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Abstract: Surface electromyography (sEMG) is a promising technology that can capture muscle
activation signals to control robots through novel human–machine interfaces (HMIs). This tech-
nology has already been applied in scenarios such as prosthetic design, assisted robot control, and
rehabilitation training. This article provides an overview of sEMG-based robot control, covering
two important aspects: (1) sEMG signal processing and classification methods and (2) robot control
strategies and methods based on sEMG. First, the article outlines the general steps in sEMG signal
processing and summarizes the commonly used methods for data acquisition, pre-processing, and
feature extraction. In addition, machine-learning-based pattern recognition methods have been
introduced for sEMG signal classification. Subsequently, user intent-based robot control strategies are
classified into three categories: full-human continuous control, semi-autonomous continuous control,
and discrete control, and their control methods and applicable scenarios are compared. Finally, this
article discusses the advantages, disadvantages, and future development prospects of sEMG-based
robot control. This review provides a comprehensive overview of sEMG-based robot control, from
signal processing and classification methods to robot control strategies and methods, aiming to guide
future research on selecting filters, feature sets, and pattern recognition methods and to assist in
establishing sEMG-driven robot control frameworks.

Keywords: sEMG; signal processing; pattern recognition; robot control; rehabilitation

1. Introduction

Surface electromyography (sEMG) is the superposition of numerous motor unit action
potentials (MUAPs) in time and space, which can be recorded by sEMG sensors. sEMG-
based technologies have been widely used in rehabilitation [1–7], exercise physiology [8–10],
and other fields [11–15]. Research by Das Deutsche Zentrum für Luft- und Raumfahrt
(DLR) has shown that, among various biological signal interfaces in the design of HMIs,
non-invasive methods in BCI (brain–computer interface technology, including electroen-
cephalograms, magnetoencephalography, and functional magnetic resonance imaging)
have poor time or spatial resolution, whereas invasive methods (electrocorticography and
microelectrodes) perform well but have harsh usage conditions, making them unfeasible
for robot control [16]. There have also been studies that explore the use of head, tongue,
and eye movements as control signals [17]; however, these methods are difficult to apply
to the continuous control of robotic arms. With the gradual maturity of sEMG sensor
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technology, the convenience and practicality of using sEMG in device control has become
increasingly prominent.

The sEMG signal, which appears 50–100 ms before movement [18,19], can be used to
predict human movement and then control robots based on such predictions. There are
numerous application scenarios for sEMG-based robot control. In the rehabilitation field,
Lu created an EMG-driven exoskeleton hand robot designed to assist in hand rehabilita-
tion training of neurologically injured patients [20]. Sun demonstrated the effectiveness of
sEMG-driven robots in stroke rehabilitation training [7]. Secciani presented a fully wearable
Hand Exoskeleton System (HES) controlled by a novel sEMG-based classification strat-
egy [21]. It can also be used as an auxiliary device to assist individuals with limb movement
impairment in their daily activities. Li introduced two novel strategies for power-assist
exoskeleton control using sEMG [22]. Kiguchi has been working on sEMG-based neuro-
fuzzy control in a power-assisted upper-limb exoskeleton [23]. Hagengruber and Vogel
used sEMG as an interface to control a manipulator that can assist people with severe
muscular atrophy (SMA) in some daily activities [24]. An integrated system with 27-DOF
named EDAN consists of a wheelchair, a manipulator, and a robot hand and can help
people with movement disorders in daily activities [25]. For amputees, some sEMG-driven
prostheses are available [26,27]. The mode of robot control varies depending on the type
of robot and application scenario. A method combining a low-pass filter with spherical
linear interpolation was used for lightweight robot trajectory generation in Roman’s study.
Guided by an sEMG signal, the robot can mimic human motion with a small delay [28].

Despite extensive research on sEMG in the academic community, its development
in practical applications, particularly in robot control, is not yet mature. Factors such
as instability and interindividual variability of sEMG signals pose significant challenges
for control. A comprehensive review of the relevant literature will be constructive in
synthesizing key research results and revealing major research trends in this field. Therefore,
this study aimed to summarize and answer the following questions:

• What methods are used in each step of sEMG signal processing?
• What are the strategies and methods for robot control driven by sEMG?
• What are the advantages and disadvantages of using sEMG for robot control, the main

challenges encountered, and the future development trends?

To address these questions, this paper searches for research articles, conference papers,
and books related to the use of surface electromyography for robot control in the IEEE
Xplore Digital Library, Web of Science, and PubMed databases using keywords such as
sEMG, robot, exoskeleton, etc. that were published up to March 2023, with a focus on
research on the use of surface electromyography for robot control in the past 10 years.
Papers with unclear descriptions of research methods, low-quality reports, and review
articles were excluded. The advantages and disadvantages of using sEMG for robot control
are also discussed, along with the major challenges encountered and future development
trends in this area. Overall, this review provides a valuable resource for researchers and
practitioners in the field of sEMG-driven robot control.

2. Methods Summary in sEMG-Based Robot Control

Various methods have been used to process sEMG signals. In general, the processing
steps are roughly the same: The signals are first filtered and amplified after collection.
This step is crucial for subsequent research, especially for patient data where residual
muscle strength may be weaker, meaning that their sEMG amplitude may be smaller by
an order of magnitude or greater than that of healthy individuals. Therefore, reasonable
filtering and amplification processes can ensure the signal-to-noise ratio of the signal,
making it easier to extract sufficient motion information from sEMG. Feature extraction was
then performed. Most studies focus on muscle activation levels; therefore, time-domain
features are often selected for extraction. Studies related to muscle fatigue levels tend
to focus on the frequency-domain features. In addition, there are studies based on time-
frequency feature sets. Finally, sEMG signal recognition was performed, and various
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machine-learning methods were used to decode the sEMG signals into limb movement
information. This step is critical and is currently a research hotspot. Some scholars do
not perform recognition; instead, they combine the muscle model proposed by Hill [29,30]
to acquire muscle activation levels through sEMG and then perform subsequent research
based on muscle activation. The main contents of this article are summarized in Figure 1.
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Figure 1. Summary of sEMG review (icons by Figdraw).

3. Processing and Pattern Recognition Methods

Raw sEMG signals cannot be applied to limb movement motion detection or robot
control because of their spatial and time complexity. To obtain the subject’s movement
information, sEMG signals need to be processed by data acquisition, pre-processing, feature
extraction, dimensionality reduction (if necessary), and pattern recognition. Figure 2
provides an overview of the signal processing steps and methods. Data acquisition and
pre-processing filter noise and signals emanating from unrelated muscles. The selection of
the feature sets extracted from the processed signal is vital to the accuracy of the classifiers,
which is the core of pattern recognition. The following paragraphs discuss the methods
used in these steps.
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3.1. Data Acquisition

Many types of sEMG sensors have been applied in previous studies. Single-channel
sEMG sensors focus on a particular area of muscle to try to eliminate the signals from
uninterested muscles. This sensor is typically used in groups to form a multichannel
acquisition system and simultaneously collect sEMG signals from different body parts. In
contrast, high-density sEMG sensors can acquire spatial and temporal EMG information of
a certain area using an electrode array that includes dozens of electrodes. Most researchers
choose a commercial product that is quite mature compared with several self-made sen-
sors. The Myo armband is a widely used product in hand gesture recognition based on
sEMG [31–33]. Delsys Inc. provides various sensors for different situations [11,13,34,35].
In addition, some devices can provide biofeedback signals to stimulate the muscles of
patients to help them perform rehabilitation exercises [36].

The knee, ankle, shoulder, elbow, wrist, and finger joints support most movements in
activities of daily living. Therefore, muscles attached to the bones that make up these joints
have been extensively studied for a long time. Table 1 shows the muscles of interest in some
papers published in the last 20 years. From the table, it can be concluded that, for the upper
limb, these muscles are the biceps brachii, triceps brachii, and deltoid; for the lower limb,
the most interesting muscles are the quadriceps femoris, anterior tibial, and gastrocnemius;
for the wrist and finger joints, these muscles mainly refer to the flexor/extensor carpi
ulnaris/radialis and extensor digitorum. In addition, some authors have performed their
work on other muscles of the human body. Wang studied speech recognition based on
sEMG signals of the facial and neck muscles [13]. Potvin’s paper contributes to the load of
the waist and abdomen muscles during repetitive weightlifting [12]. For studies in the field
of hand gestures, the first dorsal interosseous, thenar, and hypothenar have also received
attention from researchers.

Table 1. Summary of muscles of interest in sEMG studies.

Body Part Joint Muscles References

Upper-limb

Hand gestures

flexor carpi radialis
flexor carpi ulnaris

flexor digitorum superficialis
flexor digitorum profundus

extensor digitorum
first dorsal interosseous

hypothenar
extensor digiti minimi

long palmar
supinator

abductor pollicis brevis

[6,31,33,37–72]

Wrist

flexor carpi radialis
extensor carpi radialis

flexor carpi ulnaris
extensor carpi ulnaris

pronator teres
extensor digitorum

flexor digitorum

[16,22,24,37,38,73–79]
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Table 1. Cont.

Body Part Joint Muscles References

Elbow

biceps brachii
triceps brachii

flexor carpi radialis
extensor carpi radialis

flexor carpi ulnaris
extensor carpi ulnaris

flexor digitorum superficialis
brachioradialis brachialis

anconeus
pronator teres

supinator
extensor digitorum

[3,7,11,16,22–25,37,70,77,80–91]

Shoulder

biceps brachii
deltoid

pectoralis major
supraspinatus

trapezius
teres major
teres minor

infraspinatus
latissimus dorsi

[9,22,23,37,75,80,82,84,86–88,91–93]

Lower-limb

Hip gluteus maximus
hamstring [10]

Knee

quadriceps femoris
hamstring

gastrocnemius
anterior tibial

[5,34,80,94–99]

Ankle

gastrocnemius
anterior tibial

peroneus longus
extensor digitorum longus

peroneus brevis

[2,4,6,34,100]

Other parts

Face masseter muscle [13]

Abdomen rectus abdominis [80]

Back erector spinalis [12,80]

To obtain a higher signal-to-noise ratio (SNR), references [6,20,101,102] carried out
a strict experimental protocol: shaving off the hair on the limbs, polishing the skin of
the target area with sandpaper, wiping it with an alcohol pad, and finally, applying the
medical gel. The authors of these studies believe that these steps are necessary for collecting
satisfactory data, but most scholars have not executed such tedious operations in their
experiments. Although there are some differences in the experimental protocols, researchers
should be able to reach a consensus that the position of the sEMG sensor should be relatively
fixed in each experiment. To maintain the same position in different trials, reference [73]
divided the subject’s forearm into seven areas according to their body structure and marked
them with different colors. Vogel indicated that a slight deviation of the electrode will lead
to a significant impact on the experimental results, but for SMA patients, maintaining the
exact location in every test is challenging [37].

