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Abstract: Considering the complexity of entity pair relations and the information contained in the 

target neighborhood in few-shot knowledge graphs (KG), existing few-shot KG completion meth-

ods generally suffer from insufficient relation representation learning capabilities and neglecting 

the contextual semantics of entities. To tackle the above problems, we propose a Few-shot Relation 

Learning-based Knowledge Graph Completion model (FRL-KGC). First, a gating mechanism is in-

troduced during the aggregation of higher-order neighborhoods of entities in formation, enriching 

the central entity representation while reducing the adverse effects of noisy neighbors. Second, dur-

ing the relation representation learning stage, a more accurate relation representation is learned by 

using the correlation between entity pairs in the reference set. Finally, an LSTM structure is incor-

porated into the Transformer learner to enhance its ability to learn the contextual semantics of enti-

ties and relations and predict new factual knowledge. We conducted comparative experiments on 

the publicly available NELL-One and Wiki-One datasets, comparing FRL-KGC with six few-shot 

knowledge graph completion models and five traditional knowledge graph completion models for 

five-shot link prediction. The results showed that FRL-KGC outperformed all comparison models 

in terms of MRR, Hits@10, Hits@5, and Hits@1 metrics. 

Keywords: knowledge graph; complete the knowledge graph; few-shot relation; neighborhood  

aggregation; link prediction 

 

1. Introduction 

The Knowledge Graph (KG) is a concept introduced by Google in 2012 to improve 

the speed of search engines 1. It contains rich and diverse relational data and is widely 

used in various production tasks in society. Existing knowledge graphs include Freebase 

2, YAGO 3, NELL 4, and Wikidata 5. They all contain many triples formed by facts, which 

are usually represented in the form of (head entity, relation, tail entity), i.e.,  , ,h r t . 

In the real world, this graph-structured knowledge plays an important role in many 

downstream applications, such as semantic search 6, intelligent question answering 7, and 

personalized recommendations 8. However, knowledge graphs still suffer from the issue 

of incomplete facts. To address this problem, it is necessary to use Knowledge Graph 

Completion (KGC) to automatically infer and fill in missing facts, further enhancing the 

value of knowledge graphs. 

In recent years, researchers have proposed many knowledge graph completion mod-

els based on knowledge graph embedding techniques 9 for the KGC task, including 

TransE 10, TransH 11, DistMult 12, ComplEx 13, and ConvE 14. These models have par-

tially addressed the incomplete entity and relation problem in knowledge graphs. How-

ever, these embedding models usually focus on a small proportion of frequent relations, 

while in real-world knowledge graphs, most relations exhibit long-tailed distributions 15. 
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For example, in Wikidata, approximately 10% of relations have fewer than 10 triples. Fur-

thermore, in most practical applications, such as recommendation systems and social me-

dia networks, knowledge graphs undergo dynamic changes over time. That is, a relation 

typically contains thousands of associated triples, while most relations only contain a few 

triples. In the practical context with only a few entities and relations, the performance of 

traditional knowledge graph completion models significantly declines. 

To address the knowledge graph completion problem for uncommon entities and 

relations, researchers have proposed a variety of Few-Shot Knowledge Graph Completion 

(FKGC) methods. The GMatching model 16 was the first to be proposed for solving FKGC. 

It enhances entity embeddings using one-hop neighbor structures to improve the refer-

enced semantic representation and employs a Long Short-Term Memory network (LSTM) 

to match the embedding representations with the target, obtaining similarity scores for 

relation prediction. Building on this, the FSRL model 17 and the FAAN model 18 use at-

tention mechanisms to improve neighbor encoders. The MetaR model 19 solves this prob-

lem by passing meta information specific to the relations. The GANA model 20 addresses 

this issue by designing a gated and a�ention-based neighborhood aggregator and con-

structing a global-to-local framework to handle complex relations simultaneously. 

In the FKGC task, the aforementioned models have achieved good results. However, 

these methods still have some limitations: (1) FAAN fails to effectively utilize the valuable 

information from high-order neighboring entities (the most relevant high-order neighbor-

hood set in nonlocal graphs 21) and cannot discern the importance of information for dif-

ferent neighbors, leading to noise-related issues. (2) FSRL simply uses a recurrent autoen-

coder to aggregate a small reference set. However, during the training process, the FSRL 

model tends to depend excessively on entity embeddings, leading to overfi�ing of rela-

tions and a decline in the generalization capability of the model. (3) FSRL does not con-

sider the translational property of the TransE model during matching queries, which can 

lead to a decline in matching accuracy. (4) Previous models have not adequately consid-

ered the impact of entity pairs on contextual semantics 21, resulting in reduced accuracy 

in link prediction. To overcome the limitations of existing methods, we propose utilizing 

high-order neighborhood entity information to represent each few-shot relation. By con-

sidering relations, our FKGC model can infer missing facts more effectively. This ap-

proach enhances the model’s generalization capability and allows for the utilization of 

more contextual semantics to handle few-shot relations. 

To improve the accuracy of link prediction, this paper proposes a few-shot 

knowledge graph completion model (FRL-KGC), which makes the following contribu-

tions: 

(1) We introduce the FRL-KGC model, which incorporates a gating mechanism to extract 

valuable contextual semantics from the head entity, tail entity, and neighborhood in-

formation, specifically addressing high-order neighborhood information in the 

knowledge graph. Furthermore, we leverage the correlation between entity pairs in 

the reference set to represent relations, reducing the dependency of relation embed-

dings on the central entity. 

(2) We effectively utilize both the structural and textual information of the knowledge 

graph to capture features related to few-shot relations. 

