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Abstract: Hybrid inspection robots have been attracting increasing interest in recent years, and are
suitable for inspecting long-distance overhead power transmission lines (OPTLs), combining the
advantages of flying robots (e.g., UAVs) and climbing robots (e.g., multiple-arm robots). Due to the
complex work conditions (e.g., power line slopes, complex backgrounds, wind interference), landing
on OPTL is one of the most difficult challenges faced by hybrid inspection robots. To address this
problem, this study proposes a novel autonomous landing method for a developed flying–walking
power line inspection robot (FPLIR) based on prior structure data. The proposed method includes
three main steps: (1) A color image of the target power line is segmented using a real-time semantic
segmentation network, fusing the depth image to estimate the position of the power line. (2) The safe
landing area (SLA) is determined using prior structure data, applying the trajectory planning method
with geometric constraints to generate the dynamic landing trajectory. (3) The landing trajectory
is tracked using real-time model predictive control (MPC), controlling FPLIR to land on the OPTL.
The feasibility of the proposed method was verified in the ROS Gazebo environment. The RMSE
values of the position along three axes were 0.1205, 0.0976 and 0.0953, respectively, while the RMSE
values of the velocity along these axes were 0.0426, 0.0345 and 0.0781. Additionally, experiments in a
real environment using FPLIR were performed to verify the validity of the proposed method. The
experimental results showed that the errors of position and velocity for the FPLIR landing on the
lines were 6.18× 10−2 m and 2.16× 10−2 m/s. The simulation results as well as the experimental
findings both satisfy the practical requirements. The proposed method provides a foundation for the
intelligent inspection of OPTL in the future.

Keywords: FPLIR; autonomous landing; prior structure data; model predictive control;
trajectory planning

1. Introduction

OPTL, as a key component of the state grid infrastructure, is a primary means for
the long-distance transmission of electric power, contributing significantly to the eco-
nomic development of a stable nation. Due to their passage through harsh environments
(e.g., deserts, mountains, forests, and rivers), OPTLs are easily affected by material deterio-
ration, electrical flashover, and constant mechanical tension [1–3]. To efficiently and reliably
transmit high-voltage electric power, OPTLs need to be routinely inspected for early fault
detection [4]. In the US, the average cost of a half-hour blackout for medium and large
industrial customers is USD 15,707, while it is nearly USD 94,000 for an 8 h interruption.
Additionally, the growing global population and the over-reliance on electricity supply
have created great demand for more efficient transmission line inspection strategies [5,6].

The original inspection method for OPTLs was human inspection, which requires
inspectors to climb along the power line to detect faults. This is laborious, inefficient,
and dangerous for inspectors [7]; therefore, robots have become important tools for OPTL
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inspection over the past three decades [8]. Currently, many studies focus mainly on
climbing robots (e.g., multi-arm robots) and flying robots (e.g., UAVs). Climbing robots
are suitable for short-distance inspections with heavier payloads, providing detailed and
reliable inspection data due to being closer to the power lines. Nevertheless, bypassing
large obstacles and landing on overhead power lines present great difficulties. Flying
robots are flexible, low cost, and capable of collecting high-quality images. However, they
are limited in terms of flight endurance and cannot accurately inspect OPTLs from close
distances [9–11].

Hybrid robots have been a focus of attention in recent decades, combining the advan-
tages of climbing robots with those of flying robots. They are suitable for long-distance
inspections with more flexibility. The flight mechanism can land on power lines and fly over
obstacles, while the walking mechanism can walk along the OPTLs [12,13]. The existing
landing methods of hybrid robots only allow the robots to approach power lines from
the top [12,14–16] or the bottom [17–19]. However, these hybrid robots are unstable when
walking on power lines due to their mechanical structure. In addition, power lines are
flexible cable structures with slopes; when hybrid robots land on power lines, they may
slip or lose control. As a result, autonomous landing methods for the developed FPLIR
should be investigated to ensure safe landing on power lines. This challenge can be broken
down into four main issues: (1) identify power lines in the observable space; (2) estimate
the status of the robot using the onboard sensors; (3) plan a trajectory that satisfies the
dynamic constraints of the robot; (4) track the trajectory under the work conditions [14].
To address these problems, this study proposes a novel landing method for the developed
FPLIR based on prior structure data. The main contributions can be outlined as follows:

Firstly, a novel approach is proposed for determining an SLA before landing on
the line. The SLA is calculated based on prior structure data derived from the complex
working conditions of the OPTLs. In addition, the SLA is considered to be the basis for
a safe landing.

Then, a trajectory planning method based on geometric constraints is applied. These
constraints are defined by the landing characteristics, the structural features of the FPLIR,
and prior structural data. By determining the desired position, the method generates a
collision-free and dynamically feasible trajectory to guide the FPLIR to a zero-speed landing
on the power line.

Finally, an MPC controller is designed considering the characteristics of the FPLIR.
The MPC controller applies a feedback control strategy to the generated landing trajectory
and optimizes the trajectory in real time. This approach enables the accurate tracking of the
target landing trajectory even under complex conditions.

This paper is organized as follows: Section 2 summarizes the previous works. Section 3
introduces the hardware and software of the landing line system. Section 4 presents the
details of the proposed method. Section 5 shows and analyzes the results of the simulations
and real experiments. The discussion is presented in Section 6. Finally, the conclusions are
drawn in Section 7.

2. Related Works
2.1. Power Line Detection

The existing image-based methods for power line detection can be divided into tra-
ditional and deep-learning-based methods, as listed in Table 1. Traditional methods have
focused on low-level local features, such as gradient, luminance, texture, and other prior
information. Power lines are assumed to be straight lines or polynomial curves with the
lowest intensity in the image and parallel to each other. Yan et al. [20] adopted Radon
transform to extract line segments, and then connected the segments into the whole line
using the grouping method and the Kalman filter. Li et al. [21] proposed a knowledge-based
power line detection method using the Pulse Coupled Neural Network (PCNN) to remove
background noise from the images. Yang et al. [22] proposed an adaptive thresholding
approach, Hough transforms and the Fuzzy C-Means (FCM) clustering algorithm for power
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line detection, removing spurious lines using the properties of power lines. Cerón et al. [23]
proposed a method called Circle-Based Search (CBS) for detecting power lines by searching
for lines between two opposite points. Song et al. [24] proposed a sequential local-to-global
power line detection method based on a graph-cut model. However, the limitations of
these methods are still obvious when applied to a real environment. For instance, manually
tuning dozens of parameters makes it difficult to achieve the optimal result for each image
during the inspection. Thus, when the parameters are fixed, the methods tend to produce
more false positives and negatives on a dataset.

Table 1. Summary of the literature related to power line detection.

Method Category Author/Method Advantages Limitations

Traditional method
Yan et al. [20], Li et al. [21],
Yang et al. [22], Cerón et al.