3.2. Pre-Processing

The primary purpose of pre-processing is to obtain filtered signals. Generally, noise
can be divided into six classes: electronic devices’ inherent noise, ambient noise, motion
artifacts, inherent instability of sEMG signals, electrocardiographic artifacts, and cross-talk



Appl. Sci. 2023, 13, 9546 6 of 21

from muscles around the target area [100,103,104]. Although some artifacts and cross-talk
have been avoided by selecting the electrode position and using a wireless transform, raw
data acquired by the sEMG sensor still contain many noise signals.

The most helpful information from the sEMG signal is distributed in the frequency
band of 0 Hz–500 Hz, and the primary energy is concentrated in 20 Hz–150 Hz [105].
Based on this fact, most studies have used band-pass filters, and the frequency band of
filtering is 20 Hz–500 Hz. De Luca [106,107] and Beck [8,101,108–110]’s works are based
on a broader frequency band from 20 Hz to 1750 Hz, whereas others focus on a narrow
band. The Butterworth band-pass filter is the most popular filter. The main difference in
those studies in which the Butterworth filter is used is its order. Bidirectional filters help
prevent phase shifts that filters may introduce [42,51,77,92]. To eliminate the influence of
power frequency interference on sEMG, a signal with a small amplitude, Kline [111] and
Kuan [112] used a notch filter at 50 Hz or 60 Hz. On the contrary, some scholars believe that
the notch filter filters the bioelectrical information in the corresponding frequency band;
therefore, they did not use a notch filter [96]. In addition to placing electrodes on the target
muscles, Schiel [113] and Kuan [112] also placed an extra sensor on the nearby inactive
muscle as the resting signal channel. By subtracting the resting signal from the signals of
each target channel, the baseline noise and cross-talk can be filtered. After the first round of
filtering, a low-pass filter was used again in some studies because the contraction frequency
of muscles in healthy people is low under normal conditions [12,32,42,86]. High-frequency
(>10 Hz) nerve stimulation triggers tonic contraction of skeletal muscle, which is a concern
of scholars who pay attention to Parkinson’s disease and stroke patients.

The power of the sEMG signal is meager, and the maximum amplitude is generally
less than 10 mV [48]. Therefore, amplifying the sEMG signal is necessary to facilitate
the signal acquisition. However, most acquisition systems can perform this step au-
tomatically, and researchers no longer need to handle it manually. The amplitude of
the sEMG signals is assumed to be proportional to the muscle tension [48]. Thus, the
strength difference between muscles (including individual differences) is inconvenient
when comparing the effort levels during muscle contraction. In this case, normalization
is beneficial. In addition to the above pre-processing methods, there are rectification,
dimension reduction, and other methods. The pre-processing techniques used in related
studies are summarized in Table 2.

Table 2. Summary of pre-processing, feature sets, and classifiers.

Reference Pre-Processing * Feature Sets ** Classifiers ** Publish Time

[4] 1-2-5 RMS, MAV SVR 2014

[6] 2
logarithmic transferred time-domain

features,
traditional time-domain features

LDA, KNN,
NaiveBayes 2017

[7] 1-2 fApEn - 2014
[11] - WL, SSC, ZCR, AMP Gauss Process 2021
[14] 2 RMS, MFR, MPF - 2014
[18] - STFT, WPT - 2014
[22] - RMS Fuzzy, NN 2012
[24] - AMP, SSC, ZCR, WL LDA 2018
[26] 2-5 MPF, MDF - 2018

[27] - self-defined features LDA, NaiveBayes, RF,
KNN 2016

[32] 2-3-6 MAV, VAR, WL, HIST,
CC, mDWT MLP(ANN), SVM 2015

[37] - AMP, SSC, ZCR, WL Gauss Process 2018
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Table 2. Cont.

Reference Pre-Processing * Feature Sets ** Classifiers ** Publish Time

[38] 1-2 MAV, AR
Improved dynamic

time-warping
algorithm

2014

[40] 2

MAV, Reflection Coefficients,
Histogram, RMS,

Autoregressive coefficient, Variance,
Willison amplitude, Modified Median

Frequency,
Modified Mean Frequency

DT, SVM, NN,
NaiveBayes 2016

[43] -

1-Time Domain
2-Enhanced Time Domain

3-NinaPro Features
4-SampEn, CC, RMS, WL

SVM, ANN, RF, KNN,
LDA 2019

[44] 8 IEMG, MAV, SSI, RMS, LOG, VAR KNN 2018
[46] 2 MAV, VAR, SSC, WL, MNF Linear SVM 2021
[49] - MAV, ZC, SSC, WL, AR LDA 2022
[50] 9 RMS, VAR, MAV, SD ELM 2019
[51] 2 RMS, AR, WL, ZC Linear Bayes 2017
[52] 1-2-3-5 RMS, WL, ZC, MNF, AR SVM 2020
[54] - MAV, WL, RMS, AR, ZC, SSC SVM, LDA, KNN 2019
[55] - RMS, MMAV, MMAVTP, MPF SVM 2020
[57] 2-5 MAV, WL, ZC, SSC SVM 2020
[59] - Spatiotemporal characteristics MEMD, CRNN 2020
[60] 5-9 RMS SVM 2008
[62] 2 VAR, ZC, iEMG, WAMP - 2020
[64] - RMS GRU-RNN 2021
[67] 3-6 - ConvEMG, LSTM 2021
[68] 2 TDD-FT, SSD - 2022
[69] 3 - RF, SVM 2021
[70] 12 WPT LDB 2007
[74] 9 MAV, ZC, SSC, WL, RMS SVM 2020
[75] 5-9 WPT SVM, BPNN 2020

[76] 3-5-8-9
RMS, bursting initial time, bursting

duration, bursting area, and the
maximum value

- 2013

[80] 3 RMS, Autocovariance function NN, Fuzzy 2009
[81] 3-4-6-7 IAV, WL - 2011
[82] 3-6-7 IAV, ZC, VAR, MDF - 2010
[87] - RMS Fuzzy, NN 2007
[93] - MAV Fuzzy, NN 2004
[94] 2 STFT - 2020
[95] - RMS, iEMG LSTM, MLP 2020
[96] 2 RMS, WL, VR - 2021

[97] - RMS, WL, SSI, MAV, VAR, LOG,
SampEn ESECW 2021

[98] 5-6-9 OMA self-defined features ANN 2017
[99] - WPT-PCA SUKF, NN 2020
[112] 2-5-9 - Linear regression, SVM 2010
[113] 9 AMP, SSC, ZCR, WL - 2020

[114] - iEMG, MAV, MMAV, VAR, WL,
WAMP KNN 2012

[115] 1-3-4-5 RMS, WL, ZC, IAV, SSC,
AR

PCA, LDA; PCA, SVM;
OFNDA, LDA;
OFNDA, SVM

2013

[116] - SampEn, CC, RMS, WL - 2013
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Table 2. Cont.

Reference Pre-Processing * Feature Sets ** Classifiers ** Publish Time

[117] - RMS Fuzzy, NN 2013

[118] - TD-VAR, RMS;
FD-MF, MPF; EMD

The series splicing
method

Complex vector
method

2022

[119] - FFT CviT 2022
[120] - SampEn - 2012

* The numbers 1–9 in the ’pre-processing’ column in the table represent amplification, band-pass, low-pass,
high-pass, notch filter, rectification, normalization, dimensionality reduction, and other methods, respectively.
** Please refer to the Abbreviations part for the explanation of the abbreviations appearing in the Feature Sets and
Classifiers columns in the table.

3.3. Feature Extraction

Before feature extraction, the signal segmentation should first be determined. An
overlapping window is the most widely used method; however, the window width and
overlapping width are different. The width of the window directly affects the effectiveness
of the feature extraction and delay time. The larger the window width, the more information
will be obtained, and the less the deviation of the extracted features will be, but more
computing time will be required. In references [121–123], for the first time, it was suggested
that the maximum delay in a closed-loop real-time control system should be less than
300 ms. A delay time of 100 ms–250 ms is appropriate, and the classifier’s performance
should precede the delay time.

For a specific classifier, the selection of the feature sets of the sEMG signals is the
most important factor affecting its performance. Signal analysis generally includes Time
Domain (TD), Frequency Domain (FD), Time-Frequency Domain (TFD) transformation,
and entropy. TD features are used most frequently and are mainly for muscle effort or
active-level analysis; FD features are primarily utilized to study the level of muscle fatigue.
They can also be recruited as supplement features to form a feature set together with TD
features to improve the accuracy of classification. TFD transforms such as Short-Time
Fourier Transform (SFTF), Fast Fourier Transform (FFT), and wavelet transform retain the
TD and FD characteristics of a signal. However, there are few studies based on TFD, owing
to its complexity and poor interpretability. Fifty groups of standard features were recruited
from reference [116] to select the most robust single feature and feature set. TD, FD, TFD,
and Entropy features were also included. Based on the Linear Discriminant Analysis (LDA)
classifier, the feature sets with the best performance are the Sample Entropy (SampEn),
Cepstrum Coefficient (CC), Root Mean Square (RMS), and Wave Length (WL). The feature
sets used in these studies are listed in Table 2.

3.4. Pattern Recognition

The data obtained through the above processing should be input into a classifier for
pattern recognition that can extract human actions from sEMG signals through machine-
learning (ML) methods. The classifier can then be applied to specific scenes, such as HMIs
or prosthesis control. Academic research has focused on the type of classifier used and
how to improve the accuracy of classification. In recent studies, Support Vector Machines
(SVMs), Linear Discriminant Analysis (LDA), K-Nearest Neighbor (KNN), Decision Trees
(DTs), Random Forest (RF), the Hidden Markov Model (HMM), Bayesian Classifiers (BCs),
Fuzzy Control (FC), Recurrent Neural Networks (RNNs), Convolutional Neural Networks
(CNNs), and Artificial Neural Networks (ANNs) as well as their improved models have
been used to identify sEMG.

The performance of different classifiers in different scenarios may vary significantly
when using machine-learning methods. Therefore, in recent studies, researchers have used
various methods to simultaneously compare and select those with better performance.
After extracting six TD features from the same dataset, a SVM, LDA, and KNN were
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used for classification in Hussein’s work, with accuracy rates of 96.16%, 95.07%, and
88.33%, respectively. For the SVM, the RBF core achieves a higher accuracy than the linear
method [54].

In [11,24], the collected sEMG signal was mapped to the control commands using a
machine-learning approach based on a Gaussian Process, where a space velocity (three
dimensions) and a binary trigger signal were decoded. Then, the LDA classifier was used
to interpret the binary trigger signal from the training data.

