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Featured Application: The proposed model can be used to evaluate the effect of a cloud-to-cloud
lightning strike on a power transmission line or any metal structure on the ground, such as a
lightning rod or airplane in flight.

Abstract: Calculation expressions for the electric and magnetic fields produced by a horizontal cloud-
to-cloud lightning channel, assuming a perfectly conducted ground, are proposed in this paper. These
expressions depend on the current model traveling through the channel and serve as the starting
point to calculate the induced fields and potentials at any point in space. The derived expressions for
the fields are used to calculate the induced potentials by the channel on metallic structures such as
vertically driven rods in the ground and aircraft in flight. The influence of soil with finite conductivity
is discussed, and an estimation of the induced potentials in this situation is proposed.

Keywords: cloud-to-cloud lightning channel; perfect conducting soil; induced potentials in aircraft

1. Introduction

Atmospheric discharges in which a vast amount of electric charge is exchanged be-
tween clouds and the ground or even between two clouds give rise to the formation of
channels through which a high current intensity surges in waves. The process by which
these channels are generated, especially between clouds and the ground, is quite well
understood [1], and the effects caused by them are of great practical interest. The problem
of calculating the electric and magnetic fields generated by a vertical cloud-to-ground
lightning channel has been widely investigated by various authors under the assumption
that the ground is a perfect conductor [2]. In these works, two types of calculation methods
can be found, the time-domain-based method [3,4] and the one that uses Fourier phasors as
calculation elements in the frequency domain [5]. For the problem being studied, air is the
medium in which the lightning channel develops. This is a poor conductive medium for
which a virtually null electrical conductivity must be assumed except when it is ionized,
as is the case with the channel that carries the electrical charge between the cloud and the
ground. Due to the null conductivity of air, the frequency-based method leads to equations
for the induced electric field whose solutions have a singularity for zero frequency, that is,
for the contribution to the induced electric field of the constant component of the source [5].
For this reason, calculations in the time domain are much more frequently found in the
literature. However, it must be mentioned that considering that the ground has a finite
conductivity, that is, it is not a perfect conductor, the contribution to the electromagnetic
fields due to the ground is much more direct and clearer if worked in the frequency domain.
Due to the difficulties described before with zero frequency, very few contributions tackle
this problem [6]. On the other hand, the study of horizontal cloud-to-cloud lightning
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channels is difficult to find in the literature, perhaps because their effects at ground level
are too small to represent a problem, although this may not be entirely true [7–9]. However,
some installations, such as communication antennas or power lines, are located at a certain
height above mountain peaks or elevated buildings, which shortens the distance to the
horizontal channel, potentially generating significant disturbances in the installations with
respect to their normal behavior. The evaluation of the effects of intense fields generated
by a horizontal cloud-to-cloud channel on closer and isolated metallic elements, such as
flying aircraft, is also of great interest. This work tackles the calculation of the electric
and magnetic fields produced by a horizontal cloud-to-cloud lightning channel in the
time domain, in the simplest case of considering the ground to be a perfect conductor.
As an application example, the double-exponential discharge intensity will be used, and
the electromagnetic fields will be evaluated at various points in space. To this end, the
paper is structured as follows. After this introduction, the proposed mathematical model
is developed in Section 2. Then, a numerical application example is considered, followed
by a section discussing the influence of finite-conductive soil. Finally, the conclusions and
comments on what has been revealed throughout the work are summarized at the end of
the paper.

2. The Model Backgrounds

A small current element is considered in a horizontal lightning channel located in the
air above a conductive ground at height zp as indicated in Figure 1.
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Figure 1. Geometry of a horizontal lightning channel over a perfect conductive ground.

In the frequency domain, the phasor at frequencyω of the vector potential must satisfy
the equations,

→
∇

2→
A + ω2

c0
2

→
A = −µ0δ

→
I (z > 0)

→
∇

2→
A + ω2

c1
2

→
A = 0 (z < 0)

(1)

where c2
0 = (ε0µ0)

−1 is the speed of light in a vacuum and c2
1 = (µ1(ε1 +

σ1
jω ))

−1. The

current element can be expressed as δ
→
I = δI ·→u x located at the position (xp, yp, zp). The

electrical parameters in the air carry the subscript 0 with σ0 = 0, while for the conductive
medium, the subscript is 1. The vector potential must also satisfy the boundary conditions
at the air–ground interface, which are expressed in terms of the generated electric and
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magnetic fields. For a horizontal waveguide along the x-axis, at a point with coordinates
(x, y, z) located in the air, the vector potential has the following components.