[23], Song et al. [24]

Simple model, fast and
automatic, low

data requirements

Low noise resistance, low
extraction accuracy

Deep learning-based method

Holistically Nested Edge
Detection [25], DeepContour

[26], DeepEdge [27]
Zhang et al. [28],

Madaan et al. [29]

Diverse use of information,
high scene applicability, high

extraction accuracy

Complex model, high data
requirements, low

extraction efficiency

Deep learning-based methods have a strong ability to learn multiscale features and
perceive global information, and they can produce high-level representations of objects in
natural images. State-of-the-art CNN-based edge detectors, such as Holistically Nested
Edge Detection [25], DeepContour [26] and DeepEdge [27], can be applied to produce
very-high-quality edge maps. Then, the edge maps can be used by traditional straight-line
detection methods (e.g., Hough transform). Zhang et al. [28] developed an accurate power
line detection method using convolutional and structured features, improving the detection
accuracy. Madaan et al. [29] treated power line detection as a semantic segmentation
task, adopting an expansive convolutional network to develop a power line detection
framework. Semantic segmentation using CNN is a highly accurate method. CNNs are
robust to change in illumination and scenarios, reducing the chances of false positives and
negatives. However, it is well known that CNN, and particularly segmentation networks
(e.g., SegNet [30] or DeepLab [31]), usually have a high computational cost. This fact is
crucial for FPLIR due to payload limitations and the need for real-time detection. The
STDC-Seg [32–34] is used to address this problem, as it is able to provide real-time semantic
segmentation with low-computing cost and high accuracy.

2.2. Robot Landing Method

With regard to methods of landing on a wall, Erginer et al. [35] proposed a method
combining a PD attitude controller and vision-based tracking to allow UAVs to land au-
tonomously on a stationary platform. Mellinger et al. [36] defined a planned trajectory
as a series of segments, each of which was executed by a linear controller for the landing
trajectory. Thomas et al. [37] developed a method for planning trajectories considering
actuator and sensor constraints, enabling a quadrotor with a gripper to land on inclined
surfaces. Mao et al. [38] proposed a vision-based wall landing method that used a combina-
tion of Apriltags and Visual Inertial Odometry (VIO) to land on the wall without using a
motion capture system. The typical method for landing on walls is by colliding at terminal
velocities, which is not safe for the landing of an FPLIR on a power line.

With regard to methods of landing on a power line or cylinder, Popek et al. [39]
presented an autonomous perching concept for UAVs, integrating vision-based perception,
path planning and motion control on an aerial robot with limited processing capability.
They realized the landing of a UAV with a manipulator on a cylinder. This required the
establishment of constraints with respect to the drones and the cylinders, but was difficult
for power lines. Mirallès et al. [14] used a cascaded P/PI controller to align the UAV with
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the power line and to assist the pilot in controlling the UAV landing on the power line from
above. It was semi-automatic. Ramon-Soria et al. [15] used position-based visual servoing
(PBVS) to land a UAV with soft jaws on a pipe. Hang et al. [16] proposed a heterogeneous
landing platform that allowed multi-rotor robots to land on common structures, such as
streetlights and the edges of buildings. The terminal speed on landing was not taken into
account. Thomas et al. [17] proposed image-based visual servoing (IBVS), enabling a UAV
to land on a cylindrical structure from below, which is difficult to construct geometric
models of FPLIR and power lines.

To ensure safe landing, the FPLIR reaches the desired final pose with zero velocity.
Based on the above work, in this study, trajectory planning is modeled as a nonlinear
constrained optimization problem, using lines and segments to design a new cost function
and constraints.

With regard to trajectory tracking methods, Ahmed et al. [40] proposed an extended
backstepping nonlinear controller, which permitted multi-rotor UAVs to land on a moving
platform. Wang et al. [41] used a hybrid of the H2/H∞ technique to ensure that UAVs
could track the desired trajectory under the influence of uncertainties and disturbances.
Escareño et al. [42] used a hierarchical control strategy that was based on a combination
of sliding mode and adaptive strategies. Meanwhile, they considered adaptive trajectory
tracking in the presence of parameter uncertainties and constant wind disturbances. These
methods add constraints to the FPLIR state and cannot guarantee the stability and safety of
the landing.

In recent years, model predictive control (MPC) has been used extensively for multi-
rotor UAV control, and advances have been made in hardware and algorithmic effi-
ciency [43–45]. System uncertainty can arise from various factors, including: (1) the effects
of wind during flight; (2) uncertainty in the air drag coefficient; and (3) neglecting the
deformation and vibration of the robot’s body in dynamic modeling. With respect to MPC,
the main advantages include two aspects: (1) it is predictive, i.e., the control inputs at any
moment are calculated to optimize the system performance in the future time horizon; and
(2) it can satisfy the constraints on input and state variables, which are essential for guaran-
teeing landing safety. Therefore, this study proposes an MPC trajectory tracking algorithm
for the FPLIR in order to realize accurate trajectory tracking under system uncertainty.

3. System Overview

The OPTL inspection tasks include several requirements, such as ensuring that there is
no damage to the fittings and power towers, no broken or scattered strands of power lines,
and no other attached objects. To meet these requirements, in our study, a 38 kg FPLIR is
developed based on a six-rotor system. The overall size of the FPLIR is 2.6 m× 2.6 m× 1.1 m
(length, width, and height). The mechanical structure of the FPLIR consists of two parts,
i.e., the flying and walking mechanisms, as shown in Figure 1. The flying mechanism
uses the six rotors to generate lift force, land on the power line and fly over obstacles. The
propellers are installed under the robot arms, preventing collision with power lines during
FPLIR landing. The walking mechanism consists of a walking component and a pressing
component. The walking component enables the FPLIR to walk along the power line. The
pressing component increases the positive pressure between the driving wheel and the
power line to prevent the FPLIR from slipping during the inspection process. The FPLIR
needs to use onboard sensors and data processing devices for orientation and navigation
to land on the power line. The FPLIR carries an NVIDIA Jetson NX onboard computer,
an IMU device, and a Stereolabs ZED2i binocular camera with high resolution and good
performance in outdoor environments.

Figure 2 shows the software architecture of the robot, which consists of percep-
tion, positioning, path planning, and control modules. The NVIDIA Jetson NX executes
the architecture as a High-Level Flight Controller (HLFC), which includes four steps:
(1) process information from the visual system to calculate the camera’s pose relative to
the power line; (2) run the Visual-Inertial Odometry (VIO) system to achieve localization
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of the FPLIR; (3) plan a safe landing trajectory based on the calculation of the required lift
and moment for the FPLIR; (4) transmit the commands to the Low-Level Flight Controller
(LLFC) for the robot to land on the power line. The FPLIR uses a cascade control method in
its controller, where the LLFC is the inner loop, and the MPC trajectory tracking controller
is the outer loop. The critical flight algorithm runs independently on the LLFC, while
other computational tasks run on the powerful but less-reliable onboard computer. This
approach introduces an isolation layer to ensure the safety of FPLIR flight even if anything
goes wrong in the HLFC. The pixhawk4 flight controller is used as the LLFC to keep the
FPLIR stable during flight.
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4. Autonomous Landing Method

In this section, the autonomous landing method is comprehensively presented. In
the proposed method, the first task is to determine the means of detecting power lines in
the image, which is accomplished using an end-to-end CNN approach. Then, the target
location is combined with prior information about power lines to estimate the SLA. The
accuracy of the FPLIR motion directly affects the autonomous landing. Finally, a landing
trajectory is planned using an optimization-based method that uses the CasADi framework.
In addition, an MPC controller is used to accurately follow the trajectory, aiming to achieve
a precise landing. The detailed procedure is described below.
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4.1. Power Line Detection and Location Estimation

The position of the power line within the camera frame is necessary for performing
the subsequent landing of the FPLIR. The RGB image is segmented into power lines and
background, incorporating depth imaging to accurately estimate the locations of the power
lines. To meet the speed and accuracy requirements of the segmentation algorithms running
in the embedded devices, STDC-Seg [34] is chosen to segment the power line.

