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Abstract: Body weight support (BWS) and incline running (IR) are commonly used either during
rehabilitation or during training separately, with many positive effects on athletes’ performance and
rehabilitation. The aim of the present study was to investigate the interaction between bodyweight
support and incline running on the electromyographic activity of the triceps surae and compare it
to flat running. In eighteen healthy men (age: 20.3 ± 1.2 years, body weight: 70.2 ± 4.8 kg, body
height: 179.6 ± 5.4 cm), the changes in electromyographic activity (EMGA) during a 10 min run
with BWS (15% or 30% of body weight; in different occasions) and IR at 7%, as well as jumping
performance and gait spatiotemporal parameters, were evaluated. A lower Rating of Perceived
Exertion and a significant decrease in the size of the Vastus Lateralis (VL) (33.4%), Soleus (SOL)
(17%), and Gastrocnemius Lateralis (GL) EMGA (28.5%, p < 0.05) but not in Gastrocnemius Medialis
(GM) (10.5%, p > 0.05), was observed during BWS30% at 7% slope compared to flat running. Also,
low-frequency fatigue of the quadriceps was induced only after running without BWS on a 7% slope
(p = 0.011). No changes were found in jumping performance (p = 0.246) and gait spatiotemporal
parameters (p > 0.05) except for flight time (p < 0.006). In conclusion, running with a slope of 7%
and 30% of BWS can result in EMG activity comparable to that observed during level running. This
method can also be used in prevention and rehabilitation training programs without creating fatigue.

Keywords: injury prevention; body weight support; electromyography; fatigue; slope; uphill running

1. Introduction

The lower body is an essential component in performance in most sports; however,
the calf is the most injured part of the lower body [1,2], and Achilles Tendon rupture
cases seem to keep increasing despite enhancements in knowledge and research [3]. Based
on injury prevention and rehabilitation recommendations, the training load should be
increased progressively while working with longer contractions to lead to better tendinous
adaptations [4].

Along with rehabilitation recommendations, IR allows the longer contraction of the
triceps surae due to an increased amplitude of movement. In addition, IR leads to a lesser
reduction in the ankle range of motion compared to level running and can reduce the risk of
tendinopathy [5,6]. At the same time, as the passive eccentric and active concentric phases
of the muscle are amplified during IR, with the increases in the slope, muscle work is
increased [7,8]. Finally, as EMGA depends on contraction intensity, increasing IR increases
EMGA [9]. EMGA is increased by greater motor drive and motor unit recruitment. As
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a result, it optimizes contractions by creating more tension on the muscle fiber and can,
therefore, improve the rehabilitation process. However, tendinopathy can also occur with
repeated overloading on the tendinous–muscular system [5]. As IR increases the intensity
of contraction, noticeable by the increase in EMGA of the lower limb, it could potentially
cause repetitive overload. Nevertheless, IR is not easily accessible at an early stage of
rehabilitation, and it is well established that early mobilization of the injured limb is crucial
for a quick and successful rehabilitation program [10,11]. It is necessary to find a way to
allow injured athletes to run on an incline slope as soon as possible. Therefore, the use of
BWS in IR is a way to prevent injury.

Among the methods/types of equipment that are commonly used among physiother-
apists and rehabilitation trainers during a rehabilitation program for the lower limbs are
BWS treadmills, which are capable of reducing the active body weight of the patients dur-
ing a rehabilitation program; thus, they help to unload lower extremities while the patient
is walking or running on a treadmill. This type of training is mainly used in non-healthy
populations, like Spastic Paretic [12] or Post-Stroke patients [13–15], or in patients with
Spinal Cord Injury [16,17] or even with Parkinson’s disease [18]. However, BWS seems to
favor rehabilitation, even in athletic populations. Indeed, even if walking and running are
essential stimuli during athletes’ rehabilitation programs, they can also traumatize joints
and muscles because injured athletes show greater vertical impact and impact loading,
with the latter being one of the principal components that may affect the success or failure
of a lower-limb rehabilitation program [19]. Thus, BWS reduces the ground forces the
injured athlete produces during running and avoids exacerbating the injury [20]. However,
until now, the data about the effectiveness of BWS have been controversial. It seems that
BWS does not reduce the total rehabilitation time significantly but allowed patients to run
2 weeks before a control group in Achilles tendon rehabilitation [21]. Also, for anterior
cruciate ligament reconstruction rehabilitation, using BWS is significantly more efficient
than standard rehabilitation at 12 weeks follow-up but not at 24 weeks [22]. Moreover, after
a 6-week speed-training program, no differences were found between standard training
and BWS training; only a decrease in injury was found for BWS training (66% against
8%) [23]. Furthermore, during a BWS running training program, EMGA decreased [17,24].
With body support ranging between 10% and 40% of the patient’s body weight, a decreased
EMGA of the triceps surae was observed [24], a reduction which seemed to be more pro-
nounced in the GM and GL than SOL [25], which may lead to the variable effectiveness
of BWS.