(3) Experimental evaluations are conducted on two publicly available datasets, and the 

results demonstrate that our proposed model outperforms other KGC models. Addi-

tionally, ablation experiments validate the effectiveness of each key module in our 

model. 
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2. Related Work 

Knowledge graph completion is the task of filling in missing entities, relations, and 

a�ributes in a knowledge graph through automatic inference and learning. In recent years, 

researchers have a�empted to solve this problem from various perspectives. In traditional 

knowledge graph completion research, the mainstream approach is based on representa-

tion learning of knowledge graphs, which embeds the knowledge graph containing enti-

ties and relations into a low dimensional vector space, and represents their semantic fea-

tures through spatial relations between vectors to discover potential connections 9. Cur-

rently, knowledge graph completion methods based on knowledge graph embeddings 

can be divided into translation-based methods, semantic matching-based methods, and 

neural network-based methods. 

2.1. Translation-Based Methods 

The approach based on translation methods treats relations as translation operations 

between entity pairs, where modeling relations is viewed as a form of translation in a low-

dimensional entity representation space. The existence of associations between entities 

and relations is determined using a distance scoring function. TransE 10 is a popular trans-

lation model that regards a relation as a translation from the head entity to the tail entity. 

It can handle large-scale knowledge graph completion tasks but struggles with complex 

relation types. Therefore, researchers have proposed several improved translation models 

to address the “1–N”, “N–1” and “N–N” problems, such as TransH 11, TransR 22, TransD 

23, and TransG 24. Among them, TransH embeds each entity into different, relation-spe-

cific hyperplanes to address the complex relation representation problem; TransR first 

projects entities into the corresponding relation spaces and then establishes translation 

relations from head entities to tail entities. These improved methods have enhanced the 

performance and scalability of translation models. 

2.2. Semantic Matching-Based Methods 

Semantic matching-based methods use similarity-based scoring functions to mine the 

potential semantics between entities and relations, aiming to solve the knowledge graph 

completion task. Among them, the RESCAL model 25 represents entities as vectors and 

relations as matrices, using a bilinear function as the scoring function and obtaining pre-

diction scores through tensor decomposition. However, as the embedding dimension in-

creases, RESCAL faces the issues of parameter explosion and increased model complexity. 

To address these problems, the DistMult model 12 constrains the relation matrix to be 

diagonal, thereby simplifying the model, but this also results in an inability to handle 

asymmetric relations. The ComplEx model 13 uses complex vectors to represent entities 

and relations, which can effectively model various binary relations such as symmetric and 

asymmetric relations. Compared to translation-based methods, semantic matching-based 

methods have higher complexity, lower model-training efficiency, and weaker generali-

zation ability, but they can be�er capture the implicit semantics between entities. 

2.3. Neural Network-Based Methods 

Neural network-based methods rely on the powerful learning and expressive capa-

bilities of neural networks for modeling. ConvE, first introduced in 14, applies convolu-

tional neural networks to knowledge graph completion, using two-dimensional convolu-

tion to vectorize entities and relations to concatenate them, ultimately obtaining the final 

embeddings through a fully connected layer and pooling. Compared to DistMult 12, 

ConvE achieves higher performance with fewer parameters. However, semantic infor-

mation in knowledge graphs propagates along paths, and ConvE does not consider the 

importance of path information. RSN 26 takes into account path information in knowledge 

graphs, combining recurrent neural networks and residual learning, and captures rela-

tions between entities through random walks to improve inference effectiveness. With the 
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continuous expansion of the deep learning field and the popularity of graph neural net-

works, GATs 27 capture information by aggregating graph structured data in knowledge 

graphs, using the a�ention mechanism of graph a�ention networks to assign different 

weights to different neighboring nodes, thus capturing the most crucial neighboring node 

information. 

2.4. Few-Shot Learning 

Traditional knowledge graph completion methods require a large number of training 

instances to improve model accuracy. However, in the real world, there are numerous 

new facts, and knowledge graphs are constantly changing dynamically. When knowledge 

graphs cannot provide sufficient training instances for these new facts, the model’s train-

ing process is greatly limited. Therefore, researchers have begun to explore knowledge 

graph completion tasks with only a small number of instances. In metric-learning-based 

methods, GMatching 16 was the first to propose the few-shot knowledge graph comple-

tion problem, obtaining embedding representations from one-hop neighbor structures in 

the neighborhood and using LSTM networks to match embeddings with targets, yielding 

similarity scores to measure the similarity between query triples and the reference set. 

However, GMatching does not distinguish between neighboring information in the neigh-

borhood. FSRL 17 can effectively capture knowledge from heterogeneous graph struc-

tures, aggregate representations of a small number of samples, and assign different 

weights to neighborhood information using a heterogeneous neighbor decoder. Com-

pared to the first two models, FAAN 18 considers the dynamic a�ributes of entities and 

relations and captures dynamic features that change in different tasks through a�ention 

mechanisms, thereby improving their fine-grained semantic representations. MetaR 19, in 

contrast to the above methods, which utilize neighborhood information to enhance entity 

embeddings, adopts a meta learning framework including gradient meta and relation 

meta for few-shot knowledge graph completion tasks, effectively improving the model’s 

learning ability. GANA 20 improves upon MetaR, using a global local framework to ac-

curately filter out noise information in the neighborhood and addressing the complex re-

lation problems of one-to-many (1–N), many-to-one (N–1), and many-to-many (N–N) in 

knowledge graphs. 

3. Preliminaries 

In response to the mentioned problems, this paper proposes a Few-shot Relation 

Learning-based Knowledge Graph Completion model (FRL-KGC). For clarity, Table 1 pre-

sents common symbols used in this paper and their corresponding meanings. 

Table 1. Symbol explanation table. 