4.1.1. OPTL Detection

STDC-Seg is a real-time semantic segmentation network with low computational cost
and high accuracy. The network has an encorder–decoder structure, as shown in Figure 3,
which inputs RGB images into the network and outputs segmented images of the same size.
Semantic segmentation tasks require rich spatial information and sizable perceptual fields.
Nevertheless, real-time semantic segmentation networks usually sacrifice spatial resolution
to increase inference speed. BiSeNet [32] is used to decouple semantic and spatial informa-
tion extraction, improving inference speed while maintaining spatial resolution. However,
the use of the additional spatial paths is time consuming, and borrowing backbones from
other tasks (e.g., image classification) is inefficient for semantic segmentation. To address
these problems, STDC-Seg adopts the feature extraction network STDC for the semantic
segmentation task, adopting a shared backbone and detailed guidance to replace the spatial
path. More importantly, STDC-Seg uses edge images as detailed guides for extracting
spatial information. More importantly, STDC-Seg uses edge images as detailed guides for
extracting spatial information. This is highly beneficial for power line segmentation, as
edge images are also an essential step in traditional power line detection algorithms.
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Figure 3. The structure of the STDC segmentation network.

The 1650 images selected were manually labeled using the annotation tool, and the
data were augmented (color jitter, random horizontal flip, random crop and random resize)
to train the CNN segmentation algorithm. The dataset was divided into 70% training,
15% validation and 15% test sets, and trained using the NVIDIA RTX 3090. Running deep
learning algorithms on onboard devices is very computationally expensive and would
cause problems for demanding real-time applications. The weights are converted to a frozen
ONNX-based model to optimize the model. The frozen graph ensures easy hardware access
optimization before generating the optimized engine. The trained weights are optimized
using the TensorRT inference library to run a real-time segmentation algorithm. Figure 4
shows the training and testing stages of the segmentation algorithm.
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Figure 4. Illustration of the training and detection phases of the power line segmentation algorithm.

4.1.2. Location Estimation

To control the landing of the FPLIR on the power line, its relative position to the target
must be calculated. The camera is installed on the walking mechanism of the FPLIR using
a rigid connection, and the lens’s direction is the same as the orientation of the FPLIR.
Taking the right-handed frame as the reference, the relative position of the frame between
the FPLIR and the target is depicted in Figure 5. There are five frames on different levels:
A, pixel frame OA(u, v); I, image frame OI(x, y); C, camera frame Oc(Xc, Yc, Zc); W, world
frame OW(XW , Yw, Zw); and B, FPLIR body frame OB(XB, YB, ZB).
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The image frame is the frame of the photosensitive element of the camera. Assuming
that the size of each pixel is dx and dy, and the coordinate of the image frame origin OI in the
pixel frame is (uo, vo), the conversion relationship between the two frames is expressed by:u = x

dx
+ uo

v = y
dy

+ vo
(1)

Based on the pinhole imaging principle, the camera focal length is set as f , while the
distance from the optical center to the object is defined as D, and the relationship between
them is presented as follows:

X
D

=
x
f

(2)

The relationship between the image coordinates p(x, y) and the camera coordinates
P(Xc, Yc, Zc) is defined as follows: 

x
f = Xc

Zc

y
f = Yc

Zc

(3)

The relationship between the pixel and the camera frame can be obtained by substitut-
ing Equation (1) into Equation (3):
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u = Xc
Zc

fu + uo

v = Yc
Zc

fv + vo
(4)

where fu is f
dx

and fv is f
dy

. Since the binocular camera can obtain the depth value Zc for
each pixel in the object area, the position of the object in the camera frame is obtained by
the transformation of homogeneous coordinates to project the 2D point into 3D space:

Zc

u
v
1

 =

 fu 0 uo
0 fv vo
0 0 1

Xc
Yc
Zc

 = KP (5)

where K is the intrinsic camera matrix. The point P is transformed into the world frame by
applying Equation (6):

Xw
Yw
Zw
1

 =

[
RW

B tW
B

0 1

][
RB

C tB
C

0 1

]
Xc
Yc
Zc
1

 = TW
B TB

C


Xc
Yc
Zc
1


TW

B , TB
C ∈ SE(3)

(6)

where TW
B is a transformation from the body frame to the world frame, and TB

C is the
transformation from the camera frame to the body frame. In this study, the calculated
coordinates of the target area are used to create a point cloud containing the points that are
candidates for belonging to the power line. However, the point cloud also contains noisy
points associated with the binocular camera. The RANSAC [46] algorithm is used to detect
the power line to eliminate the noisy points.

4.2. SLA Determination

As shown in Figure 6b, the FPLIR walks along the power line with the drag Fd
expressed as follows:

Fd = f + Gsin θ (7)

where f is the friction, Gsin θ is the component force of gravity for FPLIR along the power
line direction. The shape of the power line is catenary due to the effect of gravity. If FPLIR
lands on the power line with a large slope resulting in the driving force F < Fd, it will skid
and lose control. The distance between two towers is much greater than the cross-sectional
area of the power line. Therefore, the stiffness of the power line has little effect on its shape.
The slope of the power line may increase when the FPLIR lands on the power line, so the
FPLIR must select a suitable landing area to prevent slipping, as shown in Figure 6a. If
the prior structure data of the OPTL can be used to judge the area that satisfies the FPLIR
landing conditions, the skidding will be avoided.
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Figure 6. Schematic of the FPLIR landing at power line. (a) Changes in power line slope and landing
area. (b) the FPLIR walks on the power line.