DT, LibSVM, KNN, and NaiveBayes, which are supported by the open-source machine
tool Weka, were compared in [40]. For LibSVM, a grid search algorithm tunes the best RBF
kernel parameters. The other three classifiers used default parameters. The experimental
results show that the four classifiers LibSVM, KNN, DT, and NaiveBayes achieved 96.16%,
94.02%, 76.18%, and 63.87% accuracy, respectively, in the intra-subject test.

In a study of sEMG-controlled upper-limb prostheses under force variation condi-
tions, the average error rates of LDA, RF, NaiveBayes, and KNN (k = 3) for hand gesture
recognition were 17.42%, 17.97%, 19.07%, and 19.14%, respectively [27].

Long Short-Term Memory (LSTM) has been applied to gait phase recognition in a
low-cost system [95]. LSTM has been used to solve the problem of long-term dependence
in general RNNs since it was designed. It can effectively transfer and express information
in a long time series without causing useful information to be ignored (forgotten).
Simultaneously, LSTM can solve the problem of gradient disappearance/explosion in
RNNs. The proposed method achieved average classification accuracies of 94.10%,
87.25%, 90.71%, 94.02%, and 87.87%, respectively, for different gaits. In addition, the
proposed system exhibits an advantage in terms of real-time performance, with a low
average time consumption.

Reference [34] worked on daily activity monitoring and fall detection based on sEMG
and an accelerometer (ACC). The two signals were input into double-stream HMMs,
a double stochastic process including Markov chains and a general stochastic process.
O = {OE, OA} is the model of the two-stream feature sequences, where OE denotes the
sEMG signals, and OA denotes the ACC signals. The corresponding parameters of the two
models, such as the transition probability matrix and observation probability distribution,
were obtained through model training. The experimental results for 387 activities showed
that the HMM achieved an average recognition accuracy of 98.3%.

Kiguchi’s research [23,76,85,87,91,93,117] focused on applying neuro-fuzzy theory to
control a power-assist exoskeleton of the upper limbs. In [23], the authors established a
4 × 12 mapping matrix between the RMS of a 12-channel sEMG and a 4-DOF upper limb
(shoulder and elbow) motion. Each element in this matrix is the weight of each channel
signal to 4-DOF torque. The neuro-fuzzy model is used to modify the weight value in the
matrix so that the weight value can consider the influence of upper-limb posture and adapt
to individual differences. The four joint angles were the inputs of the neuro-fuzzy modifier.
After calculating the fuzzifier, rule, and defuzzifier layers, the weights were modified. The
experimental results show that the model can effectively reduce the force level of users
when they operate the exoskeleton.

Elahe proposed a novel deep architecture, referred to as XceptionTime, which inte-
grates depth-wise separable convolutions, adaptive average pooling, and a new non-linear
normalization technique. By connecting these modules in a series, XceptionTime can extract
both temporal and spatial messages without the need for data augmentation or manual
feature extraction. In addition, this model is more robust to input, less complex, and less
likely to overfit. Based on the Nina dataset, DB1, the result indicates a better performance
than other methods [124].

3.5. Datasets

Generally, the specific fields of research are different, and most researchers have
conducted unique experiments on their topics. Thus, the datasets in different studies are
quite different and are not universal. However, studies on biceps brachii, triceps brachii,
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and hand gesture-related muscles are more popular. Some authors have contributed to
open-source datasets of these muscles for future work.

Jarque-Bou provides a database of kinematics and sEMG of the forearm and hand,
called the KIN-MUS UJI Dataset, recording 572 forearm angles and muscle activities of
22 subjects during activities of daily living [73]. The sEMG and Inertial Measurement Unit
(IMU) signals of the forearm during typing, push-ups, weightlifting, and rest were collected
using the Myo Thalamic band in Khan’s study [53]. Al-Timemy AH provided EMG signals
for patients with radial artery amputation for prosthetic control [27]. A dataset related to
the hand movements of amputees provided in [125] can be used to study the relationship
between the sEMG signal, hand kinematics, and hand force. Zhu used the Myo band to
collect datasets under non-ideal conditions, including electrode displacement, individual
differences, muscle fatigue, daytime differences, arm posture, and other factors, for robust
research on the sEMG control system [66]. The literature [72] records 12 high-density
sEMG signals of gestures for gesture recognition and the development of muscle–computer
interfaces (MCIs). In [39], gesture recognition was based on the CapgMyo and CSLHDEMG
datasets. Mónica provides a record of high-density EMG signals of five muscles of the
upper limb [89]. Cene provides an open-source dataset of the upper limb for an Extreme
Learning Machine (ELM) limit learning machine for intention detection [50]. Mohammed
provided a method for simulating and generating EMG data from healthy individuals [114].

4. Application of sEMG Interface in Robot Control

The unique advantage of EMG in driving robots is its ability to capture bioelectric
signals released during muscle contraction. The practicality, convenience, and earlier-
than-movement characteristics of sEMG sensors also enable real-time control of robots. In
the existing research, controlled robots are not limited to popular mechanical arms and
exoskeletons. Wearable mechanical dexterous hands and gloves are also common in the
rehabilitation field, and some scholars have studied the control of mobile robots, such as
wheelchairs and wheeled robots. The control methods and difficulty levels vary for the
different types of devices used in applications. In Section 4.1, we will discuss the differences
in control strategies used in current research when the similarity between human motion
and robot motion is different. In Section 4.2, we distinguish two methods for extracting
human motion information from sEMG. These two different methods, combined with the
three control strategies in Section 4.1, will form different robot control schemes.

4.1. Classification of Robot Control Strategies

The use of sEMG signals to drive robots or prosthetics can assist individuals with
movement disorders in activities or enhance their movement abilities. Rehabilitation
robots using neural interfaces have promising potential for the treatment of post-stroke
patients. The control strategies for robots using sEMG interfaces can be generally cate-
gorized into full-human continuous control (S1), semi-autonomous continuous control
(S2), and discrete control (S3). Their characteristics and related research are detailed in
the following paragraphs.

4.1.1. Full-Human Continuous Control Strategy (S1)

Under this control strategy, the movement of the robot is entirely dependent on muscle
activation information. The robot begins to move synchronously when the signal collected
by the sEMG interface exceeds a given threshold. Typically, a robot’s movement mimics
human limb movement or collaborates with the subject to accomplish tasks when using
this control strategy.

A Gaussian regression process-based method was used to control the manipulator in
Vogel’s study. They decoded biological signals using a Gaussian regression process and
mapped an eight-channel sEMG to directed velocity-based 2D or 3D control commands
for manipulator control in a microgravity (space) environment [11]. In [24,37], a machine-
learning method based on the Gaussian regression process was used to transform the
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EMG signals of SMA patients into force and velocity control commands for a manipulator.
Weitschat proposed a spherical linear interpolation motion-planning method that allows
an sEMG-controlled manipulator to imitate human motion with a short delay [28].

Artemiadis and Kyriakopoulos dimensionally reduced the acquired sEMG signals
to two dimensions and mapped them to the four joint angles of the shoulder and elbow
joints [82,86,88]. By interacting with a 4-DOF manipulator, the hand position and inter-
action force, which can be used as exoskeleton control, are obtained through the forward
kinematics and dynamics of the human body.

Grafakos implemented variable admittance control for a 7-DOF manipulator based
on sEMG and compared it with constant admittance control in terms of motion accuracy,
execution time, and energy consumption [35]. Li implemented adaptive impedance control
for an upper-limb exoskeleton using sEMG [126].

Fuzzy neural networks were used to model the various factors of the dominant
muscles when the upper arm shoulder-elbow joint was in different positions in Kiguchi’s
work. The model takes multi-channel sEMG signals as input and maps them to the
joint torques on the human upper limb. The resulting model is applied to control
exoskeletons [23,76,85,87,91,93,117].

Li et al. collected sEMG information from agonist and antagonist muscles simulta-
neously to calculate the exoskeleton’s joint torque control and applied LDA classifiers to
improve the classification efficiency at each joint [22].

Liu et al. proposed a method to adapt a household rehabilitation bilateral exoskeleton’s
stiffness based on the user’s dynamic motion using sEMG and upper-limb musculoskeletal
models [3]. Ding proposed a model that combines Hill’s muscle model and human dynam-
ics to estimate the joint angular velocity and joint angle, which can be applied to drive a
manipulator [81].

Sun et al. controlled a simple single-axis robot for upper-limb rehabilitation training
for stroke patients using myoelectric signals from the triceps brachii [7]. Minatil proposed
a control method for a 6-DOF robot that combines multi-sensor fusion perception and
control, including eye tracking, EEG, EMG, and head motion sensors. This control method
can be applied to control wheelchairs and daily assistive robots [127].

Zeng proposed an HRI method that combines both active and antagonist myoelectric
signals to control a robotic gripper, allowing users to change grip stiffness by altering the
degree of muscle contraction [49]. HRI can be applied to the remote operation of robots
and the design of prosthetics. In [71], a hand synergistic control method combining a
multifactor model and sEMG signals was proposed. A five-finger robotic hand with two
degrees of freedom for each finger is illustrated in [69]. This robotic hand was driven by
sEMG signals from the forearm, and control commands were generated by the classification
results of EMG using the Random Forest (RF) method.

Khoshdel introduced a method that applies an ANN to estimate lower-limb strength
from sEMG signals and apply it to a knee rehabilitation robot. Both human and robot
models were simulated and experimentally validated using OpenSim [62,98]. In [4], a
6-DOF parallel robot was controlled by four channels of sEMG signals from the lower limb
and applied to lower-limb rehabilitation. Fan used a fuzzy neural network to identify a
user’s motion intent based on sEMG and interactive forces [18]. The lower-limb exoskeleton
robot uses the estimated human motion as the control command and feedback with the
exoskeleton joint angle, forming a closed-loop rehabilitation system for human–machine
collaboration. Malosio designed a spherical parallel 3-DOF robot for ankle-foot joint
rehabilitation using sEMG and interactive force [2].

Kuan et al. combined binary intent estimation based on a SVM for sEMG classification
and continuous intent estimation based on linear regression for force prediction for the
control of a rehabilitation robot, which can help improve joint mobility in the human
body [112]. Jain et al. studied an artificial finger that could perform biomimetic movements
using sEMG signals from the index finger. This artificial finger was made of an ion-polymer
metal composite material [128].
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4.1.2. Semi-Autonomous Continuous Control Strategy (S2)

This strategy frequently requires a combination of many sensors, notably vision,
for perception. The robot system follows the sEMG signal for movement and then uses
signals from additional sensors to sense the surrounding environment and objects, further
determining the user’s motion intention and automatically executing a pre-programmed
task template to aid in fulfilling the task.