Symbol Description 

  knowledge graph 
'� background knowledge graph (  removes all subgraphs of task relations) 

,  entity and relation of a knowledge graph 

r  reference set corresponding to relation r  

r  query set corresponding to relation r  

r
  negative query set corresponding to relation r  

br  the relation set of background knowledge graph '� 

task  task relation set 

,jh rC  candidate set for the potential tail entity of  , ,?jh r  

m trT  set of meta train 

m teT  set of meta test 
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, ,h r t  embedding features of fact triplets h, r , t  
o

h  the higher-order neighbor set of entity h 

e  entity representation updated by neighborhood entity encoder 
'r  task relation representation updated by relation encoder 

k
iz  representation of triples corresponding to relation r  

  loss function 

3.1. Problem Formulation 

A knowledge graph   is composed of various facts, each of which can be repre-

sented as a set of triples in the form   , ,h r t       , where  and   repre-

sent the entity set and relation set, respectively. The problem of knowledge graph com-

pletion is to infer one fact by giving two facts in a triple. The focus of this study is predict-

ing the tail entity t  by giving the head entity h and relation r , which involves deter-

mining whether  , , ?h r  holds true. Different from general knowledge graph comple-

tion problems, few-shot knowledge graph completion problems are performed with a lim-

ited number of reference samples. 

In summary, we provide the definition of a few-shot KGC problem as follows. 

Definition 1. Given a problem relation r  and its reference set 

   { , , , }r i i i i ih t h r t       , the tail entity 
jt  is predicted based on the information pro-

vided by the knowledge graph   and r , as well as the connection between the head entity 
jh  

and the problem relation r  in the query triple  , ,?jh r . In this case, 
r K , where K  is typ-

ically a small value, hence the term few-shot knowledge graph completion. 

3.2. Few-Shot Learning Se�ings 

According to Definition 1, few-shot knowledge graph completion is a relation-spe-

cific task. In the knowledge graph   , ,h r t       , the relation   is divided 

into br   and task  . br   represents the relation set in the background knowledge 

graph '�, which is a subgraph of the knowledge graph   obtained by removing all 

task relations. task   represents the task relation set including train  , validation  , and 

test , which are used in the meta training, meta validation, and meta testing stages of the 

FKGC task, respectively. 

In the meta training stage, for each training task trainr , the associated triplets are 

randomly divided into a reference set r , a query set r , and a set  ,r r r   . The 

reference set    { , , , }r i i i i ih t h r t    contains K  entity pairs  ,i ih t . The query set 

  ,, /
jr j true h r

j
h t C  consists of the true tail entity truet  of the query triplet and a can-

didate tail entity set ,jh rC . The candidate tail entities for each triplet in the query set are 

constructed based on entity type constraints 18. This construction method ensures that the 

query triplets will be matched with semantically similar candidate tail entities. Finally, all 

the query tasks are combined into a set  mtr rT   . For each query triplet  , ,? rh r  , 

the similarity scores between the candidate entity pairs ,( , )
jj h rh C  and all reference en-

tity pairs  ,i i ri
h t   are computed. The candidate entity with the highest-ranking score 

is selected as the training result. 
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In the meta testing stage, the overall procedure is similar to the meta training stage. 

Firstly, the associated triplets of the test task  '
test train testr       are randomly 

divided into a reference set '
r  and a query set '

r  to define  ' ' ',r r r   . Secondly, 

all the test query tasks are combined into a meta test set, denoted as  'mte rT   . Finally, 

the candidate entities are scored, and the candidate entity with the highest score is selected 

as the predicted result of the model. In summary, the FKGC task involves ranking the true 

tail entity jt  and candidate tail entity '
,jh rt C  of a triple  , ,?jh r . Given the task re-

lations in set r , the information provided by the knowledge graph  , and the reference 

set r , the objective is to ensure that the rank of jt  is higher than that of all the candidate 

entities. 

Figure 1 illustrates an example of a five-shot KGC task. In the few-shot KGC task, the 

reference set for the query triplet (Windows, ProducedBy, ?) consists of five associated 

triplets. The goal is to use the reference set to match the correct tail entity for the query 

triplet (Windows, ProducedBy, ?). In this case, the true tail entity “Microsoft” should be 

ranked higher than other entities. The core of the FKGC task lies in predicting new facts 

with minimal reference information. 

 

Figure 1. An example of a five-shot KGC task. 

4. Model 

FRL-KGC is a model that utilizes the background knowledge graph 
'   and the 

structural information of the knowledge graph to train and learn for the task of few-shot 

tail entity prediction for relations. The overall framework of FRL-KGC is illustrated in 

Figure 2, and includes: 

(a) High-order neighborhood entity encoder based on gate mechanism, which adap-

tively aggregates neighborhood information for entities. 

(b) Relation representation encoder, which utilizes the relation information of reference 

entity pairs’ neighbors to reduce the dependency of relations on entity embeddings 

and improve generalization. 

(c) Transformer learner, which combines LSTM units and Transformer modules to fur-

ther learn the representation of task relations. 

FKGC Model

Reference Set

(Xbox,ProducedBy,Microsoft)

(Gameboy, ProducedBy, Nintendo)

(iTunes, ProducedBy, Apple)

（Alipay,ProducedBy,Alibaba）

（Chat GPT,ProducedBy,Open AI）

Query Set

(Windows,ProducedBy,?)

Candidate Entities

Meta,Microsoft,Tesla,
Google,Sony,...

Sort

Microsoft
Google
Sony
Meta
Tesla

...
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(d) Matching process computation, which utilizes the semantic embeddings of relations 

outpu�ed by the Transformer learner to calculate the similarity with the query rela-

tion, predicting new triplets. 

 

Figure 2. Overview of the FRL-KGC framework. 