4.2.1. Prior Structure Data

With respect to satisfying the computational accuracy, the catenary equation of the
power line satisfies the following assumptions: (1) the loads acting on the power lines are
uniformly distributed and point in the same direction; and (2) the power line is a flexible
material that can only withstand tensile forces but not bending moments. According to
these two assumptions, the power line is suspended from towers with a spacing l, taking
the shape of the catenary due to a uniformly distributed load γ. The shape of a power
line with suspension points of unequal height is shown in Figure 7. Points A and B are
suspension points, point O is the lowest point, and fx is the sag.
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At the lowest point, the slope of the catenary is zero, i.e., the inclination angle of the
power line α = 0. The differential equation [47] for the catenary is solved, obtaining the
catenary equation of power line as follows:

y =
σ0

γ

[
ch

γ(x− s)
σ0

− ch
γs
σ0

]
=

2σ0

γ
sh

γx
2σ0

sh
γ(x− 2s)

2σ0
(8)

where s is the horizontal distance from the lowest point O to the origin point A, and σ0 is
the axial stress at the lowest point. The boundary conditions of point B (x = l, y = h) are
substituted into Equation (8) to obtain:

s =
l
2
− σ0

γ
arcsh

h
2σ0
γ sh γl

2σ0

(9)

The power line is affected by the FPLIR’s gravity, which makes its shape difficult
to obtain using an accurate mathematical model. To solve this problem, COMSOL soft-
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ware is used to simulate the power line model affected by the additional concentrated
force to obtain the shape of the power line. It is assumed that the FPLIR lands without
slipping, and the maximum starting slope of the walking motor is θ. Because the mass
of the FPLIR is much smaller than that of the power line, the power line slope does not
drastically change. The FPLIR is suspended at eight points with slopes of θ − 3, θ − 2,
θ − 1, θ,−θ,−(θ − 1),−(θ − 2)and − (θ − 3), respectively, to study the slope variation.
Since the numerical simulation is too slow to meet the requirement of real-time FPLIR
landing, the following steps are used to determine the safe area in practical applications:

(1) Before FPLIR inspection, the OPTL information is stored in the database of the
onboard computer.

(2) The OPTL information is associated with safe slope data in the database.
(3) When the FPLIR inspection starts, the slope of the power line is calculated using the

algorithm provided in Section 4.2.2.

4.2.2. Procedure of SLA Determination

The flowchart of the numerical simulation for the power line model using COMSOL
software is shown in Figure 8. By setting the ground material and radius, the initial power
line model is generated using the prior structure data of the OPTL. The gravity of the FPLIR
is loaded as a concentrated force to the specified slope (or location) to obtain the power line
model after the landing of the FPLIR.
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Figure 8. Flowchart of power line shape simulation.

The FPLIR does not slip, and the maximum starting slope of the walking motor is
15◦. As an example, the shape of the power line was simulated using the parameters in
Table 2, while eight points were analyzed with slopes of −15◦, −14◦, −13◦, −12◦, 12◦, 13◦,
14◦ and 15◦. In this study, a polynomial function is applied to fit the shape of the power
line to easily calculate the slope of the power line. The shapes of the power lines before
and after the FPLIR landing are fitted using 3rd- and 7th-degree polynomials, respectively.
From Table 3, it can be seen that the slope decreases at the landing location. Combined
with the variation of the slope in Figure 9, the following conclusions can be drawn. When
the slope of the power line is less than zero, the slope decreases at the landing position and
its right side; when the slope of the power line is greater than zero, the slope decreases at
the landing position and its left side. Therefore, the safe slope for FPLIR landing in the
section of the OPTL is −15◦ to 15◦.

Table 2. The prior structural data, for a 500kv OPTL.

Voltage
Level (KV)

Ground
Wire Type

Tower
Type

Tower
Height (m)

High
Difference (m) Span (m) Slope Voltage

Level (KV)
Ground

Wire Type

500 LGJ-95/55
ZB3-31.5 127.008

18.283 349 1.7/10.9 16.69 4.7245× 10−3

ZB6-26 145.291
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Table 3. The variation in the slope of the power lines at different locations.

FPLIR before landing (◦) −15 −14 −13 −12 12 13 14 15

FPLIR after landing (◦) −14.70 −13.62 −12.66 −11.32 11.13 12.24 13.27 14.52

For power lines in images, in this study, a polynomial function is used to fit segmented
power lines, and its derivative is computed to obtain the line slope. The 100 segmented
power line images were fitted using multiple polynomial functions. The sum of squares
due to error (SSE), R-square, root mean square error (RMSE) and mean absolute percentage
error (MAPE) are listed in Table 4. It can be seen that a good fit was achieved using the
quadratic polynomial. Therefore, in this study, a quadratic polynomial is used to fit power
lines in the images.
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Table 4. Polynomial function fitting results.

Function Type SSE R-Square RMSE MAPE

Quadratic polynomial 31,519 0.9776 3.972 0.0175%
Third polynomial 31,498 0.9776 3.971 0.0147%

Quartic polynomial 31,494 0.9776 3.972 0.0142%

4.3. Trajectory Generation and Tracking
4.3.1. Dynamic Model of the FPLIR

In this section, two right-handed frames are used [48]—inertial frame Fe : {xe, ye, ze}
and body frame Fb : {xb, yb, zb}—where ze points in the same direction as gravity, as
shown in Figure 10.
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0
0
−𝑔
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𝑇

𝑚
[

𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓
𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓

𝑐𝜙𝑐𝜃
] −

𝑘𝑑
𝑚
[

𝑝̇𝑛|𝑝̇𝑛|

𝑝̇𝑒|𝑝̇𝑒|

𝑝̇𝑑|𝑝̇𝑑|
] (13) 
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The FPLIR is modeled as a multi-rotor robot, and then the dynamic model of position
is expressed by:

m
..
pe

=

 0
0
−mg

+ Re
b

 0
0
−T

+ fa (10)

where m is the mass of the FPLIR, pe is the position of the FPLIR, g is gravitational accelera-
tion, T is the total lift, and fa is the air damping force. The Re

b is the rotation matrix from
the north–east–down (NED) reference frame to the body frame (NED) and is given by:

Re
b =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

 (11)

with the shorthand notation abbreviated notations cx , cos x, sx , sin x, and tx , tan x.
The angular positions ϕ, θ, and ψ denote, respectively, the roll, pitch, and yaw angle of the
FPLIR. Therefore, Equation (11) can be written as:

Re
b =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

 (12)

 ..
pn..
pe..
pd

 =

 0
0
−g

+
T
m

cφsθcψ + sφsψ

cφsθsψ − sφcψ

cφcθ

− kd
m

 .
pn
∣∣ .
pn
∣∣

.
pe
∣∣ .
pe
∣∣

.
pd
∣∣ .
pd
∣∣
 (13)

where pn, pe, and pd represent positions in the north, east, and down directions, respectively.
kd is the friction coefficient. The air damping force is modeled as a proportional signed
quadratic velocity.

The dynamic equation of attitude is given by:

Ib
.