Vogel provides shared control templates, which employ the subject’s sEMG signals to
direct the robotic arm’s motion by combining visual perception from a camera with pre-set
task action templates, such as drinking water, opening doors, and picking up objects. Based
on this, the control computer infers the user’s task intention and calls a shared control
template for the robotic arm to aid the user in performing the task. During this procedure,
the motion of the robotic arm is no longer solely determined by the sEMG signals [16,25,83].

Shenoy employs a different semi-automatic control method, extracting only the direc-
tion of movement from a recorded sEMG signal with a predefined speed and joint torque
for the movement of a robotic arm [60]. Activation of the hand extensor and abductor
pollicis brevis muscles controls the opening and closing of a wearable five-fingered me-
chanical hand with the motor moving at a constant angular velocity, as described in [42].
This artificial hand was utilized for hand rehabilitation training after a stroke.

4.1.3. Discrete Control Strategy (S3)

Unlike the previous two control strategies, in this strategy, the human and robot move-
ments are often dissimilar. The most convenient and commonly used human movement
involves various gestures, and there are studies using other limb movements of amputees.
On the other hand, robot movements are expressed as movement or joint rotation, and
there are more types of controllable devices. However, this type of control only uses sEMG
signals for simple threshold control switch-label settings for specific movements. The
control logic is simple but limited to simple scenarios involving few movements. For
scenarios with many movements, a certain amount of learning is required.

Murillo defined five gestures as motion commands for a multi-axis mechanical arm,
recorded sEMG signals using the Myo armband, identified them, and then controlled the
mechanical arm to move in a predetermined manner [33]. Hassan collected EMG signals
from the forearm using the Myo armband and compared the recognition accuracies of the
SVM, LDA, and KNN algorithms [54]. The gesture recognition results were applied to
control a mechanical arm with 5-DOF. In [31], the Myo armband was applied to recognize
motions using sEMG and IMU signals, and the recognition results were used to control a
PeopleBot home robot.

Chen mapped the sEMG signals of seven gestures to the movement and grasping
of a mechanical arm, which matched seven predetermined movements [52]. The cor-
responding mechanical arm control commands were obtained from the results of SVM
classification. Gowtham employed sEMG and IMU to control a 5-DOF mechanical arm,
where the IMU signals of the left and right arms controlled the movement of four rotating
DOF, and the sEMG signal of the palm opening and closing controlled the movement
of the end gripper [129]. Abayasiri controlled the movement of electric wheelchairs and
gripped mechanical arms using sEMG signals from both upper limbs [85]. Maeda devel-
oped eight wrist movements and mapped them using fuzzy logic for wheelchair motion
commands [78].

Duan investigated the utilization of residual limb gestures of amputees for prosthesis
control via EMG signals [65]. Shenoy et al. applied SVM classification to classify sEMG
signals and mapped the results to four predetermined gestures, allowing a prosthetic robot
to perform grabbing, left-right, up-and-down, and rotating movements [60]. AL-Quraishi
et al. applied the results to the control of dexterous hand prostheses using sEMG signals
from the forearms of amputees for motion classification recognition [6].

Lu et al. utilized four-channel sEMG signals from his forearm and hand to define
six distinct actions and accomplished real-time control of a wearable five-finger robot for
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hand mobility rehabilitation training [20]. Bisi et al. defined ten gestures and utilized the
KNN algorithm for sEMG classification recognition, translating these into mobile robot
control commands [44]. Tamilsenlvi et al. designed a simple mechanical arm for amputees
that could be controlled by a sEMG interface for rudimentary movements [26]. Nam
et al. proposed a human–machine interface based on the fusion of three sensors: glosso-
kinetic potential, electrooculogram, and EMG signals from facial muscles, providing robot
assistance for people with limb movement disorders or complete paralysis [17].

4.2. Robot Control Methods Using sEMG Interfaces

In the research mentioned in the previous section, the methods for translating sEMG
signals into robot control commands can be divided into the following two categories:

Human Model-Based Method (M1): M1 involves solving muscle activation levels
from sEMG data, estimating human motion based on musculoskeletal models and human
dynamics, and commanding robots for human–robot collaboration activities or exoskeleton
devices to follow human motion.

Machine-Learning-Based Method (M2): M2 considers the physical system of muscle-
driven bone movement in the human body as a black box and uses machine-learning
techniques to directly convert sEMG signals to the joint torque and joint angle. Then, the
position, velocity, and force control are implemented based on the kinematics of the robot.
Interestingly, Bu starts with processed sEMG pictures and uses the YOLO algorithm to
identify joint movement and detect joint angles [79].

Figure 3 shows the relationship between control methods and control strategies. When
using muscle signals from limb movement (arms or legs), most researchers employ the M1
or M2 approaches. Generally, more studies adopt the M2 than the M1. The reason for this,
in the author’s opinion, is that human modeling based on physiology and biomechanics
is highly complex, and it is difficult to guarantee its accuracy. In addition, this form of
the model is easily affected by individual variances, leading to low generalizability. Hand
gesture movements involve so many muscles and bones that it is difficult to discuss their
dynamics. Hence, hand gesture-related research uses the machine-learning method M2 to
make the process easier.
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5. Discussion and Future Perspectives

sEMG signals contain rich information, which can not only reflect the level of muscle
activation and the strength of contraction, but also extract information on limb movement
control, limb impedance, and muscle fatigue. The use of sEMG sensors does not require
complex operations, and signals can be obtained by attaching electrodes to the skin, which is
simple, convenient, and efficient. sEMG precedes movement, which makes it advantageous
as a control interface for devices, and it can be used to predict human motion in real time.
The myoelectric signals of the residual muscle can still provide movement information for
people with movement disorders or amputations.

However, there are still some unresolved challenges in using sEMG as a control signal
for robotic arms. The information obtained from sEMG is ambiguous. The biological
signals of adjacent muscles overlap and form cross-talk, making it difficult to extract
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specific muscle information. Factors such as the electrode position and muscle fatigue
during movement also affect the collected data. Differences between individuals, such
as muscle development level and health status, mean the same control algorithm needs
adjustment to its parameters to be applied to different people. There are few studies on
individual differences, and the use of machine-learning methods to train with large sample
sizes can reduce the negative effects of such differences to some extent.

After more than 20 years of research, pre-processing methods and the selection of
signal feature sets for sEMG signals have matured. Currently, the research focuses mainly
on the following two areas: one is the improvement and innovation of pattern recognition
algorithms based on machine learning to achieve higher classification performance, mainly
in terms of accuracy; the other is the design of new HMIs based on sEMG.

Many studies have been conducted on the use of sEMG for discrete robot control.
These studies used supervised learning methods to map predefined actions onto the
actions of the robot. Although this method is simple, its disadvantage is that the robot’s
movement capability is limited, and it can only perform several predetermined actions.
Conversely, using sEMG to recognize continuous movement intentions and control the
robot can greatly improve the flexibility of the controlled device; however, it is difficult to
conduct theoretical research on the complex human muscle-bone model, which increases
the difficulty of research.

In clinical medicine, sEMG can be used as biofeedback for the treatment of diseases
such as Parkinson’s disease and stroke. De Luca’s research is dedicated to decomposing
the obtained sEMG signal into motor unit action potentials (MUAP).

As an emerging technology, sEMG has been widely researched and applied in fields
such as rehabilitation therapy, sports, and the design of new human–robot interactions.
With the continuous progress of technology and the decrease in cost, the practicality, conve-
nience, and uniqueness of sEMG sensors will mean they have good development prospects.

6. Conclusions

This study selected 129 relevant articles in the sEMG field over the past 20 years to
summarize the research on sEMG signal processing methods, machine-learning-based
sEMG pattern recognition methods, and sEMG-driven robot control methods and provide
an overview of the advantages and disadvantages of using sEMG for robot control, as well
as discuss the current research hotspots and challenges.

Owing to the different situations of subjects in various studies, as well as the different
objects for signal acquisition and criteria for motion classification, it is of limited significance
to directly compare the classification accuracy achieved in these experiments. This review
does not include these in the table for comparison purposes.
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Abbreviations

Abbreviation Complete Spelling
AMP Amplitude
ANN Artificial Neural Network
AR Autoregressive Coefficient
BPNN Back-Propagation Neural Network
CC Cepstrum Coefficient
ConvEMG Convolutional Electromyography
CRNN Convolutional Recurrent Neural Network
CviT Convolutional Vision Transformer
DT Decision Tree
ELM Extreme Learning Machine
EMD Empirical Mode Decomposition
ESECW Empirical Mode Filtering and Self-Enhancement Algorithm with Classical Wavelet
fApEn Fuzzy Approximate Entropy
FD Frequency Domain
FFT Fast Fourier Transform
GRU Gate Recurrent Unit
HIST Histogram
IAV Integral of Absolute Value
IEMG Integrated Electromyography
KNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
LDB Local Discriminant Basis
LOG Log Detector
LSTM Long Short-Term Memory
MAV Mean Absolute Value
MDF Median Frequency
mDWT Marginal Discrete Wavelet Transform
MEMD Multivariate Empirical Mode Decomposition
MF Mean Frequency
MFR Mean Firing Rate
MLP Multi-Layer Perceptron
MNF Mean Frequency
MPF Mean Power Frequency
NN Neural Network
OFNDA Orthogonal Fuzzy Neighborhood Discriminant Analysis
OMA Online Moving Average
PCA Principal Component Analysis
RF Random Forest
RMS Root Mean Square
RNN Recurrent Neural Network
SampEn Sample Entropy
SD Standard Deviation
SSC Slope Sign Change
SSD Sum of Squares Difference
SSI Simple Square Integral
STFT Short-Time Fourier Transform
SUKF Scale Unscented Kalman Filter
SVM Support Vector Machine
SVR Support Vector Regression
TD Time Domain
VAR/VR Variance
WL Waveform Length
WPT Wavelet Packet Transform
ZCR Zero Cross Rate
ZC Zero Cross



Appl. Sci. 2023, 13, 9546 16 of 21

References
1. Neblett, R.; Gatchel, R.J.; Mayer, T.G. A Clinical Guide to Surface-EMG-Assisted Stretching as an Adjunct to Chronic Muscu-

loskeletal Pain Rehabilitation. Appl. Psychophysiol. Biofeedback 2003, 28, 147–160. [CrossRef] [PubMed]
2. Malosio, M.; Negri, S.P.; Pedrocchi, N.; Vicentini, F.; Caimmi, M.; Molinari Tosatti, L. A Spherical Parallel Three Degrees-of-

Freedom Robot for Ankle-Foot Neuro-Rehabilitation. In Proceedings of the 2012 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; IEEE: San Diego, CA, USA,
2012; pp. 3356–3359.