4.1. Entity Encoder Based on Gate Mechanism 

In knowledge graphs, heterogeneous neighbors of entities have different impacts on 

the representation of the entities. Adaptively aggregating neighboring information ac-

cording to the task relation r  can improve the quality of the central entity’s representa-

tion 18. However, this method does not aggregate higher-order neighborhood entity in-

formation into the central entity and overlooks the effect of the ratio between useful neigh-

bors and useless neighbors on the encoding of the central entity. Based on this, we de-

signed a gated higher-order neighborhood entity encoder that extends the “adaptive 

neighborhood encoder” of the FAAN model and expands it to higher-order neighbor-

hoods with the addition of a gating mechanism. This approach enhances the expressive-

ness of entities while reducing the impact of noisy neighbors on the updating of central 

entity encoding. The main structure of the gated higher-order neighborhood entity en-

coder is shown in Figure 3. 

Given a task triplet  , ,h r t , assuming entity h  is the target entity, its encoding is 

updated through the higher-order neighborhood entity encoder. The higher-order neigh-

borhood of entity h  is defined as   '}){( , , ,o o o o o
h i i i ir t h r t   , where 

'  is the back-

ground knowledge graph, and o
ir  and o

it represent the i-th higher-order neighbor rela-

tion and the corresponding tail entity of entity h , respectively. To quantify the features 

of entity h , we first use the metric function  o   to calculate the similarity between the 

reference relation r  and the adjacent higher order relation o
ir  of entity h , as shown in 

Equation (1). 

   ,o o
ir r  T o

ir Wr b  (1)

h1 t1

Reference triple

h2 t2

hi ti

···

···

···

r1

r2

ri

Query triple

hq rq tq

Neighbohood Entity 
Aggregation Code&GLU 

Mechanism  (a)

Neighbohood Relation 
Aggregation Code&Noise 

Filtration  (b)

LSTM 
Block

+
Transformer 

Block

(c)

Matching 
Processor 

 (d)

Calculated in Modules 
(a);(b);(c)

score’
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where r  represents the initial feature of task relation r ; o
ir  represents the pre-trained 

embedding of higher-order adjacent relation o
ho

ir ; 
d dW  and 

1db  are the 

weight matrix and bias parameters, respectively; and  o   is the bilinear dot product 

function. 

 

Figure 3. The main structure of the high-order neighborhood entity encoder based on the gating 

mechanism. 

Next, based on the similarity score  o   of the higher-order neighborhood encod-

ing, the a�ention mechanism is employed to assign higher a�ention scores to those entities 
o
it  with higher scores. To further improve the representation quality of entity h  and re-

duce the impact of noisy neighbors, higher weights are allocated to more important neigh-

bors. The “Gating Mechanism” is introduced in the process of calculating neighbor 

weights to adaptively compute weight i , as shown in Equations (2) and (3): 

   
1

,
n

o o o o
i i

o

G h e h e


  o
ir  (2)

  ,o o
i isoftmax G h e   (3)

The gating mechanism function  G   calculates the inner product of the central en-

tity and neighboring entities, performs matrix multiplication using the task relation o
ir , 

and sums the results. Here, n  is the maximum neighboring order between the central 

entity 
oh  and neighboring entity o

ie , and o  represents the order number. It takes the 

central entity 
oh  and related neighboring entities o

ie  as inputs, and outputs a metric 

representing the relevance between the neighborhood and the central entity.  softmax   

converts the input into a probability distribution of neighbors. 

To be�er capture the specific task relation, a learnable task relation matrix R  is in-

troduced, which is used to update task relation o
ir . The calculation process is shown in 

Equation (4): 

eh

r1

r2

r3

e6

e5

e4

e3

e2

e1

One Relations 
Level

One Entity 
Level

High Relations 
Level

···

r1

r2

r3

et r

r

r

r

···

···

Selective Attention

1−

Cht−1

xt

Cht

Sigmoid

tanh

GLU

Neighbohood Entity Aggregation Codecheh

e
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'  R o o
i ir r  (4)

where 'o
ir  is the updated task relation.  

With this, the neighborhood encoding hc  of the central entity h  can be obtained, 

as shown in Equation (5): 

   '

1

,
n

o o o
h i i

o

c GLU softmax G h e e


 
  





 o

ir  (5)

where the function  GLU   is the gated linear unit activation function.  

Finally, the output of the neighborhood encoder and the initial feature of the central 

entity are used to adaptively update the entity representation, as shown in Equation (6): 

 1 2 hhe w c w e    (6)

where     represents the sigmoid  activation function, h  represents the initial feature 

of the central entity, 1 2, d dw w   represent learnable parameters, and 
1de   repre-

sents the updated entity embedding of the central entity h .  

This entity update step is applied to all entities in the reference set and query set. The 

proposed higher-order neighborhood entity encoder in this paper takes into account the 

information implied by the neighbors of higher-order neighborhood entities and intro-

duces a gating mechanism to filter noisy neighbors for specific task relations. The range 

of high-order neighborhoods is set to 3 in this method, as a range that is too low would 

lead to a loss of a significant amount of hidden information, while a range that is too high 

would cause a decrease in the model’s performance. 

4.2. Relation Representation Encoder 

Through the above steps, the entities of the reference set and the query set are en-

coded to obtain their representations h  and t . Following the method in the FAAN paper 

18, we can express the prototype relation sr  of the reference set by connecting sh  and 

st . As shown in Equation (7): 

s s sr h t   (7)

MetaR [19] only represents few-shot relations by averaging the embeddings of all 

entity pairs in the support set, without considering the correlation between entity pairs in 

the reference set. Additionally, in previous methods, FSRL [17] simply used a cyclic auto-

encoder to aggregate a small reference set. However, as training deepens, the model’s re-

lation embeddings become overly reliant on entities, leading to relation overfi�ing and 

reduced generalization capability. 