Ωb + Ωb × Ib·Ωb = τ + ga (14)

where IB = diag
[
Ixx Iyy Izz

]
is the rotational inertia, Ωb =

[
Ωb

x Ωb
y Ωb

y

]T
is the vector of

angular velocities in the body frame, τ =
[
τx τy τz

]T is the control moment, and ga is
the uncertainty of the model caused by higher aerodynamic effects and gravity shifts. Here,
ga is given by:

ga =

ga,φ
ga,θ
ga,ψ

 =

 JRPΩb
y(v1 −v2 + v3 −v4 + v5 −v6)

JRPΩb
x(−v1 + v2 −v3 + v4 −v5 + v6)

0

 (15)

Where JRP is the rotational inertia of the motor rotor and propeller, and vn is the
rotational speed of the motor. The components of angular velocity of the robot in the body
frame are Ωb

x, Ωb
y, and Ωb

z . These values are related to the derivatives of the roll, pitch, and
yaw angles, which can be expressed as:

.
φ
.
θ
.
ψ

 =

1 tθsφ tθcφ

0 cφ −sφ

0 sφ/cθ cφ/cθ


Ωb

x

Ωb
y

Ωb
z

 (16)

Since the dynamics of the FPLIR at low speeds near the equilibrium point without any
aggressive maneuvers, Equations (14) and (16) can be simplified as follows:[ .

φ
.
θ

.
ψ
]T

=
[
Ωb

x Ωb
y Ωb

z

]T
(17)
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
..
φ
..
θ
..
ψ

=


1
Ixx

0 0

0 1
Iyy

0

0 0 1
Izz


τx

τy

τz

+


.

θ
.
ψ

Iyy−Izz
Ixx
− JRP

.
θΩ

.
φ

.
ψ Izz−Ixx

Iyy
− JRP

.
φΩ

.

φ
.
θ

Ixx−Iyy
Izz

 (18)

where Ω = (v1 −v2 + v3 −v4 + v5 −v6).

4.3.2. Landing Trajectory Generation

A suitable trajectory must be planned to enable the FPLIR to reach the designated
target location in 3D space. Two problems should be considered for the FPLIR: (1) the input
vector u from the system is limited, because each motor can only produce limited thrust;
and (2) the FPLIR has an underdriven characteristic due to the motor’s thrust along the zb
axis of the body. To achieve motion in 3D space, it is necessary to combine translational
and rotational motion using system dynamics. Therefore, the generated trajectories must
be dynamically performable for the FPLIR.

The generation of landing maneuvers is modeled as a discrete-time multiple-shot
optimization problem for N shooting points over a non-fixed time horizon T, which can be
expressed as follows:

min
u0···uN−1

T
N

∑
k=0

∥∥∥∼y∥∥∥2
Qk (19a)

subject to : x0 = xinit (19b)

Tmin ≤ T ≤ Tmax (19c)

xk+1 = f (xk, uk)∀k ∈ [0, N − 1] (19d)

zmin ≤ pd∀k ∈ [0, N] (19e)

0 ≤ γ ≤ γmax∀k ∈ [0, N] (19f)

umin ≤ u ≤ umax∀k ∈ [0, N − 1] (19g)

The optimization problem is constructed as follows: Equation (19a) is the cost function
to minimize, including final and running terms; Constraint (19c) presents the limits of the
total maneuver time T; Equation (19d) is the dynamics of the system; Constraint (19e) is
the minimum allowable height; Constraints (19f) and (19g) are the constraints on the motor
thrusts and their derivatives.

The cost function in Equation (19a) consists of a set of errors
∼
y that are dependent on

the states and the inputs of the system, weighted by a diagonal matrix Qk for each shooting
point. Different values of

∼
y are used to represent the terminal and running costs.

∼
yk =


[[

γk
T
N + uk

T2

2N2

]T
ωT

k

]T
k ∈ [0, N − 1][

∼
p

T
k
∼
q

T
k
∼
v

T
k

∼
ω

T
k

]T
k = N

(20)

The running cost minimizes the integral of the motor thrusts, as well as the angular
velocities ΩT

k of the robot. The terminal cost minimizes the position and orientation error
∼
p

T
k ,
∼
q

T
k , as well as the final linear and angular velocity errors

∼
v

T
k ,
∼
Ω

T

k at the desired landing
position.
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In our study, a variable time horizon is implemented by modeling the system dynamics
using a Runge-Kutta4 integration of the state space, scaling its derivative by the total
time T and using an integration step of 1/N seconds. Since problems where the total
maneuvering time is an optimization variable suffer from poor linearization characteristics,
the CasADi framework was chosen as the solver to embed a linear system solver with high
numerical stability.

4.3.3. Model Predictive Control

To achieve accurate trajectory tracking, MPC is used to perform trajectory tracking
of the FPLIR. MPC is an online optimal feedback control strategy that uses the model to
predict the future behavior of a system within a limited forecast horizon. The optimal input
is obtained by solving a constrained optimization problem for the objective function along
the prediction horizon and applying only the first control action to the system. These steps
are repeated several times while shifting the prediction horizon at each time step.

After linearizing and discretizing the dynamics model of the FPLIR, the linear state-
space model can be represented by the following:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(21)

where k is the sampling instant, x(k) is the state of the system at time k, u(k) is the system
input at time k and y(k) is the system output at time k. The matrices A, B, C characterize
the coefficient matrices of the system.

In the case of a given reference trajectory, the cost function is the error between the
predicted state and the reference state over the time horizon. The optimization problem
with constraints can be expressed as follows:

J =
argmin

u

(
xT

NFxN +
N−1
∑

i=1

(
xT

i Qxi + ui
TRuui +

∼
ui

T
R∆
∼
ui

))
subject to :

..
pdmin ≤

..
pd ≤

..
pdmax

−Ωmax ≤ Ωb ≤ Ωmax

−vmax ≤ ve ≤ vmax

umin ≤ u ≤ umax

(22)

where xi = x(k + i|k)− xre f (k + i|k), ui = u(k + i | k)− uref(k + i | k), and ui = u(k + i | k)
− uref(k + i | k). x(0) is the initial state of the system and f (x(k), u(k)) is the system dynam-
ics model for discrete time. Q, Ru, R∆ and F are the weight matrices for the states, inputs,
and the control transformation rate, respectively. In order to ensure the safety of the inspec-
tion robot when dropping the line, and considering its considerable inertia, the acceleration,
angular velocity, speed and output of the inspection robot need to be constrained.

5. Experimental Validation

To evaluate the performance of the autonomous landing line system, simulations and
experiments were conducted. The performance of the autonomous landing line system
was evaluated by analyzing the experimental results. The effective depth estimation range
of the binocular camera is approximately 0.3–10 m. If the distance between the FPLIR and
the power line exceeds the effective depth range, the depth estimation could be inaccurate.
Therefore, it is necessary to set the initial position of the FPLIR in a reasonable manner. It is
assumed that the height of the power line is IH , and the distance between the FPLIR and
the power line is IL. To improve the efficiency of the FPLIR landing line, in this study, a
combined rough and precise landing line strategy is proposed, including fast and precise
landing line phases. The aim of the fast landing line phase is to quickly reach the initial
height IH in accordance with the prior structure data of the OPTL, ensuring that the ground
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wire is in the camera’s field of view. During the precise landing line phase, the FPLIR
attains a safe landing position by segmenting the power lines and plans a landing trajectory
based on the landing line position. Finally, the FPLIR uses the MPC controller to realize
that trajectory.