According to the above, it seems that BWS and IR, separately, can significantly affect
the success of a rehabilitation program for the lower extremities, with each one providing
different and necessary physiological stimuli to the injured athlete. However, neither can
provide all the needed neuromuscular stimuli. On a cardiorespiratory level, it has been
shown that a 7% incline with 30% BWS caused similar oxygen consumption and heart
rate to the unsupported, level condition. However, the perceived intensity of this incline
with BWS was greater than the unsupported condition [26]. Athletes can maintain training
intensity while running on a bodyweight-supporting treadmill by introducing an incline.
So, is it possible to combine the benefit of BWS and IR on the triceps surae? In theory, the
simultaneous use of BWS and IR during a rehabilitation program could allow the benefits of
longer muscle contraction (and a better tendinous adaptation) and earlier access to running.
These two factors combined may lead to a faster time to return to sport.

However, at least to our knowledge, this has never been investigated until now. Thus,
the aim of the present study was to investigate the interaction between BWS and IR on the
EMGA of the triceps surae and compare it to flat running. It was hypothesized that running
with a positive slope and 30% of BWS could result in EMGA comparable to level running.
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2. Materials and Methods
2.1. Experimental Design

All participants performed all four experimental conditions on different days, with
7-day rest intervals between them. The order of the four training sessions was randomized:
(1) level running and without BWS (IR0BWS0), (2) incline running at 7% and 0% of BWS
(IR7BWS0), (3) incline running at 7% and 15% of BWS (IR7BWS15), and (4) incline running
at 7% and 30% of BWS (IR7BWS30). During each trial, the electromyographic activity of
the VL, GL, GM, and SOL was evaluated. At the same time, before and after 2 min, first the
jumping performance and then the low-frequency fatigue of the right quadriceps muscles
were assessed. All procedures were in accordance with the Declaration of Helsinki and
approved by the local university ethics committee (CERUBFC-2021-11-23-041), while all
participants signed a written informed consent before entering the research procedure.

2.2. Subjects

Eighteen healthy men participated in this study (age: 20.3 ± 1.2 years old, body weight:
70.2 ± 4.8 kg, size: 179.6 ± 5.4 cm). Participants were recruited from the Sports Department
of the University of Dijon. Each participant had exercised an average of 6 h of sport/week
for a year. For inclusion, the participant needed to be clear of any lower-limb injury within
6 months before the experiment. Subjects were asked to have similar activity levels the day
before each session.

2.3. Procedures and Running Trials

Each training session started with a 4 min warm-up at their preferred pace on a bicycle
(CMVC20; Laroq, La-Roque, PACA, France) followed by a 3 min run on the Harness Base
Body Weight Support Treadmill (Airwalk ap; H/P/Cosmos, Nussdorf, BE, Germany) at
8 km/h and 0% incline with the BWS Treadmill harness on them. Then, each participant
was equipped on the right leg with an EMG captor device. The running sessions lasted
10 min, and the spatiotemporal gait parameters collected using two 1 m OptoJump strips
(Optojump; Microgate, Bolzano, Italy) (1000 Hz) consisting of a single transmitting bar and
receiving bar positioned on the side bars of a treadmill, which were flush with the treadmill
belt (Figure 1). Contact time, flight time, and step frequency were taken during 30 s intervals
at 1, 5, and 9 min. A Borg CR10 scale was used to evaluate the rate of perceived exertion
(RPE) at the 5th, 7th, and 10th minute of each running trial. Before each trial, participants’
body weights were evaluated. Two types of BWS protocols are commonly used, a 15%
and 30% body weight reduction. Indeed, the running pattern and EMGA of the trunk are
altered by 40% of the BWS [27], which is irrelevant to this study. On the other hand, 15% to
30% of BWS seemed sufficient for a rehabilitation program [28,29]. The IR was set at 7% of
the slope; the internal work was increased after more than 5% [30], and the EMGA of the
triceps surae was increased at 7% of slope [9]. Furthermore, it is recommended not to run
beyond 7 to 10% slope without modifying the running pattern [31,32].