3. Liu, Y.; Guo, S.; Yang, Z.; Hirata, H.; Tamiya, T. A Home-Based Bilateral Rehabilitation System With SEMG-Based Real-Time
Variable Stiffness. IEEE J. Biomed. Health Inform. 2021, 25, 1529–1541. [CrossRef] [PubMed]

4. Meng, W.; Ding, B.; Zhou, Z.; Liu, Q.; Ai, Q. An EMG-Based Force Prediction and Control Approach for Robot-Assisted Lower
Limb Rehabilitation. In Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San
Diego, CA, USA, 5–8 October 2014; IEEE: San Diego, CA, USA, 2014; pp. 2198–2203.

5. Khoshdel, V.; Akbarzadeh, A. An Optimized Artificial Neural Network for Human-Force Estimation: Consequences for Rehabili-
tation Robotics. IR 2018, 45, 416–423. [CrossRef]

6. AL-Quraishi, M.S.; Ishak, A.J.; Ahmad, S.A.; Hasan, M.K.; Al-Qurishi, M.; Ghapanchizadeh, H.; Alamri, A. Classification of Ankle
Joint Movements Based on Surface Electromyography Signals for Rehabilitation Robot Applications. Med. Biol. Eng. Comput.
2017, 55, 747–758. [CrossRef] [PubMed]

7. Sun, R.; Song, R.; Tong, K. Complexity Analysis of EMG Signals for Patients After Stroke During Robot-Aided Rehabilitation
Training Using Fuzzy Approximate Entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 1013–1019. [CrossRef]

8. Stock, M.S.; Thompson, B.J. Effects of Barbell Deadlift Training on Submaximal Motor Unit Firing Rates for the Vastus Lateralis
and Rectus Femoris. PLoS ONE 2014, 9, e115567. [CrossRef]

9. Swanson, B.T.; Holst, B.; Infante, J.; Poenitzsch, J.; Ortiz, A. EMG Activity of Selected Rotator Cuff Musculature during Grade
III Distraction and Posterior Glide Glenohumeral Mobilization: Results of a Pilot Trial Comparing Painful and Non-Painful
Shoulders. J. Man. Manip. Ther. 2016, 24, 7–13. [CrossRef]

10. McCurdy, K.; Walker, J.; Yuen, D. Gluteus Maximus and Hamstring Activation During Selected Weight-Bearing Resistance
Exercises. J. Strength. Cond. Res. 2018, 32, 594–601. [CrossRef]

11. Hagengruber, A.; Leipscher, U.; Eskofier, B.M.; Vogel, J. Electromyography for Teleoperated Tasks in Weightlessness. IEEE Trans.
Hum.-Mach. Syst. 2021, 51, 130–140. [CrossRef]

12. Potvin, J.R.; Norman, R.W.; McGill, S.M. Mechanically Corrected EMG for the Continuous Estimation of Erector Spinae Muscle
Loading during Repetitive Lifting. Europ. J. Appl. Physiol. 1996, 74, 119–132. [CrossRef]

13. Wang, X.; Zhu, M.; Samuel, O.W.; Yang, Z.; Lu, L.; Cai, X.; Wang, X.; Chen, S.; Li, G. A Pilot Study on the Performance of
Time-Domain Features in Speech Recognition Based on High-Density SEMG. In Proceedings of the 2021 43rd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; IEEE:
Guadalajara, Mexico, 2021; pp. 19–22.

14. Trevino, M.A.; Herda, T.J.; Cooper, M.A. The Effects of Poliomyelitis on Motor Unit Behavior during Repetitive Muscle Actions:
A Case Report. BMC Res. Notes 2014, 7, 611. [CrossRef]

15. De Luca, C.J. The Use of Surface Electromyography in Biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [CrossRef]
16. Vogel, J.; Haddadin, S.; Jarosiewicz, B.; Simeral, J.D.; Bacher, D.; Hochberg, L.R.; Donoghue, J.P.; van der Smagt, P. An Assistive

Decision-and-Control Architecture for Force-Sensitive Hand–Arm Systems Driven by Human–Machine Interfaces. Int. J. Robot.
Res. 2015, 34, 763–780. [CrossRef]

17. Nam, Y.; Koo, B.; Cichocki, A.; Choi, S. GOM-Face: GKP, EOG, and EMG-Based Multimodal Interface With Application to
Humanoid Robot Control. IEEE Trans. Biomed. Eng. 2014, 61, 453–462. [CrossRef] [PubMed]

18. Fan, Y. Study on Lower Limb Exoskeleton for Rehabilitation Based on Multi-Source Information Fusion Including SEMG &
Interactive Force and Its Clinical Trail. Ph.D. Dissertation, Shanghai Jiao Tong University, Shanghai, China, 2014.

19. Artemiadis, P. EMG-Based Robot Control Interfaces: Past, Present and Future. Adv. Robot. Autom. 2012, 1, 1000e107. [CrossRef]
20. Lu, Z.; Chen, X.; Zhang, X.; Tong, K.-Y.; Zhou, P. Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern

Recognition. Int. J. Neur. Syst. 2017, 27, 1750009. [CrossRef]
21. Secciani, N.; Topini, A.; Ridolfi, A.; Meli, E.; Allotta, B. A Novel Point-in-Polygon-Based SEMG Classifier for Hand Exoskeleton

Systems. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 3158–3166. [CrossRef]
22. Li, Z.; Wang, B.; Sun, F.; Yang, C.; Xie, Q.; Zhang, W. SEMG-Based Joint Force Control for an Upper-Limb Power-Assist Exoskeleton

Robot. IEEE J. Biomed. Health Inform. 2014, 18, 1043–1050. [CrossRef]
23. Kiguchi, K.; Quan, Q. Muscle-Model-Oriented EMG-Based Control of an Upper-Limb Power-Assist Exoskeleton with a Neuro-

Fuzzy Modifier. In Proceedings of the 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computa-
tional Intelligence), Hong Kong, China, 1–6 June 2008; IEEE: Hong Kong, China, 2008; pp. 1179–1184.

24. Hagengruber, A.; Vogel, J. Functional Tasks Performed by People with Severe Muscular Atrophy Using an SEMG Controlled
Robotic Manipulator. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; IEEE: Honolulu, HI, USA, 2018; pp. 1713–1718.

https://doi.org/10.1023/A:1023814709858
https://www.ncbi.nlm.nih.gov/pubmed/12827993
https://doi.org/10.1109/JBHI.2020.3027303
https://www.ncbi.nlm.nih.gov/pubmed/32991291
https://doi.org/10.1108/IR-10-2017-0190
https://doi.org/10.1007/s11517-016-1551-4
https://www.ncbi.nlm.nih.gov/pubmed/27484411
https://doi.org/10.1109/TNSRE.2013.2290017
https://doi.org/10.1371/journal.pone.0115567
https://doi.org/10.1080/10669817.2015.1106819
https://doi.org/10.1519/JSC.0000000000001893
https://doi.org/10.1109/THMS.2020.3047975
https://doi.org/10.1007/BF00376504
https://doi.org/10.1186/1756-0500-7-611
https://doi.org/10.1123/jab.13.2.135
https://doi.org/10.1177/0278364914561535
https://doi.org/10.1109/TBME.2013.2280900
https://www.ncbi.nlm.nih.gov/pubmed/24021635
https://doi.org/10.4172/2168-9695.1000e107
https://doi.org/10.1142/S0129065717500095
https://doi.org/10.1109/TNSRE.2020.3044113
https://doi.org/10.1109/JBHI.2013.2286455


Appl. Sci. 2023, 13, 9546 17 of 21

25. Vogel, J.; Hagengruber, A.; Iskandar, M.; Quere, G.; Leipscher, U.; Bustamante, S.; Dietrich, A.; Hoppner, H.; Leidner, D.;
Albu-Schaffer, A. EDAN: An EMG-Controlled Daily Assistant to Help People With Physical Disabilities. In Proceedings of the
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24
January 2021; IEEE: Las Vegas, NV, USA, 2020; pp. 4183–4190.

26. Tamilselvi, R.; Merline, A.; Beham, M.P.; Anand, R.V.; Karthik, M.S.; Uthayakumar, R.H. EMG Activated Robotic Arm for
Amputees. In Proceedings of the 2018 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore,
India, 19–20 January 2018; IEEE: Coimbatore, India, 2018; pp. 456–461.

27. Al-Timemy, A.H.; Khushaba, R.N.; Bugmann, G.; Escudero, J. Improving the Performance Against Force Variation of EMG
Controlled Multifunctional Upper-Limb Prostheses for Transradial Amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24,
650–661. [CrossRef]

28. Weitschat, R.; Dietrich, A.; Vogel, J. Online Motion Generation for Mirroring Human Arm Motion. In Proceedings of the 2016
IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; IEEE: Stockholm,
Sweden, 2016; pp. 4245–4250.

29. Hill, A.V. The Heat of Shortening and the Dynamic Constants of Muscle. Proc. R. Soc. Lond. B 1938, 126, 136–195. [CrossRef]
30. Holmes, J.W. Teaching from Classic Papers: Hill’s Model of Muscle Contraction. Adv. Physiol. Educ. 2006, 30, 67–72. [CrossRef]

[PubMed]
31. Morais, G.D.; Neves, L.C.; Masiero, A.A.; Castro, M.C.F. Application of Myo Armband System to Control a Robot Interface. In

Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies, Rome, Italy, 21–23
February 2016; SCITEPRESS-Science and and Technology Publications: Rome, Italy, 2016; pp. 227–231.

32. Atzori, M.; Gijsberts, A.; Kuzborskij, I.; Elsig, S.; Mittaz Hager, A.-G.; Deriaz, O.; Castellini, C.; Muller, H.; Caputo, B. Characteri-
zation of a Benchmark Database for Myoelectric Movement Classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 73–83.
[CrossRef] [PubMed]

33. Murillo, P.U.; Moreno, R.J.; Avilés, O. Individual Robotic Arms Manipulator Control Employing Electromyographic Signals
Acquired by Myo Armbands. Int. J. Appl. Eng. Res. 2016, 11, 11241–11249.

34. Cheng, J.; Chen, X.; Shen, M. A Framework for Daily Activity Monitoring and Fall Detection Based on Surface Electromyography
and Accelerometer Signals. IEEE J. Biomed. Health Inform. 2013, 17, 38–45. [CrossRef] [PubMed]

35. Grafakos, S.; Dimeas, F.; Aspragathos, N. Variable Admittance Control in PHRI Using EMG-Based Arm Muscles Co-Activation.
In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12
October 2016; IEEE: Budapest, Hungary, 2016; pp. 001900–001905.