Ax(x, y, z, ω) = µ0δI
4π

∞∫
0
( λ

λ0
e−λ0|z−zp | + f (λ)e−λ0(z−zp))J0(λr)dλ

Ay(x, y, z, ω) = 0

Az(x, y, z, ω) = µ0δI
4π

x−xp
r

∞∫
0

g(λ)e−λ0(z−zp) J1(λr)dλ

(2)

where r =
√
(x− xp)

2 + (y− yp)
2 and the functions f (λ) and g(λ) must be determined

from the aforementioned boundary conditions. Once the boundary conditions are imposed,
the expressions for these functions are the following,

f (λ) = λ
λ0
· λ0−λ1

λ0+λ1
· e−2λ0zp

g(λ) = γ2
0−γ2

1
γ2

0λ1+γ2
1λ0
· 2λ2

λ0+λ1
· e−2λ0zp

(3)

In the Equation (3), γ2
i = −ω2

c2
i
(i = 0, 1) and λi =

√
λ2 + γ2

i . By substituting

Equation (3) into (2) and using the Lipschitz identity [10]

e−β|→r −→r p |∣∣∣→r −→r p

∣∣∣ =

∞∫
0

λ√
λ2 + β2

e−
√

λ2+β2|z−zp | J0(λr)dλ (4)

results

Ax(x, y, z, ω) = µ0δI
4π ·

e−jk0R

R + µ0δI
4π ·

e−jk0R′

R′ −
µ0δI
4π

∞∫
0

2λ
λ0
· λ1

λ0+λ1
e−λ0(z+zp) J0(λr)dλ

Ay(x, y, z, ω) = 0

Az(x, y, z, ω) = µ0δI
4π

x−xp
r

∞∫
0

γ2
0−γ2

1
γ2

0λ1+γ2
1λ0
· 2λ2

λ0+λ1
e−λ0(z+zp) J1(λr)dλ

(5)

where ki =
ω
ci
(i = 0, 1), R =

√
(x− xp)

2 + (y− yp)
2 + (z− zp)

2 and, on the other hand,

R′ =
√
(x− xp)

2 + (y− yp)
2 + (z + zp)

2. If the soil is a perfect electric conductor, σ1 → ∞ ,

it is straightforward to prove that γ2
1 → ∞ , λ1 → ∞ and γ2

1
λ1
→ ∞ , which gives rise to

Ax(x, y, z, ω) = µ0δI
4π ·

e−jk0R

R − µ0δI
4π ·

e−jk0R′

R′
Az(x, y, z, ω) = 0

(6)

which in practice entails evaluating the contribution of the actual horizontal channel and
subtracting the contribution of the image horizontal channel with respect to the ground
interface. Given that the current element can be expressed as δI = I(xp, ω)dxp, the potential
vector in the frequency domain is.

Ax(x, y, z, ω) =
µ0 I(xp, ω)

4π
· e−jk0R

R
dxp −

µ0 I(xp, ω)

4π
· e−jk0R′

R′
dxp (7)

and its expression in the time domain is,

Ax(x, y, z, t) =
µ0i(xp, t− R/c0)

4πR
dxp −

µ0i(xp, t− R′/c0)

4πR′
dxp (8)



Appl. Sci. 2023, 13, 9584 4 of 12

For the calculation of the fields, the well-known expressions
→
B =

→
∇ ×

→
A for the

magnetic field and
→
E = −

→
∇φ− ∂

→
A

∂t for the electric field will be used, in which the scalar
potential will be evaluated, according to the Lorenz gauge, as

φ(R, t) = −c2
0

t∫
0

→
∇
→
A · dτ (9)

The electric field at point (x, y, z) created by the current element of the actual horizontal
channel at position (xp, yp, zp), has the following Cartesian components.

dEx = µ0
4πε0

dxp[
3(x−xp)

2−R2

R5

t∫
0

i(xp, τ − R
c0
)dτ +

3(x−xp)
2−R2

c0R4 i(xp, t− R
c0
) +

(x−xp)
2−R2

c2
0R3

∂
∂t i(xp, t− R

c0
)]

dEy = µ0
4πε0

dxp[
3(x−xp)(y−yp)

R5

t∫
0

i(xp, τ − R
c0
)dτ +

3(x−xp)(y−yp)

c0R4 i(xp, t− R
c0
) +

(x−xp)(y−yp)

c2
0R3

∂
∂t i(xp, t− R

c0
)]

dEz =
µ0

4πε0
dxp[

3(x−xp)(z−zp)