In this paper, we utilize the neighbor relations of entity pairs in the reference set to 

enrich the semantic representation of the current relation and reduce the reliance on rela-

tion embeddings for entities, thereby enhancing the model’s generalization ability. The 

main structure of the relation representation encoder is shown in Figure 4. 

In order to represent the neighbor relations of the head entity ih  and tail entity ie  

of the i-th entity pair  ,i ih e  in the reference set, we define the reference set entity pair 

neighbor relation set     ' , ,? , , ,?r r i iR r h r e r   . To enhance clarity, we represent 

the relation r  in the set of neighbor relations as a vector, as shown in Equation (8): 

 
,

,
s ir rE r r   (8)
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where 
,s irE  represents the vectorized representation of the i-th neighbor relation sr  in 

the set '
rR .  

 

Figure 4. The main structure of the relation representation encoder. 

To enrich the semantic expression of the current relation while reducing the impact 

of noise, the dot product similarity of feature vectors is used to calculate the similarity 

between 
,s irE   and the reference set prototype relation sr  . The calculation process is 

shown in Equation (9): 

 
,s i

T
sim s rE i r E  (9)

where  simE i  represents the vector similarity score of the i-th neighbor relation sr .  

In this paper, we only retain the T neighbor relations with the highest similarity 

scores. Therefore, a noise filtering method is used to filter out vectors with lower similarity 

scores, as shown in Equation (10): 

      ' 1,  if ,

0, Otherwise

sim sim
sim

E i Top i T
i

 
 


E
E  (10)

where the function  ·Top  returns the T neighbor relation vectors with the highest simi-

larity scores in  sim iE  (T is set to 3).  '
sim iE  represents the neighbor relation vector 

after noise filtering.  

Next, the noise filtered neighbor relation vector  '
sim iE   is encoded, as shown in 

Equations (11) and (12): 

 
,

' '
, ·

s is i r simr W i  E  (11)

,
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where 
'
,s ir   represents the representation after integrating the neighbor relation vector 

with the least noise in the reference set entity pairs; 
,s irW  represents the weight during 

the encoding process; ' ( )T
sim iE  is the vector representation of each neighbor relation in 

the reference set entity pairs;   is a learning parameter; and     represents the activa-

tion function.  

Finally, the prototype relations sr   and 
'
,s ir   of the reference set are merged, as 

shown in Equation (13): 

 ' '
1 2 ,s s ir w r w r     (13)

where  ·  represents the activation function, and 1 2,w w denote the learnable parame-

ters. 

4.3. Transformer Learning Framework 

In the FKGC task, the core objective is to incorporate as much semantic information 

as possible into the final output relation representation R, thereby enhancing the fine-

grained semantics of different entity pairs in the few-shot reference set. Due to the pow-

erful learning capability of Transformers 28, this paper utilizes a Transformer as a learner 

to further learn the relation representation of triplets. In order to obtain more accurate 

relation representations, the FRL-KGC model takes the entity embeddings from the high-

order neighborhood entity encoder and the task relation embeddings from the relation 

representation encoder as inputs to the Transformer learner, enabling further learning of 

relation representations. Inspired by R-TLM (Recurrence Transformer Language Model) 

29, this paper optimizes the learner based on a simplified R-TLM module. The main struc-

ture of the Transformer learner is illustrated in Figure 5. 

The task relation r  and its corresponding entity pair  ,h t  are represented as a se-

quence  1 2 3, ,X x x x , where 1x  and 3x  represent the head and tail entities, and 2x  

represents the task relation. Firstly, the input of the Transformer is defined as k
iz , and for 

an element ix  in the sequence X , it is represented as Equation (14): 

k emb pos
i i iz x x   (14)

where emb
ix  represents the embedding of the element and pos

ix  represents the positional 

embedding. The entity embeddings 1
embx   and 3

embx   are the updated entity representa-

tions from the high-order neighborhood entity encoder (Equation (6)), and the relation 

embedding 2
embx   is obtained from the relation representation encoder (Equation (13)). 

Firstly, 0
iz  is inpu�ed into the LSTM Block, and the hidden state is 1

iz . Next, the 0
iz  

and 1
iz  are connected through a residual connection, serving as the input to the Trans-

former module. Within the Transformer module, the Multi-Head A�ention layer and 

Add&Norm layers are first utilized for learning. Then, the Feed-Forward layer, composed 

of fully connected layers and ReLU activation functions, along with the subsequent 

Add&Norm layers, introduce nonlinearity into the module. This approach aims to en-

hance the learning process, ultimately yielding the output of the Transformer learner. The 

specific computation steps are shown in Equations (15)–(17): 

 1 0
i iz LSTM z  (15)

 2 0 1
i i iz Fusion z z   (16)
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 3 2
i iz Transformer z  (17)

The output 3
iz  from the Transformer block learner serves as the final relation rep-

resentation for the task triplet  , ,h r t , denoted as  , ,z h r t . In the end, for each few-shot 

relation r  and its corresponding task triplet  , , /r rh r t   , there exists a correspond-

ing final relation representation. 

 

Figure 5. The main structure of a learning framework composed of a Transformer and an LSTM. 

4.4. Matching Process Computation 

After being processed by the Transformer learner, each entity in the reference set and 

query set obtains its corresponding relation representation. Similar to previous methods 

20, FRL-KGC calculates the semantic similarity between the query triplet and the reference 

set using a metric-based approach, and selects the triplet with the highest similarity score 

as the model’s prediction. The main structure of the matching process computation is il-

lustrated in Figure 6. 
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Figure 6. The schematic diagram of matching process calculation. 