36. Dost Sürücü, G.; Tezen, Ö. The Effect of EMG Biofeedback on Lower Extremity Functions in Hemiplegic Patients. Acta Neurol.
Belg. 2021, 121, 113–118. [CrossRef]

37. Vogel, J.; Hagengruber, A. An SEMG-Based Interface to Give People with Severe Muscular Atrophy Control over Assistive
Devices. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; IEEE: Honolulu, HI, USA, 2018; pp. 2136–2141.

38. Lu, Z.; Chen, X.; Li, Q.; Zhang, X.; Zhou, P. A Hand Gesture Recognition Framework and Wearable Gesture-Based Interaction
Prototype for Mobile Devices. IEEE Trans. Hum.-Mach. Syst. 2014, 44, 293–299. [CrossRef]

39. Hao, S.; Wang, R.; Wang, Y.; Li, Y. A Spatial Attention Based Convolutional Neural Network for Gesture Recognition with
HD-SEMG Signals. In Proceedings of the 2020 IEEE International Conference on E-health Networking, Application & Services
(HEALTHCOM), Shenzhen, China, 1–2 March 2021; IEEE: Shenzhen, China, 2021; pp. 1–6.

40. Wu, J.; Sun, L.; Jafari, R. A Wearable System for Recognizing American Sign Language in Real-Time Using IMU and Surface EMG
Sensors. IEEE J. Biomed. Health Inform. 2016, 20, 1281–1290. [CrossRef]

41. McManus, L.; Hu, X.; Rymer, W.Z.; Lowery, M.M.; Suresh, N.L. Changes in Motor Unit Behavior Following Isometric Fatigue of
the First Dorsal Interosseous Muscle. J. Neurophysiol. 2015, 113, 3186–3196. [CrossRef] [PubMed]

42. Hu, X.L.; Tong, K.Y.; Wei, X.J.; Rong, W.; Susanto, E.A.; Ho, S.K. Coordinated Upper Limb Training Assisted with an Electromyog-
raphy (EMG)-Driven Hand Robot after Stroke. In Proceedings of the 2013 35th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; IEEE: Osaka, Japan, 2013; pp. 5903–5906.

43. Cote-Allard, U.; Fall, C.L.; Drouin, A.; Campeau-Lecours, A.; Gosselin, C.; Glette, K.; Laviolette, F.; Gosselin, B. Deep Learning for
Electromyographic Hand Gesture Signal Classification Using Transfer Learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27,
760–771. [CrossRef]

44. Bisi, S.; De Luca, L.; Shrestha, B.; Yang, Z.; Gandhi, V. Development of an EMG-Controlled Mobile Robot. Robotics 2018, 7, 36.
[CrossRef]

45. Li, Z.; Zhao, X.; Liu, G.; Zhang, B.; Zhang, D.; Han, J. Electrode Shifts Estimation and Adaptive Correction for Improving
Robustness of SEMG-Based Recognition. IEEE J. Biomed. Health Inform. 2021, 25, 1101–1110. [CrossRef] [PubMed]

46. Mao, L.; Yin, K.; Shen, J. Evaluation of SEMG Pattern Recognition: A Preliminary Study for Prostheses. In Proceedings of the 2021
IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14
March 2021; IEEE: Chongqing, China, 2021; pp. 955–959.

47. Suresh, N.; Li, X.; Zhou, P.; Rymer, W.Z. Examination of Motor Unit Control Properties in Stroke Survivors Using Surface EMG
Decomposition: A Preliminary Report. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; IEEE: Boston, MA, USA, 2011; pp. 8243–8246.

https://doi.org/10.1109/TNSRE.2015.2445634
https://doi.org/10.1098/rspb.1938.0050
https://doi.org/10.1152/advan.00072.2005
https://www.ncbi.nlm.nih.gov/pubmed/16709736
https://doi.org/10.1109/TNSRE.2014.2328495
https://www.ncbi.nlm.nih.gov/pubmed/25486646
https://doi.org/10.1109/TITB.2012.2226905
https://www.ncbi.nlm.nih.gov/pubmed/24234563
https://doi.org/10.1007/s13760-019-01261-w
https://doi.org/10.1109/THMS.2014.2302794
https://doi.org/10.1109/JBHI.2016.2598302
https://doi.org/10.1152/jn.00146.2015
https://www.ncbi.nlm.nih.gov/pubmed/25761952
https://doi.org/10.1109/TNSRE.2019.2896269
https://doi.org/10.3390/robotics7030036
https://doi.org/10.1109/JBHI.2020.3012698
https://www.ncbi.nlm.nih.gov/pubmed/32750979


Appl. Sci. 2023, 13, 9546 18 of 21

48. Meattini, R.; Benatti, S.; Scarcia, U.; Benini, L.; Melchiorri, C. Experimental Evaluation of a SEMG-Based Human-Robot Interface
for Human-like Grasping Tasks. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO),
Zhuhai, China, 6–9 December 2015; IEEE: Zhuhai, China, 2015; pp. 1030–1035.

49. Zeng, J.; Zhou, Y.; Yang, Y.; Yan, J.; Liu, H. Fatigue-Sensitivity Comparison of SEMG and A-Mode Ultrasound Based Hand
Gesture Recognition. IEEE J. Biomed. Health Inform. 2022, 26, 1718–1725. [CrossRef] [PubMed]

50. Cene, V.; Tosin, M.; Machado, J.; Balbinot, A. Open Database for Accurate Upper-Limb Intent Detection Using Electromyography
and Reliable Extreme Learning Machines. Sensors 2019, 19, 1864. [CrossRef] [PubMed]

51. Hochberg, L.R.; Bacher, D.; Jarosiewicz, B.; Masse, N.Y.; Simeral, J.D.; Vogel, J.; Haddadin, S.; Liu, J.; Cash, S.S.; van der Smagt,
P.; et al. Reach and Grasp by People with Tetraplegia Using a Neurally Controlled Robotic Arm. Nature 2012, 485, 372–375.
[CrossRef]

52. Chen, M.; Liu, H. Robot Arm Control Method Using Forearm EMG Signals. MATEC Web Conf. 2020, 309, 04007. [CrossRef]
53. Khan, A.M.; Khawaja, S.G.; Akram, M.U.; Khan, A.S. SEMG Dataset of Routine Activities. Data Brief. 2020, 33, 106543. [CrossRef]
54. Hassan, H.F.; Abou-Loukh, S.J.; Ibraheem, I.K. Teleoperated Robotic Arm Movement Using Electromyography Signal with

Wearable Myo Armband. J. King Saud. Univ.-Eng. Sci. 2020, 32, 378–387. [CrossRef]
55. Atzori, M.; Muller, H. The Ninapro Database: A Resource for SEMG Naturally Controlled Robotic Hand Prosthetics. In

Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Milan, Italy, 25–29 August 2015; IEEE: Milan, Italy, 2015; pp. 7151–7154.

56. Liua, C.; Zhou, S.; Hu, S.; Wu, M. Hand Gesture Recognition Based on Semg Signal and Improved SVM Voting Method. In
Proceedings of the 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE),
Dalian, China, 27–29 September 2020; IEEE: Dalian, China, 2020; pp. 605–608.

57. Fazeli, M.; Karimi, F.; Ramezanian, V.; Jahanshahi, A.; Seyedin, S. Hand Motion Classification Using SEMG Signals Recorded from
Dry and Wet Electrodes with Machine Learning. In Proceedings of the 2020 28th Iranian Conference on Electrical Engineering
(ICEE), Tabriz, Iran, 4–6 August 2020; IEEE: Tabriz, Iran, 2020; pp. 1–4.

58. Hameed, H.K.; Hassan, W.Z.W.; Shafie, S.; Ahmad, S.A.; Jaafar, H.; Mat, L.N.I.; Alkubaisi, Y. Identifying the Best Forearm Muscle
to Control Soft Robotic Glove System by Using a Single SEMG Channel. In Proceedings of the 2020 Advances in Science and
Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 4 February–9 April 2020; IEEE: Dubai,
United Arab Emirates, 2020; pp. 1–4.

59. Zhang, Y.; Chen, Y.; Yu, H.; Yang, X.; Lu, W. Learning Effective Spatial–Temporal Features for SEMG Armband-Based Gesture
Recognition. IEEE Internet Things J. 2020, 7, 6979–6992. [CrossRef]

60. Shenoy, P.; Miller, K.J.; Crawford, B.; Rao, R.P.N. Online Electromyographic Control of a Robotic Prosthesis. IEEE Trans. Biomed.
Eng. 2008, 55, 1128–1135. [CrossRef]

61. Zhang, K.; Chen, F. Research on SEMG Gesture Recognition Based on Hybrid Dilated Convolutional Neural Network Combining
Bidirectional Gated Recurrent Unit And Attention Mechanism. In Proceedings of the 2021 China Automation Congress (CAC),
Beijing, China, 22–24 October 2021; IEEE: Beijing, China, 2021; pp. 3760–3763.

62. Wu, C.; Yan, Y.; Cao, Q.; Fei, F.; Yang, D.; Lu, X.; Xu, B.; Zeng, H.; Song, A. SEMG Measurement Position and Feature Optimization
Strategy for Gesture Recognition Based on ANOVA and Neural Networks. IEEE Access 2020, 8, 56290–56299. [CrossRef]

63. Karheily, S.; Moukadem, A.; Courbot, J.-B.; Abdeslam, D.O. SEMG Time–Frequency Features for Hand Movements Classification.
Expert. Syst. Appl. 2022, 210, 118282. [CrossRef]

64. Chen, R.; Chen, Y.; Guo, W.; Chen, C.; Wang, Z.; Yang, Y. SEMG-Based Gesture Recognition Using GRU With Strong Robustness
Against Forearm Posture. In Proceedings of the 2021 IEEE International Conference on Real-time Computing and Robotics
(RCAR), Xining, China, 15–19 July 2021; IEEE: Xining, China, 2021; pp. 275–280.

65. Duan, F.; Dai, L.; Chang, W.; Chen, Z.; Zhu, C.; Li, W. SEMG-Based Identification of Hand Motion Commands Using Wavelet
Neural Network Combined With Discrete Wavelet Transform. IEEE Trans. Ind. Electron. 2016, 63, 1923–1934. [CrossRef]

66. Zhu, B.; Zhang, D.; Chu, Y.; Gu, Y.; Zhao, X. SeNic: An Open Source Dataset for SEMG-Based Gesture Recognition in Non-Ideal
Conditions. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1252–1260. [CrossRef]

67. Chen, Z.; Yang, J.; Xie, H. Surface-Electromyography-Based Gesture Recognition Using a Multistream Fusion Strategy. IEEE
Access 2021, 9, 50583–50592. [CrossRef]

68. Shen, C.; Pei, Z.; Chen, W.; Wang, J.; Zhang, J.; Chen, Z. Toward Generalization of SEMG-Based Pattern Recognition: A Novel
Feature Extraction for Gesture Recognition. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [CrossRef]

69. Santiago, J.L.L.; Rios, P.; Arrustico, D.; Cortez, L. Volitional PD Computed Torque Control Design of a 2-DOF Finger Model
for Cylindrical Grip Movement Assistance with SEMG Signal Classification. In Proceedings of the 2021 IEEE Engineering
International Research Conference (EIRCON), Lima, Peru, 27–29 October 2021; IEEE: Lima, Peru, 2021; pp. 1–4.