R5

t∫
0

i(xp, τ − R
c0
)dτ +

3(x−xp)(z−zp)

c0R4 i(xp, t− R
c0
) +

(x−xp)(z−zp)

c2
0R3

∂
∂t i(xp, t− R

c0
)]

(10)

Regarding the magnetic field,

dBx = 0
dBy = − µ0

4π ·
z−zp

R · ( 1
c0R

∂
∂t i(xp, t− R

c0
) + 1

R2 i(xp, t− R
c0
))dxp

dBz =
µ0
4π ·

y−yp
R · ( 1

c0R
∂
∂t i(xp, t− R

c0
) + 1

R2 i(xp, t− R
c0
))dxp

(11)

which must include the contributions from the image channel subtracted, which are ob-
tained by substituting zp → −zp in Equations (10) and (11). The different terms in Equation
(10) represent the static, induction, and radiation components of the electric field.

The contribution of the entire horizontal channel to the fields will be obtained by
integrating the Equations (10) and (11) in the variable xp along the channel length L

Ei(x, y, z) =
∫
L

dEi(xp)

Bi(x, y, z) =
∫
L

dBi(xp)
(12)

as it is pointed out in Equation (12).

3. Application Examples

In the contributions where the fields generated by a vertical lightning channel are
studied, several models for the discharge are used [10]. In the so-called MTLE engineering
model, an intensity wave that moves along the channel at velocity ν is used. The model
meets the equation i(zP, t) = i(0, t− zP

v ) · P(zP) · u(t− zP
v ), where u(t) is the step function,

P(zp) is an attenuation function of the discharge in its transit between the cloud and the
earth at height zp, and i(0, t) is the intensity signal at the origin of the channel, which can
take different forms [11].

In this work, a horizontal channel along the X axis with length L = 4000 m and height
zp = H = 4000 m will be considered for the evaluation of the electric and magnetic fields
at different heights. For the current intensity that travels from one side of the channel
to the other, the expression i(xp, t) = i(0, t − xp

v ) · u(t − xp
v ) will be assumed, and the

attenuation P(zp) will be suppressed. Among the models of the current i(0, t), the most
commonly used are the ones that will be employed in this paper. These models include the
double-exponential model and the Heidler model. In the first model, a double-exponential
shape of the signal i(0, t) = Imax · (a · eb·t + c · ed·t) will be adopted with Imax = 15.6 kA,
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a = 1, b = −4 · 105 s−1, c = −1, d = −6 · 106 s−1. The Heidler model [12] is defined by the
following equation,

i(0, t) =
I01

η
· (t/τ1)

2

(t/τ1)
2 + 1

· exp(−t/τ2) + I02 · (exp(−t/τ3)− exp(−t/τ4)) (13)

where the values of the parameters chosen are: I01 = 9.9 kA, I02 = 7.5 kA, η = 0.845,
τ1 = 0.072 µs, τ2 = 0.072 µs, τ3 = 0.072 µs, τ4 = 0.072 µs. The speed of the intensity wave
along the channel will be taken as v = 2

3 c0 [13]. Thus, the time interval to consider for
induction phenomena will be determined by the ratio of the channel length to the speed at
which the current signal travels through it. In our case, tmax = 2 · 10−5s, although the time
elapsed due to the distance between the source element and the field point that traveled at
the speed of light must also be taken into account. The shape of the current models and
their temporal derivative at the beginning of the channel are shown in Figure 2.
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In practice, field calculations are performed by segmenting the lightning channel into
portions ranging from 10 cm to 1 m in length, depending on the proximity of the field
points to the channel. For each segment, the fields are evaluated using the theoretical
Equations (10) and (11), and through superposition, the final result is obtained. A critical
aspect of the calculation is the accurate definition of the chosen intensity model and
its first derivative. In our case, the double-exponential and Heitler models have been
tested, as illustrated in Figure 2, demonstrating suitable behavior for simulating inter-cloud
discharges. The calculation algorithm has been implemented using MatLab, where some
of the built-in routines of the software are used, although it can be adapted to any other
programming language as well.

Two types of application examples will be considered. On the one hand, the fields will
be calculated at points close to the ground, where power transmission lines and lightning
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rods are located. On the other hand, the induced potentials in isolated metallic structures
closer to the lightning channel, such as an aircraft, will be calculated.