5.1. Experiments in the Simulated Environment

The gazebo was selected as the simulation platform for simulating the OPTL, the
FPLIR, and the background in the simulation experiments. The simulation environment
was built based on the ROS of the Melodic version. The overall size of the OPTL is
60× 8× 13 m (length, width, and height), while the diameter of the ground wire is 35 mm.
The background scene, including grasses and trees, is shown in Figure 11. The FPLIR is
modeled using Solidworks software. All software employed in the simulation environment
is the same as that installed on the real hardware, including the Pixhawk firmware.
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The MPC problem was solved using the ACADO toolbox and the qpOASES solver.
The codes were exported to c-code using the code generation tool, which was integrated
into the ROS node. The step size was set to dt = 0.1 s and the time range th = 2 s, running
one iteration step in each control loop at a frequency of 100 Hz. As a result of the effect of
solution speed, the prediction time horizon is set to 20, and the control time horizon is set
to 10. For the weight matrix, the position, velocity, and input weights are set to 5, 2 and 0.2,
respectively, while the others are set to 1.

After receiving the takeoff signal, the FPLIR rises at 6.5 × 10−1 m/s to reach the
initial height of IH = 8.2 m, and the power line comes into the view of the camera, which
completes the fast fall line phase. During the precise landing line phase, the segmentation
algorithm in Section 4.1.1 is used to segment the power line image by calculating the slope
of the power line. Then, the appropriate slope of the landing line is searched for in the
database created in Section 4.2.2 in order to obtain an acceptable landing slope. Since the
power line is a slender object, the binocular camera cannot directly obtain the distance
information of the power line at a long distance. When the distance is greater than 3 m,
an estimation method is used to roughly obtain the distance between the power line and
the FPLIR, determining the landing position. When the distance between the FPLIR and
the power line is less than 3 m, the distance is obtained using the binocular camera to
accurately calculate the relative position. The position is sent to the planning module to
plan a landing line trajectory. At this time, the FPLIR enters the landing line mode.

Figure 12a shows the schematic diagram of the autonomous landing line in the sim-
ulation environment. Figure 12b represents the 3D trajectory of the FPLIR landing line,
which is divided into two parts. The blue part indicates that it flies to the initial altitude at
a fixed speed, and the green part indicates that it lands on the power line in accordance
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with the reference trajectory. The simulation platform provides the position and velocity
truth values during the FPLIR landing line.
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Figure 12. The FPLIR’s trajectory landing on the power line.

The performance of the algorithm is evaluated by comparing the simulated data with
the real values, and the experimental results are shown in Figures 13 and 14. As shown
in Figure 13a, the generated trajectories are represented by solid lines, and the tracking
trajectories are represented by dashed lines. The trajectory of the landing line gradually
becomes smooth. As the distance between the FPLIR and the power line decreases, the
actual trajectory gradually coincides with the desired trajectory, starting from the fourth
second. To ensure the safety of the landing line, the speed of the FPLIR should be low
enough at the landing to ensure that it does not collide with the power line. Figure 13b
shows the position errors. The position errors along the x-, y-, and z-axes are in the range of
−0.06~0.21 m, −0.06~0.21 m, and −0.05~0.28 m. The position errors between the planned
and actual trajectories are shown in Table 5.
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Table 5. Position errors between the planned and actual trajectories.

Title X (m) Y (m) Z (m)

RMSE 0.1205 0.0976 0.0953
Error at landing 1.5× 10−2 0.3× 10−2 4.9× 10−2

Maximum error 0.21 0.21 0.28

In a, the velocities along the x-, y-, and z-axes at 20.3 s are 1.2 × 10−5 m/s,
2.1× 10−5 m/s, and −1× 10−6 m/s, respectively, thus meeting the velocity requirements
at the landing line. Figure 14b shows the velocity errors. The velocity errors along the x-, y-,
and z-axes are in the range of −0.11 to 0.47 m/s, −0.08 to 0.06 m/s and −0.20 to 0.10 m/s,
respectively. In addition, the velocity errors between the planned and actual trajectories are
shown in Table 6.

Table 6. Velocity errors between the planned and actual trajectories.

Title X (m) Y (m) Z (m)

RMSE 0.0426 0.0345 0.0781
Error at landing 1.4× 10−4 −2.0× 10−3 5.0× 10−3

Maximum error 0.47 0.06 0.10

Based on Figures 13 and 14, it is evident that the predominant fluctuation occurs in
the initial 20 s. During the take-off stage, the FPLIR reaches high speed and has a great deal
of inertia, which is influenced by its weight. Consequently, the FPLIR needs to overcome
its own inertia, adjust its balance, and accurately determine the position of the target power
line. As a result, fluctuation occurs during this stage. Once the FPLIR reaches balance after
20s, both position error and velocity error tend to zero.

From the above data, it is evident that FPLIR can fly smoothly and follows the ref-
erence trajectory well. At the same time, the error during the landing line satisfies the
actual requirements.

5.2. Experiments in the Real Environment
5.2.1. Experimental Platform

A landing line test platform was constructed to verify the effectiveness of the landing
line method in the real environment, and consisted of three main components: a test stand,



Appl. Sci. 2023, 13, 9544 18 of 27

an FPLIR, and a ground control station. The landing test stand comprised a power line,
a slope adjustment device, and a protection device. One end of the power line was fixed
onto the frame, and the other end was fixed onto the slope adjuster device, which was
used to simulate the slopes of overhead transmission lines. The protective device was
there to prevent accidental injuries caused by failure of the inspection robot during testing.
The overall size of the landing line test platform was 6.4× 5.8× 3.8 m (length, width and
height), as shown in Figure 15a, where the ends of the power line were fixed at a height
of 2.6 m on the experimental stand, and the lowest point was 2.5 m above the ground.
To perform the landing line task, the FPLIR was equipped with visual sensors and an
onboard computer to carry out the autonomous landing method. Moreover, the monitor
at the ground control station showed the status information of the FPLIR and the landing
line process, as shown in Figure 15b,c. The FPLIR weighed 38 kg (including all sensors),
and the rotational inertia was Ixx = 5.6 kg·m2, Iyy = 8.5 kg·m2 and Izz = 5.6 kg·m2. The
binocular resolution of the camera was set at 1280 × 720 pixels, and VINS-Fusion was
utilized as the VIO for global localization. All software modules were run in real time on
the ROS platform.
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5.2.2. Landing Line Experiments

To verify the effectiveness of the landing line algorithm, an experimental field was
designed according to the specifications of the experimental platform in Figure 15. The
following parameters were used in these experiments: (1) the distance between the FPLIR
and the power line was set to L = 2 m; (2) the flight height of the FPLIR in the fast landing
phase was set to 2 m. Once the position was reached, the FPLIR entered the precise landing
line phase; (3) the flight speed was set to 1 m/s, which helped to ensure the accuracy and
repeatability of the test. The experimental setup is shown in Figure 16.
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During the fast landing phase, the FPLIR takes off at the given speed and continuously
estimates its position using VIO until it reaches a set height. During the entire process, the
FPLIR only moves in the z-axis direction, but due to the drift of VIO, there may be slight
movements in the x- and y-axis directions. In addition, the actual flight altitude may have
some errors with respect to the predetermined altitude due to the limitations of the control
accuracy. Figure 17 shows the motion process of the FPLIR during the fast landing phase,
where the asterisk indicates its current position.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 28 
 

During the fast landing phase, the FPLIR takes off at the given speed and continu-

ously estimates its position using VIO until it reaches a set height. During the entire pro-

cess, the FPLIR only moves in the z-axis direction, but due to the drift of VIO, there may 

be slight movements in the x- and y-axis directions. In addition, the actual flight altitude 

may have some errors with respect to the predetermined altitude due to the limitations of 

the control accuracy. Figure 17 shows the motion process of the FPLIR during the fast 

landing phase, where the asterisk indicates its current position. 