However, during the matching computation, each reference set contains different in-

formation 30, and it is important to dynamically learn the representation of the reference 

relation r  for different query triplets. Inspired by the work in reference 31, FRL-KGC 

generates a dynamic query relation representation mr   for each query entity pair. The 

computation process is shown in Equations (18) and (19): 

r
i
  iri

m rS
r S  (18)

exp(cos( , ))
(cos( , ))

exp(cos( , ))
jr rj
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i r
r rS

q
softmax q

S q




 
 

i

i

r

r

S
S  (19)

where i  denotes the  softmax   a�ention weights for the representation of each refer-

ence relation; 
ir

S  represents the relation representation of the i-th entity pair in the ref-

erence set obtained through the Transformer learner (Equation (18)); rq  represents the 

relation representation of the query entity pair obtained through the Transformer learner 

(Equation (18));  cos   represents the cosine similarity; and j  represents the size of the 

reference set.  

Next, the dynamic query relation representation mr   and the semantic similarity 

 , rscore qmr  between mr  and the query rq  are computed as shown in Equation (20): 

 , r rscore q qm mr r  (20)

where the higher the value of  score  , the greater the semantic similarity between the 

query entity pair  ,h t  under the reference relation r  and the few-shot reference set, 

rq

∑ 

rm rq

hq tqr1 r2 ri···
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···
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indicating a higher possibility of the query triplet being valid. Conversely, a lower 

 score   suggests a smaller possibility.  

However, in translational models like TransE 10, it is important to consider the trans-

lational property for the expectation of h r t  . According to Equation (18),  3 3 3, ,h r tz z z  

represents the output sequence of the query entity pair  ,q qh t  after passing through the 

Transformer learner. The translation score s  is defined as shown in Equation (21): 

 
2

3 3 3,q q h r ts h t z z z    (21)

where 
2

3
iz  represents the 2L  norm of vector 3

iz , and s  represents the distance be-

tween 3 3
h rz z  and 3

tz . Therefore, the smaller the value of s , the higher the possibility 

of the query triplet being valid.  

Therefore, considering both the values of  score   and  s  , the calculation of the 

final matching  'score    for the query entity pair  ,q qh t   is determined as shown in 

Equation (22): 

     ' , , ,q q r q qscore h t score q s h t mr  (22)

where   is an adjustment factor. The final  'score   is calculated for all the query tri-

plets and sorted accordingly. 

4.5. Loss Function 

This paper follows the model training se�ings of other FKGC methods 16. Given a 

task relation trainr   and its corresponding triplets, a reference set 

   { , , , }r i i i i ih t h r t    is constructed by randomly sampling K triplets from the tri-

plet set, while B (batch_size) triplets are randomly sampled from the remaining triplets as 

the positive query set     , , ,r q q q qh t h r t   . As there are no negative triplets in the 

knowledge graph itself, a corresponding negative query set 

      , , , , , ,r q q q q q qh t h r t h r t       is constructed by replacing the tail entity of the 

triplets in r . The hinge loss function is used for training, as shown in Equation (23): 

       ' '

, ,
[ , , ]

q q r q q r
q q q qr h t h t

score h t score h t 

 

 
     
  (23)

where    0,max x

  represents the standard hinge loss function, and   is a margin 

hyperparameter used to separate positive and negative query triplets.  

Finally, this paper adopts the batch sampling-based meta training strategy proposed 

in Reference 17, which minimizes   while optimizing the model parameter set. 2L  reg-

ularization is applied to the model parameter set to avoid overfi�ing, and the Adam opti-

mizer 32 is used to optimize the model. 

In summary, the training process of the model is shown in Algorithm 1. 
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Algorithm 1 The Training Process of FRL-KGC Model 

Input: Training Task Set meta trainingT  , TransE knowledge graph embedding vector, Initialization parameter   of 

matrix model, Reference sample size; 

Output: Optimization parameters of the model CW , c ,  

1  For epoch in 1 to M do 

2     Shuffle( meta trainingT  )  // Disrupt tasks in meta trainingT   

3     For r  in meta trainingT   do 

4        , ,r Sample r K    // Extract entity pairs of relation r  from K    as a small sample reference set 

r  

5        For k  in K  do 

6           Enhance the embedding vector representation of head and tail entities, and update the representation 

of few-show relations. 

7        End For 

8        Process triples through Transformer learners 

9        ,r rSample r      // Build a regular triplet query set r  

10       r rPollute     // Pollute the tail entity of a positive triplet to obtain a negative triplet 

11     Calculate matching scores   

12     Accumulate the batch loss    

13     Update    // Update   using the Adam optimizer 

14    End for 

15  End For 

5. Experiments 

In this section, link prediction experiments are conducted on the NELL-One and 

Wiki-One datasets, which are constructed with reference to 16, and the FRL-KGC model 

is compared with six few-shot knowledge graph completion models and five traditional 

models. Meanwhile, the performance of the models is evaluated on the basis of MRR, 

Hits@10, Hits@5 and Hits@1. 

5.1. Datasets and Evaluation Indicators 

The two benchmark datasets used in this paper, NELL-One and Wiki-One, are com-

monly used datasets for few-shot knowledge graph completion tasks. NELL-One is con-

structed using the NELL dataset 4, which is a system that extracts structured information 

from web text and automatically expands and extends the knowledge graph. Wiki-One is 

a subset extracted from the Wikidata knowledge base 5. In both datasets, relations with 

more than 50 but fewer than 500 associated triples are defined as few-shot relations (task 

relation task ), while the remaining relations related to these triples constitute the back-

ground knowledge graph 
' . Following the FKGC task setup, the task relations in NELL-

One and Wiki-One are divided into training relations train  , validation relations 

validation  , and test relations test   in the proportions of 51/5/11 and 133/16/34, respec-

tively. Detailed statistics of the datasets are presented in Table 2. 
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Table 2. Statistics of datasets. # Ent. denotes the number of unique entities. # Rel. denotes the number 

of few-shot relations. task  denotes the number of relations we use as few-shot tasks. 

