plasterboard in the
Auto-Classify Indoor function has vertical geometrical features, such as the wall, and it has
therefore been classified as structural elements. Thus, the proposed method can operate
powerfully even for indoor clutter objects with geometrical features similar to those of the
structural elements.

The advantages of the proposed method were summarized above; however, it did
not perform outstandingly in all experimental datasets. In particular, the results from
datasets from lecture rooms 1 and 2 exhibited high performances in the case of the Auto-
Classify Indoor function, but by a narrow margin. This was because the proposed method
performed weakly near the window and the door, as shown in Figure 14. The proposed
method was developed based on a 2D projection approach. The point cloud obtained from
the window is unstable, and the points of the structural elements that exist above the door
can be classified as indoor clutter in the DBSCAN of the proposed method. The authors
reviewed the experimental results of the proposed method and found that most errors
occurred at the upper part of the window and the door. Therefore, it is expected that an



Appl. Sci. 2023, 13, 9636 15 of 18

improvement in these limitations in the future could remove the indoor clutter objects
more accurately.

Appl. Sci. 2023, 13, 9636 15 of 18 
 

and Figure 13b is the actual target object. The highlighted area of Figure 13b is where the 
plasterboard was loaded on the floor. Therefore, it is appropriate to remove the plaster-
board as indoor clutter objects. However, the point cloud of the plasterboard in the Auto-
Classify Indoor function has vertical geometrical features, such as the wall, and it has 
therefore been classified as structural elements. Thus, the proposed method can operate 
powerfully even for indoor clutter objects with geometrical features similar to those of the 
structural elements. 

  
(a) (b) 

Figure 13. Comparison of images of the apartment 2 dataset and the actual target object. (a) Point 
cloud data that Auto-Classify Indoor function classified as structural elements; (b) photograph of an 
actual target object. 

The advantages of the proposed method were summarized above; however, it did 
not perform outstandingly in all experimental datasets. In particular, the results from da-
tasets from lecture rooms 1 and 2 exhibited high performances in the case of the Auto-
Classify Indoor function, but by a narrow margin. This was because the proposed method 
performed weakly near the window and the door, as shown in Figure 14. The proposed 
method was developed based on a 2D projection approach. The point cloud obtained from 
the window is unstable, and the points of the structural elements that exist above the door 
can be classified as indoor clutter in the DBSCAN of the proposed method. The authors 
reviewed the experimental results of the proposed method and found that most errors 
occurred at the upper part of the window and the door. Therefore, it is expected that an 
improvement in these limitations in the future could remove the indoor clutter objects 
more accurately. 

  
(a) (b) 

Figure 14. Examples of erroneous classifications of the point cloud at the window and door. (a) Point 
cloud classification results near the door of lecture room 2; (b) point cloud classification results near 
the windows of apartment 2 (red points: structural elements; cyan points: indoor clutter objects). 

Figure 13. Comparison of images of the apartment 2 dataset and the actual target object. (a) Point
cloud data that Auto-Classify Indoor function classified as structural elements; (b) photograph of an
actual target object.

Appl. Sci. 2023, 13, 9636 15 of 18 
 

and Figure 13b is the actual target object. The highlighted area of Figure 13b is where the 
plasterboard was loaded on the floor. Therefore, it is appropriate to remove the plaster-
board as indoor clutter objects. However, the point cloud of the plasterboard in the Auto-
Classify Indoor function has vertical geometrical features, such as the wall, and it has 
therefore been classified as structural elements. Thus, the proposed method can operate 
powerfully even for indoor clutter objects with geometrical features similar to those of the 
structural elements. 

  
(a) (b) 

Figure 13. Comparison of images of the apartment 2 dataset and the actual target object. (a) Point 
cloud data that Auto-Classify Indoor function classified as structural elements; (b) photograph of an 
actual target object. 

The advantages of the proposed method were summarized above; however, it did 
not perform outstandingly in all experimental datasets. In particular, the results from da-
tasets from lecture rooms 1 and 2 exhibited high performances in the case of the Auto-
Classify Indoor function, but by a narrow margin. This was because the proposed method 
performed weakly near the window and the door, as shown in Figure 14. The proposed 
method was developed based on a 2D projection approach. The point cloud obtained from 
the window is unstable, and the points of the structural elements that exist above the door 
can be classified as indoor clutter in the DBSCAN of the proposed method. The authors 
reviewed the experimental results of the proposed method and found that most errors 
occurred at the upper part of the window and the door. Therefore, it is expected that an 
improvement in these limitations in the future could remove the indoor clutter objects 
more accurately. 

  
(a) (b) 

Figure 14. Examples of erroneous classifications of the point cloud at the window and door. (a) Point 
cloud classification results near the door of lecture room 2; (b) point cloud classification results near 
the windows of apartment 2 (red points: structural elements; cyan points: indoor clutter objects). 

Figure 14. Examples of erroneous classifications of the point cloud at the window and door. (a) Point
cloud classification results near the door of lecture room 2; (b) point cloud classification results near
the windows of apartment 2 (red points: structural elements; cyan points: indoor clutter objects).

5. Conclusions

In this study, the authors proposed a novel method to determine the indoor clutter
objects based on the assumptions that (a) the structural elements stretched from the floor
to the ceiling and (b) the indoor clutter objects existed on the floor and did not stretch to
the ceiling. The proposed method includes the removal of the floor and ceiling, voxel-
grid downsampling, DBSCAN, SOR filter application, and an unsupervised radius-based
nearest neighbor search algorithm.

The experiment with the six scan datasets from actual sites showed higher accuracy,
precision, recall, and F1 scores than conventional methods in identifying indoor clutter
objects. Specifically, the proposed method achieved an accuracy of 0.94, a precision of
0.97, a recall of 0.90, and an F1 score of 0.94. When compared to the Auto-Classify Indoor
function of commercial point-cloud processing software, the proposed method showed
higher performances by 0.10, 0.09, 0.07, and 0.09 in terms of accuracy, precision, recall, and
F1 score, respectively.

The contributions of this study are as follows:
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• The proposed method can accurately determine and remove indoor clutter objects
with higher performance than commercial software;

• The proposed method can extract an appropriate x–y plane that represents structural
elements, including inner walls and columns;

• The proposed method can identify indoor clutter objects among objects with similar
geometrical features to structural elements;

• The parameters of DBSCAN, the SOR filter, and the unsupervised radius-based nearest
neighbor search algorithm used in the proposed method are automatically determined
by the voxel size.

However, the proposed method has some limitations in accurately determining the
structural elements near windows and doors. In the future, the authors plan to improve
this method to more accurately determine the structural elements at all locations, including
regions near windows and doors. Furthermore, we will also consider pipes that are installed
horizontally. The authors will adopt the proposed method in the Scan-to-BIM process to
improve point cloud semantic segmentation results. The proposed method has the potential
to be applied in various fields, such as architecture, civil engineering, and interior design.
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