 

Figure 17. The fast landing stage of the FPLIR. 

Once the FPLIR has reached the predetermined height, it enters the precise landing 

line phase. In this phase, the FPLIR performs the following steps: (1) use visual sensors to 

obtain images of power lines and segment the images through a semantic segmentation 

algorithm to obtain the power lines in the image; (2) fit the segmented power lines and 

calculate the slope of each point on the power line, in combination with an SLA generation 

model, in order to calculate the SLA; (3) choose the closest SLA to minimize energy loss 

during the landing process; (4) take the optimal landing position as the expected trajectory 

planning location and plan a landing trajectory; (5) use the trajectory tracking controller to 

carry out the landing trajectory, and perform FPLIR landing on the power line. Figure 18 

shows the process of the precise landing line phase, which includes three parts in each state: 

the spatial position of the FPLIR, the semantic segmentation result of the power line, and 

the calculated power line slope. The spatial position of the FPLIR is marked with a red box. 

Figure 17. The fast landing stage of the FPLIR.

Once the FPLIR has reached the predetermined height, it enters the precise landing
line phase. In this phase, the FPLIR performs the following steps: (1) use visual sensors to
obtain images of power lines and segment the images through a semantic segmentation
algorithm to obtain the power lines in the image; (2) fit the segmented power lines and
calculate the slope of each point on the power line, in combination with an SLA generation
model, in order to calculate the SLA; (3) choose the closest SLA to minimize energy loss
during the landing process; (4) take the optimal landing position as the expected trajectory
planning location and plan a landing trajectory; (5) use the trajectory tracking controller to
carry out the landing trajectory, and perform FPLIR landing on the power line. Figure 18
shows the process of the precise landing line phase, which includes three parts in each state:
the spatial position of the FPLIR, the semantic segmentation result of the power line, and
the calculated power line slope. The spatial position of the FPLIR is marked with a red box.
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Figure 18. Precise landing stage for the FPLIR. (a) Take off. (b) fly to appropriate height. (c) adjust
the pose. (d) plan the trajectory. (e) fly close to the position for landing.

As seen in Figure 18, the FPLIR can accurately segment the power line in the image
during the landing process while simultaneously calculating the slope of the power line. In
addition, the SLA is calculated to be less than or equal to 8◦ by the coupling model of the
FPLIR and the power line of the test platform. The red box indicates the current position of
the FPLIR.

Figure 19 shows the results of the FPLIR landing line experiment, including the overall
trajectory of the FPLIR during the landing line and the tracking error during the precise
landing line. The FPLIR first moves along the blue trajectory to reach the endpoint p1 of
the fast landing line phase at a height of 2.05 m. Then, it moves along the yellow trajectory
to reach the endpoint p2 of the precise landing line phase and successfully lands on the
power line. Figure 19b shows the tracking errors of the FPLIR in the x-, y- and z-directions
during the precise landing line phase. The FPLIR mainly moves along the x-axis direction;
therefore, it will accelerate and then decelerate during the landing process, resulting in
the error in the x-axis direction first increasing and then decreasing. It can be seen from
Figure 18 that the slope of the power line in the field of view of the FPLIR is always less
than 2◦, which meets the requirement of an SLA. Therefore, the robot only needs to move a
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small distance in the y-axis direction, and the tracking error is relatively small. In the z-axis
direction, the FPLIR firstly rises and then gradually approaches the power line, so the error
also gradually decreases.
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Table 7 lists the root mean square error (RMSE), maximum error, and landing error
of position tracking along the x-, y-, and z-axes. It can be seen that the RMSE in all three
directions is less than 1.2× 10−1 m, and the landing errors are 1.5× 10−3 m, 6.18× 10−2 m,
and−1.62× 10−3 m, respectively. Therefore, the FPLIR can achieve good trajectory tracking
and meet the position error requirements when landing on the line. Compared with the
data in Figure 13, there is an increase in the relative error between the actual trajectory and
the reference trajectory due to the positional drift of the VIO.

Table 7. Position errors between the planned and actual trajectories.

Title X (m) Y (m) Z (m)

RMSE 1.139× 10−1 4.45× 10−2 1.171× 10−1

Error at landing 1.5× 10−3 6.18× 10−2 −1.62× 10−3

Maximum error 3× 10−1 2.3× 10−1 1.27× 10−1

The landing line speed of the FPLIR was limited to reduce the risk during the experi-
ment. As shown in Figure 20a, the speed of the FPLIR changed smoothly and the motion
was stable during the landing line. The speed change in the y-axis direction was small
due to the small slope of the power line, so the FPLIR hardly needed to adjust its position
in the y-axis direction. The smaller speed adjustment in the z-axis direction proved that
the combination of the rough and precise landing line strategy was able to achieve the
accuracy requirements of landing while consuming less energy. Additionally, according
to the data in Table 8, the RMSEs for the actual trajectory and the reference trajectory
of the FPLIR in the x-, y- and z-directions were 9.57× 10−2 m/s, 3.64× 10−2 m/s and
7.26× 10−2 m/s, respectively, which demonstrates that it can track the trajectory stably.
At the same time, the velocities of the FPLIR at the landing line were −1.145× 10−2 m/s,
4.27× 10−3 m/s and −1.78× 10−2 m/s in the x-, y-, and z-directions, respectively, thus
meeting the requirements of the landing line velocity. The above data indicate that the
proposed method allows the FPLIR to land on the power line safely and steadily, and the
errors in positions and velocities meet the actual requirements.
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Table 8. Velocity error between planned and actual trajectory.

Title X (m/s) Y (m/s) Z (m/s)

RMSE 9.57× 10−2 3.64× 10−2 7.26× 10−2

Error at landing −1.145× 10−2 4.27× 10−3 −1.78× 10−2

Maximum error −2.02× 10−1 1.15× 10−1 4.2× 10−1

The design of the landing method for the FPLIR developed in this paper does not
share similarities with other landing methods for the purpose of comparison. Therefore, we
compared the landing results with those of a pipeline inspection robot [15], and the results
are shown in Tables 9 and 10. Compared with the pipeline inspection robot, the average
absolute position error (Mean Absolute Error, MAE) in the X- and Y-axis directions of the
FPLIR decreased by 25.48% and 42.98%, respectively, while the Z-axis direction remained
almost the same. The velocity at landing approached zero. These two points indicate that
our landing method has better stability and safety. Since the pipeline inspection robot does
not use trajectory planning, the final state of the robot cannot be constrained. Furthermore,
the control effect of the PID controller is weaker than that of the MPC control, resulting in
lower landing accuracy.