Dataset # Ent. # Rel. # Triples task  train  validation  test  

NELL-One 68,545 58 181,109 67 51 5 11 

Wiki-One 4,838,244 22 5,859,240 183 133 16 34 

In this study, the Mean Reciprocal Rank (MRR) and Hits@n are used as evaluation 

metrics. MRR calculates the average of the reciprocals of the ranks of the correct answers. 

Higher MRR values indicate be�er model performance. Hits@n measures the proportion 

of correct answers appearing in the top n ranks. Similarly, higher Hits@n values indicate 

be�er model performance. In this experiment, n is set to 1, 5, and 10. Moreover, the size of 

the reference set (K) is set to 5, which means all models are evaluated on a five-shot 

knowledge graph completion task. 

5.2. Baseline Methods 

To evaluate the effectiveness of the FRL-KGC model, two categories of benchmark 

models are selected for comparison: traditional knowledge graph embedding methods 

and FKGC methods. 

For the traditional knowledge graph embedding models, five models are chosen as 

control models: TransE 10, DistMult 12, ComplEx 13, SimplE 33, and RotatE 34. During 

the training process of traditional knowledge graph embedding models, all triples from 

the background knowledge graph 
'� and the task relation set task  are used for train-

ing. The task relation set task  also includes the reference triples used in the validation 

and testing phases of the FKGC task. 

The FKGC models chosen for comparison in this study include GMatching 16, MetaR 

19, FSRL 17, FAAN 18, and GANA 20. Among them, GMatching is compared using 

GMatching (MaxP), which includes a neighborhood encoder and a matching processor 

and performs few-shot reasoning tasks through max pooling. MetaR is divided into two 

scenarios: MetaR (Pre-train) and MetaR (In-train). MetaR (Pre-train) trains entity embed-

dings using only the background knowledge graph, while MetaR (In-train) samples tri-

ples from the background knowledge graph and the original training set and includes 

them in the model training process. 

In the comparative experiments, both traditional knowledge graph embedding mod-

els and few-shot knowledge graph completion models were evaluated using their respec-

tive optimal parameter se�ings. The five-shot knowledge graph completion experiments 

were conducted five times, and the average of the results was taken as the final result. This 

approach ensures a fair comparison and provides a more reliable evaluation of the mod-

els’ performance. 

5.3. Implementation Details 

The FRL-KGC model is implemented using the PyTorch framework and the experi-

ments are conducted on a single NVIDIA GeForce RTX 4090 GPU. The pretrained embed-

ding model selected is the TransE model 10. The relevant parameters for training on 

NELL-One and Wiki-One are as follows: entity and relation embedding dimensions are 

set to 100 and 50, respectively; batch size is set to 128; the initial learning rates ( lr ) are set 

to 5 × 10−5 and 6 × 10−5 for NELL-One and Wiki-One, respectively; the maximum number 

of neighbors (M) is fixed at 150; the hyperparameter   is set to 5; and the Adam opti-

mizer is used. In the first 10,000 steps of the training process, the model gradually in-

creases the learning rate and then linearly decreases it. Model validation is performed 

every 10,000 training steps, and the maximum number of training steps is set to 300,000. 
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During the model validation process, the model parameters with the highest MRR value 

are selected as the optimal training result for the FRL-KGC model. 

5.4. Results 

The five-shot link prediction results of all models on the NELL-One and Wiki-One 

datasets are shown in Table 3. It can be observed from Table 3 that: 

(1) Compared with traditional knowledge graph embedding methods, FRL-KGC 

achieves the best performance on both datasets. The experimental results demon-

strate that FRL-KGC can effectively predict missing entities in few-shot relations. 

(2) On both datasets, the FRL-KGC model outperforms the best results of the baseline 

models on four evaluation metrics. Compared with the best-performing MetaR (In-

train) model on the NELL-One dataset, the FRL-KGC model improves the MRR, 

Hits@10, Hits@5, and Hits@1 metrics by 2.9%, 1.9%, 3.1%, and 4.3%, respectively. The 

performance improvements on the Wiki-One dataset are 3.3%, 4.3%, 3.4%, and 3.2%, 

respectively. It is worth noting that only one se�ing in either Pre-train or In-train 

performs well on a single dataset. This indicates that our model has be�er generali-

zation ability across different datasets. Furthermore, FRL-KGC can leverage the con-

textual semantics and structural information of entities in KG to improve the perfor-

mance of few-shot knowledge graph completion. 

Table 3. Results of five-link prediction on NELL-One and Wiki-One. Bold numbers denote the best 

results, and underlined numbers indicate suboptimal results. 