2.4. Evaluations of Jumping Performance

Before and 2 min after each running trial, participants performed 2 Counter Movement
Jumps (CMJs) on two force platforms (Kforce Plates, Kinvent, Montpellier, France, 600 kg
weighting plateform, 320 × 160 × 30 mm, sampling frequency 2.4 Ghz) with 30 s rest
between trials. Maximum jump height was assessed using Kforce software, by measuring
flight time and then calculating maximum height. Analysis was made with the best
jump height.
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Figure 1. Harness Base Body Weight Support Treadmill (Airwalk ap; H/P/Cosmos, Nussdorf, BE,
Germany) with (Optojump; Microgate, Bolzano, Italy).

2.5. Evaluation of Low-Frequency Fatigue

Low-Frequency Fatigue (LFF) was assessed using the recommendation of Myocène®,
as demonstrated in a recent study [33]. The right leg is set in a force sensor (recording rate
at 4 kHz). Evoked forces were assessed with muscle electrical stimulation (width of 400 µs,
three series of stimuli; 1—a single pulse, 2—low-frequency train at 20 Hz, and 3—high-
frequency train 120 Hz) and applied with three electrodes (MyoPro-1-electrodes, Myocene,
Liège, Belgium). Within 2 min, 16 sets of pulses were performed with 5 s interval in-
between, with the stimulation intensity increased each set by 1 mA (From 25 mA to 40 mA).
Anodes (5 × 5 cm) were placed over the vastus lateralis and medialis. In addition, a cathode
(5 × 10 cm) was placed on the proximal portion of the rectus femoris (transversely). The
Myocène® system integrates an algorithm instantaneously calculating the LFF. Calculations
were made at each set, and the median values of all ratios were given by the software and,
therefore, used in our analysis.

2.6. Electromyographic Activity

The EMGA of the VL, Gastrocnemius Lateralis (GL), Gastrocnemius Medialis (GM),
and SOL were taken on the right leg. The participant’s skin was prepared following
Seniam recommendations (i.e., shave the skin, clean with alcohol, and waiting for dry
skin). Surface electrodes were placed as recommended by Barbero et al. [34]. Muscle
activities were recorded with BioNomadix 2CH Wireless EMG transmitter system from
Biopac system inc. (BN-EMG2-T) and rectangular-surface Ag/AgCl electrodes (3M Health
Care). The raw EMG of the four steps from a participant during IR0BWS0 is shown in
Figure 2.
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Figure 2. Raw EMG of four steps from a participant during IR0BWS0. VL: Vastus Lateralis, GL:
Gastrocnemius Lateralis, SOL: Soleus, GM: Gastrocnemius Lateralis.

Each participant realized a 30 s run before the experimental run at 10 km/h and 0% IR
for normalization. All EMGA data were analyzed with the mean root-mean-square (mRMS;
length 200 ms, 20 samples, 1 point overlapping). The mRMSs of the experimental run were
divided into 3 intervals of 200 s (total of 10 mins) and were evaluated as a percentage of the
30 s normalization run. Data were analyzed with Acqknowledge 4.2. Each recording was
collected at 2 kHz, and bandlimited from 5.0 Hz to 500 Hz.

2.7. Statistical Analysis

All data are presented as the mean and standard deviation (±SD). All data followed
a normal distribution (Shapiro–Wilk test), and sphericity was respected except for RPE
and mRMS; a Greenhouse-Geisser (GL) correction was then applied. A two-way repeated
analysis of variance (ANOVA; Bonferroni Post Hoc) was performed to analyze the results
of the different variables (Condition, Time, Condition × Time). The variable Time was
composed of three periods of 200 s: from the onset to 200 s (3.3 min), from 200 s to 400 s
(6.6 min), and from 400 s to the end (10 min). Also, group-sized effects were calculated
with Cohen’s d (0.2–0.5, small; 0.5–0.8, medium; >0.8, large effect). Statistical analyses
were performed with JASP (JASP Team, 2021—Version 0.16). p ≤ 0.05 was used as a level
of significance.