70. Zhang, X.; Chen, X.; Zhao, Z.; Li, Q.; Yang, J.; Lantz, V.; Wang, K. An Adaptive Feature Extractor for Gesture SEMG Recognition.
In Medical Biometrics; Zhang, D., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume
4901, pp. 83–90; ISBN 978-3-540-77410-5.

71. Kim, S.; Kim, M.; Lee, J.; Park, J. Robot Hand Synergy Mapping Using Multi-Factor Model and EMG Signal. In Experimental
Robotics; Hsieh, M.A., Khatib, O., Kumar, V., Eds.; Springer Tracts in Advanced Robotics; Springer International Publishing:
Cham, Switzerland, 2016; Volume 109, pp. 671–683; ISBN 978-3-319-23777-0.

https://doi.org/10.1109/JBHI.2021.3122277
https://www.ncbi.nlm.nih.gov/pubmed/34699373
https://doi.org/10.3390/s19081864
https://www.ncbi.nlm.nih.gov/pubmed/31003524
https://doi.org/10.1038/nature11076
https://doi.org/10.1051/matecconf/202030904007
https://doi.org/10.1016/j.dib.2020.106543
https://doi.org/10.1016/j.jksues.2019.05.001
https://doi.org/10.1109/JIOT.2020.2979328
https://doi.org/10.1109/TBME.2007.909536
https://doi.org/10.1109/ACCESS.2020.2982405
https://doi.org/10.1016/j.eswa.2022.118282
https://doi.org/10.1109/TIE.2015.2497212
https://doi.org/10.1109/TNSRE.2022.3173708
https://doi.org/10.1109/ACCESS.2021.3059499
https://doi.org/10.1109/TIM.2022.3141163


Appl. Sci. 2023, 13, 9546 19 of 21

72. Du, Y.; Jin, W.; Wei, W.; Hu, Y.; Geng, W. Surface EMG-Based Inter-Session Gesture Recognition Enhanced by Deep Domain
Adaptation. Sensors 2017, 17, 458. [CrossRef]

73. Jarque-Bou, N.J.; Vergara, M.; Sancho-Bru, J.L.; Gracia-Ibáñez, V.; Roda-Sales, A. A Calibrated Database of Kinematics and EMG
of the Forearm and Hand during Activities of Daily Living. Sci. Data 2019, 6, 270. [CrossRef]

74. Liu, B. Upper Limb Rehabilitation Training and Evaluation System Based on EEG and EMG Signals. Ph.D. Thesis, Zhengzhou
University, Zhengzhou, China, 2020.

75. Li, Z. Parameterization of Human Upper Limb Movement Pattern and Its Application in Rehabilitation Robot. Ph.D. Thesis,
Xinjiang University, Xinjiang, China, 2020.

76. Gopura, R.A.R.C.; Kiguchi, K. A Human Forearm and Wrist Motion Assist Exoskeleton Robot with EMG-Based Fuzzy-Neuro
Control. In Proceedings of the 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics,
Scottsdale, AZ, USA, 19–22 October 2008; IEEE: Scottsdale, AZ, USA, 2008; pp. 550–555.

77. He, X.; Hao, M.; Wei, M.; Xiao, Q.; Lan, N. A Novel Experimental Method to Evaluate Motor Task Control in Parkinson’s Patients.
In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Osaka, Japan, 3–7 July 2013; IEEE: Osaka, Japan, 2013; pp. 6587–6590.

78. Maeda, Y.; Ishibashi, S. Operating Instruction Method Based on EMG for Omnidirectional Wheelchair Robot. In Proceedings
of the 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft
Computing and Intelligent Systems (IFSA-SCIS), Otsu, Japan, 27–30 June 2017; IEEE: Otsu, Japan, 2017; pp. 1–5.

79. Bu, D.; Guo, S.; Li, H. SEMG-Based Motion Recognition of Upper Limb Rehabilitation Using the Improved Yolo-v4 Algorithm.
Life 2022, 12, 64. [CrossRef]

80. Roy, S.H.; Cheng, M.S.; Chang, S.-S.; Moore, J.; De Luca, G.; Nawab, S.H.; De Luca, C.J. A Combined SEMG and Accelerometer
System for Monitoring Functional Activity in Stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 2009, 17, 585–594. [CrossRef]

81. Ding, Q.; Zhao, X.; Xiong, A.; Han, J. A Novel Motion Estimate Method of Human Joint with EMG-Driven Model. In Proceedings
of the 2011 5th International Conference on Bioinformatics and Biomedical Engineering, Wuhan, China, 13–15 May 2011; IEEE:
Wuhan, China, 2011; pp. 1–5.

82. Artemiadis, P.K.; Kyriakopoulos, K.J. An EMG-Based Robot Control Scheme Robust to Time-Varying EMG Signal Features. IEEE
Trans. Inform. Technol. Biomed. 2010, 14, 582–588. [CrossRef]

83. Vogel, J.; Bayer, J.; van der Smagt, P. Continuous Robot Control Using Surface Electromyography of Atrophic Muscles. In
Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013;
IEEE: Tokyo, Japan, 2013; pp. 845–850.

84. Stillfried, G.; Stepper, J.; Neppl, H.; Vogel, J.; Höppner, H. Elastic Elements in a Wrist Prosthesis for Drumming Reduce Muscular
Effort, but Increase Imprecision and Perceived Stress. Front. Neurorobot. 2018, 12, 9. [CrossRef] [PubMed]

85. Abayasiri, R.A.M.; Jayasekara, A.G.B.P.; Gopura, R.A.R.C.; Kiguchi, K. EMG Based Controller for a Wheelchair with Robotic
Manipulator. In Proceedings of the 2021 3rd International Conference on Electrical Engineering (EECon), Colombo, Sri Lanka, 24
September 2021; IEEE: Colombo, Sri Lanka, 2021; pp. 125–130.

86. Artemiadis, P.K.; Kyriakopoulos, K.J. EMG-Based Control of a Robot Arm Using Low-Dimensional Embeddings. IEEE Trans.
Robot. 2010, 26, 393–398. [CrossRef]

87. Kiguchi, K.; Imada, Y.; Liyanage, M. EMG-Based Neuro-Fuzzy Control of a 4DOF Upper-Limb Power-Assist Exoskeleton. In
Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon,
France, 22–26 August 2007; IEEE: Lyon, France, 2007; pp. 3040–3043.

88. Artemiadis, P.K.; Kyriakopoulos, K.J. Estimating Arm Motion and Force Using EMG Signals: On the Control of Exoskeletons. In
Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September
2008; IEEE: Nice, France, 2008; pp. 279–284.

89. Rojas-Martínez, M.; Serna, L.Y.; Jordanic, M.; Marateb, H.R.; Merletti, R.; Mañanas, M.Á. High-Density Surface Electromyography
Signals during Isometric Contractions of Elbow Muscles of Healthy Humans. Sci. Data 2020, 7, 397. [CrossRef]

90. Rojas-Martínez, M.; Mañanas, M.A.; Alonso, J.F. High-Density Surface EMG Maps from Upper-Arm and Forearm Muscles. J.
Neuroeng. Rehabil. 2012, 9, 85. [CrossRef] [PubMed]

91. Kiguchi, K. A Study on EMG-Based Human Motion Prediction for Power Assist Exoskeletons. In Proceedings of the 2007
International Symposium on Computational Intelligence in Robotics and Automation, Jacksonville, FL, USA, 20–22 June 2007;
IEEE: Jacksonville, FL, USA, 2007; pp. 190–195.

92. De Baets, L.; Jaspers, E.; Janssens, L.; Van Deun, S. Characteristics of Neuromuscular Control of the Scapula after Stroke: A First
Exploration. Front. Hum. Neurosci. 2014, 8, 933. [CrossRef] [PubMed]

93. Kiguchi, K.; Tanaka, T.; Fukuda, T. Neuro-Fuzzy Control of a Robotic Exoskeleton With EMG Signals. IEEE Trans. Fuzzy Syst.
2004, 12, 481–490. [CrossRef]

94. Lin, M.-W.; Ruan, S.-J.; Tu, Y.-W. A 3DCNN-LSTM Hybrid Framework for SEMG-Based Noises Recognition in Exercise. IEEE
Access 2020, 8, 162982–162988. [CrossRef]

95. Luo, R.; Sun, S.; Zhang, X.; Tang, Z.; Wang, W. A Low-Cost End-to-End SEMG-Based Gait Sub-Phase Recognition System. IEEE
Trans. Neural Syst. Rehabil. Eng. 2020, 28, 267–276. [CrossRef]

https://doi.org/10.3390/s17030458
https://doi.org/10.1038/s41597-019-0285-1
https://doi.org/10.3390/life12010064
https://doi.org/10.1109/TNSRE.2009.2036615
https://doi.org/10.1109/TITB.2010.2040832
https://doi.org/10.3389/fnbot.2018.00009
https://www.ncbi.nlm.nih.gov/pubmed/29615889
https://doi.org/10.1109/TRO.2009.2039378
https://doi.org/10.1038/s41597-020-00717-6
https://doi.org/10.1186/1743-0003-9-85
https://www.ncbi.nlm.nih.gov/pubmed/23216679
https://doi.org/10.3389/fnhum.2014.00933
https://www.ncbi.nlm.nih.gov/pubmed/25477805
https://doi.org/10.1109/TFUZZ.2004.832525
https://doi.org/10.1109/ACCESS.2020.3021344
https://doi.org/10.1109/TNSRE.2019.2950096


Appl. Sci. 2023, 13, 9546 20 of 21

96. Li, C.; He, H.; Yin, S.; Deng, H.; Zhu, Y. Continuous Angle Prediction of Lower Limb Knee Joint Based on SEMG. In Proceedings
of the 2021 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE), Shanghai, China,
12–14 December 2021; IEEE: Shanghai, China, 2021; pp. 1–6.

97. Cai, C.; Yao, L.; Wei, X. ESECW Method to Process SEMG and Its Application in Gait Recognition. In Proceedings of the 2021
6th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 9–11 April 2021; IEEE: Xi’an,
China, 2021; pp. 525–528.

98. Khanjani, I.; Khoshdel, V.; Akbarzadeh, A. Estimate Human-Force from SEMG Signals for a Lower-Limb Rehabilitation Robot. In
Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; IEEE: Tehran, Iran, 2017;
pp. 132–136.