Model 
NELL-One Wiki-One 

MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1 

Traditional models 

TransE 0.176 0.316 0.234 0.109 0.134 0.188 0.158 0.106 

DistMult 0.211 0.312 0.256 0.135 0.076 0.154 0.101 0.024 

ComplEx 0.186 0.299 0.231 0.119 0.081 0.182 0.121 0.032 

SimplE 0.156 0.284 0.225 0.094 0.097 0.181 0.125 0.045 

RotatE 0.176 0.331 0.245 0.109 0.052 0.091 0.065 0.026 

Few-shot models 

GMatching (MaxP) 0.176 0.294 0.233 0.113 0.263 0.387 0.337 0.197 

MetaR (Pre-train) 0.162 0.282 0.233 0.101 0.320 0.443 0.397 0.262 

MetaR (In-train) 0.308 0.502 0.423 0.210 0.229 0.323 0.289 0.197 

FSRL 0.269 0.482 0.369 0.178 0.221 0.269 0.183 0.163 

FAAN 0.265 0.416 0.347 0.187 0.314 0.451 0.384 0.245 

GANA 0.296 0.497 0.412 0.194 0.324 0.437 0.375 0.264 

FRL-KGC (ours) 0.337 0.521 0.454 0.253 0.357 0.494 0.431 0.296 

5.5. Ablation Study 

The framework of the FRL-KGC model consists of three key components: (a) a high-

order neighborhood entity encoder based on a gating mechanism; (b) a relation represen-

tation encoder; and (c) a Transformer learner. To assess the impact of each component on 

the overall performance of FRL-KGC, in this paper, ablation experiments are conducted 

on the Wiki-One dataset for five-shot link prediction.  

(a) To investigate the effectiveness of the high-order neighborhood entity encoder based 

on a gating mechanism, modifications are made as follows: A1_a encodes only first-

order neighborhood entities for output; A1_b removes the gating mechanism and 

uses the average embedding of neighborhood entities instead of hc . 
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(b) To study the effectiveness of the relation representation encoder, modifications are 

made as follows: A2_a simply uses the average embedding of the reference entity 

pairs as the representation of the relation. 

(c) To examine the effectiveness of the Transformer learner, modifications are made as 

follows: A3_a removes the LSTM module; A3_b removes the Transformer module. 

Table 4 presents the comparative experimental results after removing each compo-

nent. 

Table 4. Ablation study of FRL-KGC under five-shot se�ings on Wiki-One. Bold numbers denote 

the best. 

Ablation on Model 
five-shot on Wiki-One 

MRR Hits@10 Hits@5 Hits@1 

A1_a 0.314 0.443 0.386 0.258 

A1_b 0.336 0.469 0.395 0.272 

A2_a 0.343 0.483 0.425 0.267 

A3_a 0.331 0.453 0.383 0.279 

A3_b 0.301 0.432 0.371 0.264 

FRL-KGC (ours) 0.357 0.494 0.431 0.296 

The results in Table 4 demonstrate that the performance of the complete FRL-KGC 

model outperforms all of its variants. This indicates that: (a) the high-order neighborhood 

entity encoder based on the gate mechanism can effectively enhance the information con-

tained in the center entity, and the gate mechanism can filter out the impact of noisy neigh-

bors; (b) by introducing the neighborhood relation representation of entity pairs in the 

reference set, FRL-KGC can improve the quality of relation embeddings, facilitate relation 

prediction, and reduce dependence on entity pairs, thus improving the model’s generali-

zation ability; (c) the combined structure of the LSTM network and the Transformer mod-

ule in the Transformer learner is be�er than using them separately, where the LSTM net-

work can effectively enhance fine grained contextual semantic representation, and com-

bined with the powerful Transformer module can improve the accuracy of link prediction. 

5.6. Impact of Few-Shot Size 

To illustrate the impact of the few-shot size on the model’s performance, impact of 

few-shot size experiments were conducted on the Wiki-One dataset, as shown in Figure 7. The 

horizontal axis represents the size K of the reference set, and the vertical axis represents 

the evaluation index. 

As shown in Figure 7, as the number of instances in the reference set K increases, the 

MRR and Hits@1 values of FRL-KGC gradually increase, and the overall prediction accu-

racy of all models improves. However, after reaching a certain level, the performance im-

provement tends to fla�en and then decreases again. This indicates that the size of the 

reference set is a crucial factor affecting the accuracy of link prediction when predicting 

new triplets. With a larger reference set, there is more reference information for the query 

triplet, which can improve the accuracy of link prediction. However, when the reference 

set is too large, the prediction accuracy may decrease. This is due to the fact that the model 

may learn more irrelevant information when learning the relation representation with 

more reference information, leading to a decrease in prediction accuracy. Additionally, 

with more reference information, entities may have more meanings, which increases the 

complexity of relation learning, leading to a decrease in prediction accuracy. 
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Figure 7. Impact of few-shot size K in the performance of FKGC methods on Wiki-One dataset. 

6. Conclusions and Future Work 

This study proposes a Few-shot Relation Learning-based Knowledge Graph Com-

pletion model (FRL-KGC), specifically designed for few-shot knowledge graph comple-

tion tasks. FRL-KGC incorporates a gating mechanism during the aggregation of high-

order neighborhood entity information, effectively filtering out noise from neighboring 

entities and improving the quality of entity encoding. In the process of learning relation 

representations, FRL-KGC leverages the information embedded in the neighborhood re-

lations of entity pairs in the reference set, enhancing the quality of relation embeddings 

and reducing reliance on specific entity pairs, thus improving the model’s generalization 

ability. Furthermore, the introduction of an LSTM network in the Transformer learner 

further improves the quality of few-shot relations. The experimental results indicate that 

the FRL-KGC model outperforms existing FKGC models in terms of link prediction accu-

racy. However, the design of the dataset does not fully capture the dynamic nature of few-

shot knowledge graphs. If the knowledge graph undergoes real-time changes, ensuring 

the model’s inference accuracy becomes a challenging problem. In our future work, we 

plan to explore the use of timestamps to enhance the model’s representation capacity of 

the knowledge graph and maintain inference accuracy in dynamic few-shot knowledge 

graph learning. Additionally, we will investigate the use of external knowledge sources 

to augment the representations of entities and relations, such as leveraging textual de-

scriptions of entities and relations. 
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