3. Results

Muscle Activity. The mean mRMS of each condition is represented in Figure 3, and
the percentage of EMG compared to the normalized run is shown in Table 1.

For GL, the ANOVA has showed significative differences between conditions (F (1.573,
12.580) = 4.114, p = 0.015, ηp2 = 0.340), represented in Figure 3. A large effect size was found
between IR0BWS0 and IR7BWS0 (p = 0.085, d = −0.882). Significant differences in Time
were found between each three moments (F (1.690, 13.523) = 28.532, p < 0.001, ηp2 = 0.781).
EMGA keeps decreasing with time; EMGA from the last 200 s is inferior to the second one
(p < 0.022), and both are inferior to the first 200 s (p < 0.001). No interaction was found
(F (6, 48) = 0.985, p = 0.446, ηp2 = 0.110).

For SOL, significant differences between conditions were found (F (3, 21) = 5.131,
p = 0.008, ηp2 = 0.423), presented in Figure 3. A group effect size was shown between
IR0BWS0 and IR7BWS0 (p = 0.103, Large, d = 0.916) and between IR7BWS0 and IR7BWS15
(p = 0.303, Medium, d = 0.734). Significant differences in Time were found (F (2, 14) = 58.71,
p < 0.001, ηp2 = 0.893); for the GL, the EMGA from the last 200 s was inferior to the second
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one (p < 0.007), and both were inferior to the first 200 s (p < 0.001). No interaction was
found between Condition and Time (F (6, 42) = 0.852, p = 0.538, ηp2 = 0.109).
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Figure 3. Modification in EMG activity in percentage of control run (level running). * Means
significant difference (p < 0.05). Level running without BWS (IR0BWS0), incline running at 7% and
0% of BWS (IR7BWS0), incline running at 7% and 15% of BWS (IR7BWS15), incline running at 7%
and 30% of BWS (IR7BWS30).

Table 1. Values of percentage of EMG activity compared to 30 s run (reference). Level running
without BWS (IR0BWS0), incline running at 7% and 0% of BWS (IR7BWS0), incline running at 7%
and 15% of BWS (IR7BWS15), incline running at 7% and 30% of BWS (IR7BWS30).

IR0BWS0 IR7BWS0 IR7BWS15 IR7BWS30

VL 0.8% 12.9% −0.6% −20.5%
GL −5.5% 18.1% −11.3% −10.5%

SOL −4.6% 6.2% 0.6% −10.8%
GM −4.3% 11.7% −2.1% 1.1%

For GM, the ANOVA showed significant differences between conditions (F (3, 24) = 4.106,
p = 0.017, ηp2 = 0.339), as shown in Figure 3. A group effect size was found between IR7BWS0
and IR7BWS15 (p = 0.07, large, d = 0.849). Significant differences in Time were found (F (1.129,
9.030) = 8.956, p = 0.013, ηp2 = 0.528); EMGA of the first 200 s was significantly superior
compared to the 2nd and 3rd periods of 200 s (p < 0.001). However, no significant interaction
was found (F (1.401, 11.210) = 0.739, p = 0.453, ηp2 = 0.085).

For VL, significant differences between conditions were found (F (3, 15) = 14,588,
p < 0.001, ηp2 = 0.745), as presented in Figure 3. The ANOVA did not reveal any significant
differences for Time (F (2, 10) = 2.021 p = 0.183, ηp2 = 0.288) and the interaction between
Condition and Time (F (6, 30) = 0.735, p = 0.626, ηp2 = 0.128).
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Rating of Perceived Exertion. All results are shown in Figure 4. Our results show
significant differences between Condition (F (3, 33) = 28.738, p < 0.001, ηp2 = 0.723),
but not between IR0BWS0 and IR7BWS30 (p = 0.079). Significant differences in Time
(F (1.113, 22) = 32.759, p < 0.001, ηp2 = 0.749), and in the interaction between Condition
and Time (F (3.259, 66) = 5.427, p = 0.003, ηp2 = 0.330) were found. The interaction between
condition and Time showed no significant differences between IR0BWS0 and IR7BWS30
between the different time periods (At 5 min, p = 1.00; at 7 min, p = 0.625, and at 10 min,
p = 0.625).
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Figure 4. Effect of Time on RPE during the 10 min run. The standard deviation displayed only in the
positive or negative for clarity. * Means significant difference (p < 0.05). † Means significant difference
between IR7BWS0 and IR7BWS15. Level running without BWS (IR0BWS0), incline running at 7%
and 0% of BWS (IR7BWS0), incline running at 7% and 15% of BWS (IR7BWS15), incline running at 7%
and 30% of BWS (IR7BWS30).