3.1. Induced Potentials at Points near Ground Level: Induced Potential Difference in a Vertical Rod
with One End on the Ground

Figure 3 represents a lightning horizontal channel under which a vertical metallic
rod rests on the ground with the length Zc. The task is to calculate the induced potential
difference that appears between the ends of the rod due to the lightning channel. The rod
is 10 m tall and is located approximately in the middle of the channel.
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The induced potential difference that appears between the ends of the rod can be
obtained from

∆Vε =

Zc∫
0

→
E · d→r (14)

although other authors prefer to estimate this induced potential based on the scalar potential
difference ∆V = φ(0)− φ(Zc), both ways of defining ∆V and ∆Vε only coincide for a DC
current. Actually, ∆Vε can be interpreted as an electromotive force between the ends of
the conductor, which will cause a movement of free carriers, that is, an induced current.
The magnitude of this current will depend on the impedance of the conductor and can be
significant if the impedance is small. The line integral (14) is numerically computed by
dividing the integration path into segments, with the segment size being unimportant due
to the minimal variation of vector fields along this path.

Considering that the scalar potential difference can be directly measured using a

voltmeter and based on the relationship
→
E = −

→
∇φ− ∂

∂t

→
A, it is obtained that

∆V = φ(0)− φ(Zc) =

Zc∫
0

→
E · d→r +

Zc∫
0

∂

∂t

→
A · d→r (15)

This magnitude will be considered representative of the effect caused by the horizontal
lightning channel. Figure 4 shows the potential difference ∆V as a function of the channel
response time. In this example, the contribution of the temporal derivative of the vector
potential is irrelevant due to the proximity of the rod to the perfectly conducting ground.
Thus, the induced potentials ∆V and ∆Vε are similar in practice.

As can be seen in Figure 4, a peak-to-peak potential difference of around 250 volts is
induced in the rod if the double-exponential current model is considered. On the other
hand, a slightly higher induced potential difference is obtained when using the Heidler
current model. Since the frequencies involved are very high, the current that can flow
through the rod is mainly determined by the inductive impedance of the rod. The electrical
power transferred to the rod is, therefore, of an inductive nature.
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3.2. Induced Potentials on an Aircraft in Flight

Figure 5 represents a horizontal cloud-to-cloud lightning channel and an aircraft flying
h = 1000 m below the channel with its fuselage oriented along the channel direction and
its wings perpendicular to it, positioned approximately in the middle of the channel and
laterally displaced from the channel by a distance of 1000 m.
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The goal is to evaluate the induced potential difference that appears between

the ends of the fuselage ∆VF =
∫

Fus

→
E · d→r and between the ends of the aircraft wings

∆VW =
∫

Wings

→
E · d→r . Figure 6 shows the potential differences defined as a function of the

channel response time when a double-exponential current model is used.
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Figure 6. Induced potentials between the nose and tail (blue line) and between the wingtips (red line)
of the aircraft when a double-exponential current model is used.

Significant differences are found when comparing the above-shown induced potentials
with the induced scalar potential difference. In Figure 7, the comparison between ∆V and
∆Vε for the previous example is shown. The left panel displays the two ways of expressing
the induced potential difference in the fuselage, while the right panel shows the same for
the aircraft wings. It is interesting to note that for the wings, there is no distinction between
both ways of expressing the induced potential difference since the vector potential has no
component along the wings, while noticeable differences are observed for the length of the
fuselage.
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Figure 7. Differences between ∆V and ∆Vε for the airplane example.

To conclude this section, the induced potentials on the aircraft are addressed when it is
closer to the ground, at 1000 m above it, and again maintaining the lateral displacement of
1000 m. The double-exponential model for the current channel is used. Figure 8 shows the
induced potentials along the fuselage and between the wingtips when using the induced
potential from Equation (14).
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Figure 8. Induced potentials between the nose and tail (red line) and between the wingtips (blue line)
of the aircraft when it is 1000 m above the ground in the middle of the lightning channel.

If, on the other hand, Equation (15) is used to calculate the induced potential, Figure 9
shows the appearance of this potential along the fuselage compared to the one obtained
using Equation (14). The comparison for the induced potential on the wings is not shown
for the same reasons mentioned when discussing Figure 7.
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Figure 9. Induced potential ∆Vε (blue line) and ∆V (red line) along the aircraft fuselage.