99. Shi, X.; Qin, P.; Zhu, J.; Zhai, M.; Shi, W. Feature Extraction and Classification of Lower Limb Motion Based on SEMG Signals.
IEEE Access 2020, 8, 132882–132892. [CrossRef]

100. De Luca, C.J.; Kuznetsov, M.; Gilmore, L.D.; Roy, S.H. Inter-Electrode Spacing of Surface EMG Sensors: Reduction of Crosstalk
Contamination during Voluntary Contractions. J. Biomech. 2012, 45, 555–561. [CrossRef]

101. Stock, M.S.; Beck, T.W.; Defreitas, J.M. Effects of Fatigue on Motor Unit Firing Rate versus Recruitment Threshold Relationships:
Motor Unit Fatigue. Muscle Nerve 2012, 45, 100–109. [CrossRef]

102. Roy, S.H.; De Luca, G.; Cheng, M.S.; Johansson, A.; Gilmore, L.D.; De Luca, C.J. Electro-Mechanical Stability of Surface EMG
Sensors. Med. Bio Eng. Comput. 2007, 45, 447–457. [CrossRef]

103. De Luca, C.J.; Donald Gilmore, L.; Kuznetsov, M.; Roy, S.H. Filtering the Surface EMG Signal: Movement Artifact and Baseline
Noise Contamination. J. Biomech. 2010, 43, 1573–1579. [CrossRef] [PubMed]

104. De Luca, C.J.; Merletti, R. Surface Myoelectric Signal Cross-Talk among Muscles of the Leg. Electroencephalogr. Clin. Neurophysiol.
1988, 69, 568–575. [CrossRef] [PubMed]

105. Beck, T.W.; DeFreitas, J.M.; Stock, M.S. The Effects of a Resistance Training Program on Average Motor Unit Firing Rates. Clin.
Kinesiol. 2011, 9.

106. Nawab, S.H.; Chang, S.-S.; De Luca, C.J. High-Yield Decomposition of Surface EMG Signals. Clin. Neurophysiol. 2010, 121,
1602–1615. [CrossRef] [PubMed]

107. Zaheer, F.; Roy, S.H.; De Luca, C.J. Preferred Sensor Sites for Surface EMG Signal Decomposition. Physiol. Meas. 2012, 33, 195–206.
[CrossRef]

108. Beck, T.W.; Kasishke, P.R.; Stock, M.S.; DeFreitas, J.M. Eccentric Exercise Does Not Affect Common Drive in the Biceps Brachii:
Muscle Damage and Common Drive. Muscle Nerve 2012, 46, 759–766. [CrossRef]

109. Defreitas, J.M.; Beck, T.W.; Ye, X.; Stock, M.S. Synchronization of Low- and High-Threshold Motor Units: Synchronization of Low-
and High-Threshold Motor Units. Muscle Nerve 2014, 49, 575–583. [CrossRef]

110. Roy, S.H.; De Luca, C.J.; Schneider, J. Effects of Electrode Location on Myoelectric Conduction Velocity and Median Frequency
Estimates. J. Appl. Physiol. 1986, 61, 1510–1517. [CrossRef]

111. Kline, J.C.; De Luca, C.J. Error Reduction in EMG Signal Decomposition. J. Neurophysiol. 2014, 112, 2718–2728. [CrossRef]
112. Kuan, J.-Y.; Huang, T.-H.; Huang, H.-P. Human Intention Estimation Method for a New Compliant Rehabilitation and Assistive

Robot. In Proceedings of the SICE Annual Conference 2010, Taipei, Taiwan, 18–21 August 2010; pp. 2348–2353.
113. Schiel, F.; Hagengruber, A.; Vogel, J.; Triebel, R. Incremental Learning of EMG-Based Control Commands Using Gaussian

Processes. In Proceedings of the 2020 Conference on Robot Learning, Virtual, 16–18 November 2020; pp. 1137–1146.
114. Al-Faiz, M.Z.; Miry, A.H. Artificial Human Arm Driven by EMG Signal. In MATLAB—A Fundamental Tool for Scientific Computing

and Engineering Applications—Volume 1; Katsikis, V., Ed.; IntechOpen: London, UK, 2012; ISBN 978-953-51-0750-7.
115. Al-Timemy, A.H.; Bugmann, G.; Escudero, J.; Outram, N. Classification of Finger Movements for the Dexterous Hand Prosthesis

Control With Surface Electromyography. IEEE J. Biomed. Health Inform. 2013, 17, 608–618. [CrossRef] [PubMed]
116. Phinyomark, A.; Quaine, F.; Charbonnier, S.; Serviere, C.; Tarpin-Bernard, F.; Laurillau, Y. EMG Feature Evaluation for Improving

Myoelectric Pattern Recognition Robustness. Expert. Syst. Appl. 2013, 40, 4832–4840. [CrossRef]
117. Kiguchi, K.; Tamura, K.; Hayashi, Y. Estimation of Joint Force/Torque Based on EMG Signals. In Proceedings of the 2013 IEEE

Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS), Singapore, 16–19 April 2013; IEEE: Singapore,
2013; pp. 20–24.

118. Wang, J.-Y.; Dai, Y.-H.; Si, X.-X. Feature Layer Fusion of Linear Features and Empirical Mode Decomposition of Human EMG
Signal. J. Electron. Sci. Technol. 2022, 20, 100169. [CrossRef]

119. Shen, S.; Wang, X.; Mao, F.; Sun, L.; Gu, M. Movements Classification Through SEMG With Convolutional Vision Transformer
and Stacking Ensemble Learning. IEEE Sens. J. 2022, 22, 13318–13325. [CrossRef]

120. Zhang, X.; Zhou, P. Sample Entropy Analysis of Surface EMG for Improved Muscle Activity Onset Detection against Spurious
Background Spikes. J. Electromyogr. Kinesiol. 2012, 22, 901–907. [CrossRef]

121. Hudgins, B.; Parker, P.; Scott, R.N. A New Strategy for Multifunction Myoelectric Control. IEEE Trans. Biomed. Eng. 1993, 40,
82–94. [CrossRef]

122. Farrell, T.R.; Weir, R.F. The Optimal Controller Delay for Myoelectric Prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15,
111–118. [CrossRef]

https://doi.org/10.1109/ACCESS.2020.3008901
https://doi.org/10.1016/j.jbiomech.2011.11.010
https://doi.org/10.1002/mus.22266
https://doi.org/10.1007/s11517-007-0168-z
https://doi.org/10.1016/j.jbiomech.2010.01.027
https://www.ncbi.nlm.nih.gov/pubmed/20206934
https://doi.org/10.1016/0013-4694(88)90169-1
https://www.ncbi.nlm.nih.gov/pubmed/2453334
https://doi.org/10.1016/j.clinph.2009.11.092
https://www.ncbi.nlm.nih.gov/pubmed/20430694
https://doi.org/10.1088/0967-3334/33/2/195
https://doi.org/10.1002/mus.23386
https://doi.org/10.1002/mus.23978
https://doi.org/10.1152/jappl.1986.61.4.1510
https://doi.org/10.1152/jn.00724.2013
https://doi.org/10.1109/JBHI.2013.2249590
https://www.ncbi.nlm.nih.gov/pubmed/24592463
https://doi.org/10.1016/j.eswa.2013.02.023
https://doi.org/10.1016/j.jnlest.2022.100169
https://doi.org/10.1109/JSEN.2022.3179535
https://doi.org/10.1016/j.jelekin.2012.06.005
https://doi.org/10.1109/10.204774
https://doi.org/10.1109/TNSRE.2007.891391


Appl. Sci. 2023, 13, 9546 21 of 21

123. Smith, L.H.; Hargrove, L.J.; Lock, B.A.; Kuiken, T.A. Determining the Optimal Window Length for Pattern Recognition-Based
Myoelectric Control: Balancing the Competing Effects of Classification Error and Controller Delay. IEEE Trans. Neural Syst.
Rehabil. Eng. 2011, 19, 186–192. [CrossRef]

124. Rahimian, E.; Zabihi, S.; Atashzar, S.F.; Asif, A.; Mohammadi, A. XceptionTime: A Novel Deep Architecture Based on Depthwise
Separable Convolutions for Hand Gesture Classification. arXiv 2019, arXiv:1911.03803.

125. Atzori, M.; Gijsberts, A.; Castellini, C.; Caputo, B.; Hager, A.-G.M.; Elsig, S.; Giatsidis, G.; Bassetto, F.; Müller, H. Electromyography
Data for Non-Invasive Naturally-Controlled Robotic Hand Prostheses. Sci. Data 2014, 1, 140053. [CrossRef] [PubMed]

126. Li, Z.; Huang, Z.; He, W.; Su, C.-Y. Adaptive Impedance Control for an Upper Limb Robotic Exoskeleton Using Biological Signals.
IEEE Trans. Ind. Electron. 2017, 64, 1664–1674. [CrossRef]

127. Minati, L.; Yoshimura, N.; Koike, Y. Hybrid Control of a Vision-Guided Robot Arm by EOG, EMG, EEG Biosignals and Head
Movement Acquired via a Consumer-Grade Wearable Device. IEEE Access 2016, 4, 9528–9541. [CrossRef]

128. Jain, R.K.; Datta, S.; Majumder, S. Biomimetic Behavior of IPMC Using EMG Signal for Micro Robot. Mech. Based Des. Struct.
Mach. 2014, 42, 398–417. [CrossRef]

129. Gowtham, S.; Krishna, K.M.A.; Srinivas, T.; Raj, R.G.P.; Joshuva, A. EMG-Based Control of a 5 DOF Robotic Manipulator. In
Proceedings of the 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET),
Chennai, India, 4–6 August 2020; IEEE: Chennai, India, 2020; pp. 52–57.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TNSRE.2010.2100828
https://doi.org/10.1038/sdata.2014.53
https://www.ncbi.nlm.nih.gov/pubmed/25977804
https://doi.org/10.1109/TIE.2016.2538741
https://doi.org/10.1109/ACCESS.2017.2647851
https://doi.org/10.1080/15397734.2014.908729

	Introduction 
	Methods Summary in sEMG-Based Robot Control 
	Processing and Pattern Recognition Methods 
	Data Acquisition 
	Pre-Processing 
	Feature Extraction 
	Pattern Recognition 
	Datasets 

	Application of sEMG Interface in Robot Control 
	Classification of Robot Control Strategies 
	Full-Human Continuous Control Strategy (S1) 
	Semi-Autonomous Continuous Control Strategy (S2) 
	Discrete Control Strategy (S3) 

	Robot Control Methods Using sEMG Interfaces 

	Discussion and Future Perspectives 
	Conclusions 
	References