Jumping performance. Running at 10 km/h for 10 min did not affect peak jump height
for all conditions (F (3, 33) = 1.451 p = 0.246, ηp2 = 0.117).

LFF. The post values were significantly inferior to the Pre values (F (1, 8) = 8.788,
p < 0.018, ηp2 = 0.523). Also, ANOVA revealed a significant decrease only in the LFF ratio
for IR7BWS0 (p = 0.011). Results are shown in Table 2.

Table 2. Values of the running-induced muscle fatigue given according to Myocène®. Level running
without BWS (IR0BWS0), incline running at 7% and 0% of BWS (IR7BWS0), incline running at 7%
and 15% of BWS (IR7BWS15), and incline running at 7% and 30% of BWS (IR7BWS30).

PRE POST Difference

Mean ± SD Mean ± SD Mean ± SD

IR0BWS0 75.1 ± 6.7 73.3 ± 8.8 1.8 ± 3.5
IR7BWS0 75.8 ± 8.0 71.6 ± 9.8 4.1 ± 3.5
IR7BWS15 73.5 ± 8.4 71.8± 8.6 1.7 ± 4.4
IR7BWS30 74.0 ± 7.1 72.8 ± 6.5 1.2 ± 1.7

Gait spatiotemporal parameters. Our results did not demonstrate differences (p > 0.05)
in gait spatiotemporal parameters (Condition, Time, or interaction of both) except in flight
time. As IR increases, the flight time decreases from 47 to 35 ms and then the addition of
BWS leads to a longer flight time from 35 to 47 ms. Results are presented in Tables 3 and 4.
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Table 3. p values with ANOVA analysis for gait spatiotemporal parameters. * Means significative
difference (p < 0.05).

Contact Time Flight Duration Step Frequency

Condition 0.306 0.001 * 0.107
Time 0.344 0.208 0.641

Interaction 0.618 0.911 0.594

Table 4. Gait parameter data between each condition. a, b and d represent significant differences
between IR0BWS0, IR7BWS0 and IR7BWS30. Level running without BWS (IR0BWS0), incline running
at 7% and 0% of BWS (IR7BWS0), incline running at 7% and 15% of BWS (IR7BWS15), and incline
running at 7% and 30% of BWS (IR7BWS30). * Means significative difference (p < 0.05).

Flight Time Contact Time Step Frequency

Mean ± SD Mean ± SD Mean ± SD

IR0BWS0 47 ± 1.3 *b 338 ± 29 156 ± 9
IR7BWS0 35 ± 1.2 *a,d 340 ± 44 161 ± 14
IR7BWS15 38 ± 1.3 340 ± 36 159 ± 12
IR7BWS30 47 ± 1.7 *b 336 ± 27 155 ± 9

p < 0.006 p > 0.05 p > 0.05

4. Discussion

The main finding of the present study was that running with a slope of 7% and 30% of
BWS results in EMG activity comparable to that observed during level running, verifying
our hypothesis. Furthermore, as was hypothesized, BWS can decrease running-induced
muscle fatigue (LFF).

Our results correspond to previous studies that confirmed an increase in EMG for GL,
SOL, and GM at 7% incline running [9], as well as in mechanical power [35]. As shown
in Figure 1, the EMG of SOL seemed less impacted by the slope and a BWS of 15% than
the GL and the GM. Indeed, the SOL EMG increased by 10.8% from the LR to IR7%, but
that of the GL and GM increased by 23.6% and 16%, respectively. On the other hand,
with a BWS of 15%, the SOL EMG decreased by 4.8%, and the GL and GM by 29.4% and
13.8%, respectively. This is mainly due to differences in the muscle insertion; the SOL is a
monoarticular muscle that only participates in plantarflexion, and the gastrocnemius is a
bi-articular muscle used for knee flexion. Another explanation of this phenomenon could
be the different roles of the gastrocnemius and soleus. A previous study has shown that, in
the single-leg-stance period, the SOL is mainly responsible for forward trunk progression
and support, and the gastrocnemius for leg swing [36]. However, this study focused on
walking locomotion; it could be interesting to elucidate the behavior of these two muscles
while running.