As can be seen in the presented figures, the energy transferred by the electromagnetic
field generated by the lightning channel to the aircraft structure can generate undesired
effects that can impact safety, even at large distances from the channel.
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4. Effect of a Non-Perfect Conducting Ground

The finite conductivity of the soil has repercussions on the terms of Equation (5)
involving improper integrals of the Sommerfeld type. As previously seen, these terms
become simplest when considering the soil as a perfect conductor.

Aσ
x(x, y, z, ω) = − µ0δI

4π

∞∫
0

2λ
λ0
· λ1

λ0+λ1
e−λ0(z+zp) J0(λr)dλ →

σ→∞
− 2µ0δI

4π · e−jk0R′

R′

Aσ
z (x, y, z, ω) = µ0δI

4π
x−xp

r

∞∫
0

γ2
0−γ2

1
γ2

0λ1+γ2
1λ0
· 2λ2

λ0+λ1
e−λ0(z+zp) J1(λr)dλ →

σ→∞
0

(16)

The main problem with the terms associated with finite soil conductivity (16) is that
they do not have a closed expression in the time domain and must be evaluated in the
Fourier domain. Additionally, Sommerfeld-type integrals are difficult to evaluate and
require special numerical techniques [14]. In this paper, the objective is not to numerically
calculate the contribution of these terms but to estimate bounds on the values of the
induced potentials in the extreme cases associated with infinite soil conductivity and zero
soil conductivity. A soil with finite conductivity lies between these extreme situations, and
therefore, the induced potential will fall within the bounds associated with these extreme
cases.

When the soil is considered a medium with zero conductivity, such as air, and with
electric parameters similar to air, the Equation (5) along with property (4) yield the following
results,

Aσ
x(x, y, z, ω) = − µ0δI

4π

∞∫
0

2λ
λ0
· λ1

λ0+λ1
e−λ0(z+zp) J0(λr)dλ →

σ→ 0
ε1 = ε0
µ1 = µ0

− µ0δI
4π ·

e−jk0R′

R′

Aσ
z (x, y, z, ω) = µ0δI

4π
x−xp

r

∞∫
0

γ2
0−γ2

1
γ2

0λ1+γ2
1λ0
· 2λ2

λ0+λ1
e−λ0(z+zp) J1(λr)dλ →

σ→ 0
ε1 = ε0
µ1 = µ0

0
(17)

Thus, one bound on the induced potential value will be obtained by replacing the soil
with air, where the only contribution to the fields comes from the vector potential of the
actual horizontal lightning channel. On the other hand, the other bound will be obtained
by considering the soil as a perfect conductor, and the contribution to the fields will be the
difference between the contribution from the vector potential of the actual channel and the
contribution from the image channel with respect to the soil surface. For a soil with finite
conductivity, the potential will lie between the two mentioned bounds.

It can be expected that the influence of finite soil conductivity will be more pronounced
in points close to the surface since both the real lightning channel and the image channel are
at comparable distances. However, in points near the real lightning channel, the influence
of the soil is heavily limited by the distance.

Figure 10 depicts the upper and lower bounds of the induced potential on the vertical
rod shown in Figure 3. The blue line corresponds to soil with zero conductivity, equivalent
to replacing the conductive medium of the soil with air. The red line, representing the
minimum bound of the induced potential, corresponds to a perfectly conducting soil. The
graph associated with a soil of finite and non-zero conductivity will lie between the two
curves shown in the figure.
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5. Conclusions

The expressions for calculating the electric and magnetic fields generated by a hori-
zontal lightning channel at points located on the surface of a perfectly conducting soil have
been proposed in this work. Using these expressions, the induced potentials on a vertical
rod supported by the ground and the induced potentials on the metallic structure of an
aircraft in various scenarios have been calculated. Due to the non-stationary nature of the
problem studied, the concept of induced potential possesses some ambiguity. As a result,
two methods of evaluating the potential have been employed and compared. It can be
concluded from this work that for structures close to the soil surface, the induced potential
can be calculated using the scalar potential. However, in points near the lightning channel,
significant differences are found between the two descriptions. The induced potentials
are highly dependent on the current model used to define the lightning channel, so two
popular models, namely the double-exponential and Heidler models, have been employed
in this work. The calculations demonstrate that the induced potentials are not negligible for
the proposed configuration, although they may be somewhat less intense in real situations
involving greater distances from the channel.

The contribution of soil with finite conductivity has also been addressed in this paper.
It is concluded that the induced potential should lie between the upper and lower bounds
corresponding to a perfectly conducting soil and a perfectly insulating soil.
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