Table 9. MAE of reference trajectory and actual trajectory.

X (m) Y (m) Z (m)

Reference [15] 1.181× 10−1 4.56× 10−2 9.26× 10−2

Our method 8.8× 10−2 2.60× 10−2 9.67× 10−2

Table 10. Velocity at landing.

X (m/s) Y (m/s) Z (m/s)

Reference [15] 1.32× 10−2 −1.92× 10−3 −3× 10−1

Our method −1.145× 10−2 4.27× 10−3 −1.78× 10−2

6. Discussion

In this section, the factors that affect the performance of the FPLIR landing on the
power line will be further discussed. First, the effect of different networks on the speed
and accuracy of power line segmentation is illustrated by comparing the experimental
results. Second, the measurement accuracy of the binocular camera is discussed. Finally, the
overall situation of the method is discussed, and the limitations and areas for improvement
are analyzed.
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6.1. Segmentation Network Choice

In this system, our autonomous landing line method runs on NVIDIA Jetson NX,
which supports deep learning libraries (TensorRT, cuDNN, etc.), computer vision libraries
(Vision Programming Interface, OpenCV), GPU computing (CUDA), and hardware encod-
ing and decoding of video streams to reduce the burden on the CUP. Its small size, low
power consumption, and high forgetting make it an ideal edge device for robotics that
offers compatibility with advanced developer tools such as ROS. To select the appropriate
network model, the study tested the inference speed and accuracy of the model for different
networks and resolutions. The STDC-Seg model has two backbones for the context path
branch, namely, STDC1 and STDC2. Since STDC2-Seg has more network layers, it can
extract richer semantic information, and the segmentation effect is better, but the inference
speed is slower. The STDC1-Seg network has fewer layers, and the segmentation effect is
poor, but the speed is faster. For model selection, in our study, we tested the performance of
STDC1-Seg70 (input resolution 1280 × 720), STDC1-Seg90 (input resolution 1920 × 1080),
STDC2-Seg70, and STDC2-Seg90, respectively. The same dataset and training strategy were
used to train the model. The inference speed and accuracy of the model were tested on the
Jetson NX, and the experimental results are shown in Table 11.

Table 11. Comparison of different models and resolutions on Jetson NX.

Model Resolution Backbone mIoU (%) Speed (FPS)

STDC1-Seg70 1280× 720 STDC1 82.848 29.3
STDC2-Seg70 1280× 720 STDC2 83.294 24.1
STDC1-Seg90 1920× 1080 STDC1 85.521 17.5
STDC2-Seg90 1920× 1080 STDC2 85.784 13.2

From the experimental results in Table 8, it is evident that the difference in mIoU
between different models on the test set is small, but the speed achieved by STDC1-Seg70
allowed it to operate in real time. In addition, the power line result obtained from the
semantic segmentation was not used directly in this study. The segmentation result was
fitted to accurately determine the position of the power line later. It is noteworthy that
although Seg70 had lower segmentation accuracy compared to Seg90, the results after
fitting from both models were identical, from which can be concluded that using a model
with lower segmentation accuracy does not affect the final result. Therefore, in this study,
the STDC1-Seg70 model was chosen for the segmentation of the power line in order to
balance accuracy and speed.

6.2. Performance Analysis of Binocular Depth Measurement

In this system, a Stereolabs ZED2i binocular camera was chosen to measure the
distance between the FPLIR and the power line. Since it uses passive measurement, it is
less affected by light, thus improving its reliability in outdoor environments. The baseline
length, image resolution and measurement distance influence the depth measurement
accuracy of the binocular camera. Therefore, the further away the camera is from the power
line, the lower the accuracy of the depth measurement. In addition, the diameter of the
power line is small, resulting in the power line occupying only a smaller number of pixels
in the image. When the distance between the FPLIR and the power line is greater than 4 m,
the distance cannot be obtained by the binocular camera.

When the distance is greater than 4 m, the depth estimation of the binocular camera
fails. The distance between the FPLIR and the power lines can be roughly estimated using
the relationship between pixel width and distance in Figure 21. As the FPLIR gradually
approaches the power line, the depth estimation becomes more accurate. Therefore, the
depth estimation obtained using the binocular camera is valid during the landing line.
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6.3. Limitations

Through qualitative and quantitative analysis of the experimental results, it was
verified in this paper that the proposed method is effective and robust for the autonomous
landing of the FPLIR on power lines. However, the method still has some limitations,
mainly regarding the following two aspects.

(1) The accurate estimation of the relative position of the FPLIR and the power line is
crucial for the FPLIR to be able to land on the power line autonomously. Since the
diameter of the power line is small, the binocular camera is not able to measure the
depth when the FPLIR is far away from the power line. To accurately estimate the
relative position, the FPLIR and the power line need a minor initial position, which
would result in a shorter attitude adjustment time during the FPLIR landing line,
increasing the risk of failure.

(2) MPC depends on a well-described system model to optimize system performance
and ensure constraint satisfaction. Therefore, an accurate dynamics model is critical
to the success of the control system. Since the FPLIR is not a standard multi-rotor
UAV, there are inaccuracies in the dynamics model’s description of the FPLIR. If the
speed of the FPLIR is too high, it will result in poor trajectory tracking.

7. Conclusions

In this study, an autonomous landing method for FPLIR was proposed based on
prior structure data, and an FPLIR landing system was built that enabled the FPLIR to
land autonomously on a power line. The RGB images were segmented using a real-time
semantic segmentation network and combined with depth images to obtain the spatial
coordinate information of the power line. Prior structure data was then used to determine
the SLA. Finally, a geometrically constrained trajectory planning method was used by the
MPC controller to generate a feasible dynamic trajectory and a tracking trajectory to achieve
accurate landing.

Simulation experiments were carried out to evaluate the performance of the system.
The effectiveness and reliability of the algorithm were analyzed in terms of various aspects
such as power line detection, SLA determination, and the landing process. In addition,
outdoor landing line experiments were conducted in a non-GPS environment. The results
showed that the position and velocity errors in FPLIR landing were 6.18× 10−2 m and
2.16× 10−2 m/s, respectively, meeting actual requirements. The multi-aspect validation
showed that the method is able to control autonomous landing of the FPLIR efficiently and
robustly, in a manner that is suitable for the real environment. In addition, the advantages
and disadvantages of the system were discussed at the level of both the processor hardware
and the algorithm design, and corresponding suggestions were made to address different
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problems. In the future, on the one hand, we will use a combination of solid-state LiDAR
and a camera to estimate the relative positions of power lines and UAVs. On the other hand,
we will adopt a learning-based MPC control method to avoid model inaccuracy having an
effect on the system.
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