After that, the EMG of the VL and triceps surae was decreased by 15% of the BWS
compared to incline running and had an almost-similar muscular activity to level running
(VL (−0.6%), SOL (0.6%), GM (−2.1%)). Only the GL (−11.3%) appeared more affected by
unloading 15% of the body weight. Moreover, 30% BWS was effective, having an EMG
activity lower than for level running: VL (−20.5%), GL (−10.5%), SOL (−10.8%), except
for GM (1.1%). However, the EMG activity of the gastrocnemius muscle did not decrease
while unloading from 15% to 30%. Conversely, the VL EMG significantly decreased from
BWS 15% to BWS 30%. We hypothesize that as the IR from 5% to 10% modifies the running
pattern (increase GM/GL EMG and mechanical work), adding more BWS could also change
the running pattern. During the single-leg stance from BWS 15% to BWS 30%, it could be
possible that the percentage of work from the Gastrocnemius increases, but as the weight
decreases, the EMG does not change. Those results would be similar to Sainton et al. [37],
who found a significant decrease in muscle activity at the push-off phase at 20% of BWS,
but not at 40%, for both gastrocnemii. Our results showed a decrease in EMG activity
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during the 10 min run, and it is might be possible that Achilles tendon structures and
properties were modified during the run, despite the warm-up protocol.

The statistical analyses show a more decreased EMG for the VL than the triceps surae
muscles when BWS is active. According to previous studies, the force produced by the
triceps surae is mostly created by the tendon’s length change and not the fascicle length [38],
even with a positive or negative slope [6]. Therefore, the main difference in our results can
be explained by muscle behavior, and we can hypothesize that the subject’s unloaded body
weight would affect the VL’s EMG activity and the stretching/shortening of the Achilles
Tendon. However, the muscular activity of the VL seems less affected by incline running at
7% than the GL and GM (increased by 12.1% compared with 23.6% and 16%). These results
were expected; indeed, EMG activity and the mechanical power of the VL significantly
increased from 9.1% [39] and 10% of the slope [35,40,41].

Although running-induced muscle fatigue was assessed on the quadriceps, our results
showed that a 10 min run at 7% of the IR can create LFF compared to the LR and BWS
conditions. As the slope increases, the muscle’s mechanical work increases, as does the LFF.
Likewise, using BWS is efficient in decreasing muscle fatigue in IR. Thus, we supposed that
muscle fatigue is not created by repetitive contractions but by the ground force reaction in
IR conditions.

The statistical analysis showed two modulations in RPE; increasing the slope increases
the RPE, and BWS leads to a lower RPE. As the unloading subject causes less ground force
reaction, a decrease in RPE with BWS was expected. These results agree with a previous
study on BWS [42,43] and assert its utility in rehabilitation. Indeed, a lower RPE may lead
to a longer time of sustained exercise and, finally, an increased muscle-contraction time.

Furthermore, our study shows that 30% of BWS and 7% of IR are the right parameters
to elicit a similar perceived difficulty to level running (respectively, RPE is 5.6 and 4.6).
Nevertheless, 15% of BWS does not seem sufficient to reduce RPE compared to flat running,
but it can reduce perceived difficulty through time (at 7 min and 10 min, RPE of 15% of
BWS was lower than without).

According to our data, spatiotemporal parameters such as contact time and step
frequency are not statistically affected by BWS and IR, even if IR suggests an increase in
step frequency. We supposed that because BWS [37,44,45] and IR [7,46,47] have the opposite
effect on step frequency, no significant differences could be found; however, flight time
increased with more BWS. This is probably due to a strategy of the runner; as BWS increased,
the participant let himself be supported by the mechanical system. This explanation could
also justify the decreases in RPE and the modification of the EMG activity.

5. Conclusions

Our study supports the use of body weight support during inclined running as
an alternative to flat running to improve a rehabilitation program, as inclined running
enhances the passive eccentric and active concentric phases of the calf muscles.

This method may have two assets: progressive loading through BWS and optimizing
time contraction with incline running. All of this is achieved without increasing the
difficulty and offers more considerable access for all kinds of populations and injury. This
method can also be used in strengthening training programs without creating a decrease in
a simple performance like jumping.
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