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Abstract: As improper inspection of construction works can cause an increase in project costs and a
decrease in project quality, construction inspection is considered a critical factor for project success.
While traditional inspection tasks are still mainly labor-intensive and time-consuming, computer vi-
sion has the potential to revolutionize the construction inspection process by providing more efficient
and effective ways to monitor the progress and quality of construction projects. However, previous
studies have also indicated that the performance of vision-based site monitoring heavily relies on
the volume of training data. To address the issues of challenging data collection at construction sites,
this study developed models using transfer learning-based object detection models incorporating
data augmentation and transfer learning. The performance of three object detection algorithms
was compared based on average precision and inference time for detecting T/S bolt fastening of
steel structure. Despite the limited training data available, the model’s performance was improved
through data augmentation and transfer learning. The proposed inspection model can increase the
efficiency of quality control works for building construction projects and the safety of inspectors.

Keywords: construction inspection; computer vision; deep learning; object detection

1. Introduction

To ensure the success of construction projects, it is imperative to incorporate a compre-
hensive quality management plan that aligns with the construction schedule and budget
plan [1]. The inspection of the construction process holds immense significance in maintain-
ing quality control; however, the increasing complexity of modern construction projects has
made this task considerably more difficult and hazardous [2]. Moreover, the labor-intensive
nature of the construction industry presents additional challenges, as the associated risks
directly contribute to a decline in both project quality and productivity [3]. Within this
context, the convergence of technologies including artificial intelligence (AI), drones, big
data, and the Internet of things (IoT) throughout industries is gaining momentum as a
result of Industry 4.0 trends aimed at overcoming low productivity, safety, and quality of
construction works. Data that had to be collected manually by the construction site manager
can be automatically collected with IoT technology, and large-scale big data can be analyzed
using AI algorithms. Regarding inspection work for quality management, the construction
progress can be recorded with a camera and analyzed with deep learning algorithm-based
computer vision technology. Recently, research and applications for the automation of
construction inspection using computer vision technology are gaining momentum due to
the outstanding performance of deep learning algorithms such as convolutional neural
networks (CNN) [4]. Several studies have demonstrated the applicability of computer
vision algorithms for quality management at the construction site by detecting construction
objects such as structural damage [5], concrete samples [6], and cropped bolts [7].

However, previous studies have indicated that the performance of deep learning-
based algorithms is significantly influenced by the amount of training data, particularly
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the quantity of images used to train the model [8]. Due to the unique nature and variability
of construction projects, collecting training images for construction inspection can be both
time-consuming and hazardous [9]. This study aims to address the challenges associated
with image collection by implementing data augmentation techniques and developing
object detection models based on transfer learning. Data augmentation is a technique used
to artificially increase dataset size by adjusting the parameters of the image dataset [10].
And transfer learning is a method of reusing a pre-trained model on a new test to improve
algorithm performance with small datasets [11].

Specifically, this study evaluates the performance of three deep learning-based object
detection models including Faster RCNN, RetinaNet, and YOLOv3. With collected images
of steel frames with bolts, three object detection models are trained and tested for their
accuracy and speed performance. As a result of the comparison, the Faster R-CNN model
was better in terms of accuracy, and the YOLOv3 model was better in terms of speed.
In addition, the applicability of transfer learning to the YOLOv3 model was tested to
improve accuracy. The process and results of this case study demonstrate the feasibility of
utilizing transfer learning algorithms for bolt fastening inspection tasks, which traditionally
rely on visual inspection by human inspectors. This research contributes to overcoming
the limitations of labor-intensive inspection activities and has the potential to enhance
productivity in quality management.

2. Literature Review

Construction inspection refers to testing, reviewing, and verifying construction ma-
terials, methods, and products to ensure adequate quality control of construction works
following the drawings or specifications of facilities. According to the Korean Ministry of
Land, Infrastructure and Transport’s construction inspection work guidelines, inspection
work is performed by visual inspecting, surveying, testing, and supervising. Inspectors
normally rely on a visual inspection, which is labor-intensive because the managers need to
visit and check the specifications, numbers, and conditions to ensure that the construction
is consistent with the design drawings [12]. It is difficult for a single site manager to
collect comprehensive construction site information by visiting specific places in large-scale
construction sites. This can impose an excessive inspection workload on individual site
managers, resulting in decreased work efficiency and increased exposure to safety acci-
dents [13]. As mentioned earlier, the shortage of construction site personnel due to aging
and COVID-19 is increasing the need for automation of inspection tasks. In this situation,
the inspection work should be performed for the entire target of construction progress, but
it is not possible to do so. As a result, this becomes an important cause of quality problems
in building projects.

To overcome such problems, construction managers have utilized cameras for observ-
ing construction progress. Since it is possible to install CCTV (Closed Circuit Television)
with a safety budget for construction projects, site monitoring using cameras is becom-
ing common practice [14]. Observing a construction site and collecting site information
through recorded video requires enormous time and effort from the construction man-
ager [15]. In this aspect, the rise in the availability of construction site videos and the rapid
advancements in deep learning algorithms have generated an increasing need for lever-
aging computer vision to analyze site conditions. Computer vision makes it possible for
machines to understand images like humans (or better than humans in terms of capability
and speed). Thereby, its application area is expanding, such as facial recognition technology,
medical image analysis, and self-driving cars. Technically, the researchers developed deep
learning-based algorithms to identify and manipulate specific image characteristics by
pixel level to understand the information in images [16]. As a result, CNN-based deep
learning algorithms are showing excellent performance in the classification, detection,
localization, and tracking of objects in images and videos. And these recent developments
and applications of computer vision algorithms can facilitate automated site monitoring



Appl. Sci. 2023, 13, 9499 3 of 13

by identifying various resources present at the construction site, including their quantity,
location, and status [17].

Research using deep learning-based object detection algorithms in construction sites
continues to increase and is mainly focusing on site monitoring, construction safety man-
agement, and quality management. Computer vision technology has been tested to enable
the automated detection and tracking of heavy equipment, such as excavators, commonly
employed in civil engineering sites [14,18,19]. Also, computer vision algorithms are being
applied to monitor construction workers, enabling the classification of their behavioral
patterns [20], or the analysis of construction work productivity [21]. Kim et al. (2018)
proposed a combined application of CNN and LSTM (long short-term memory) to detect
construction equipment and classify work activities [22]. In other study, the construction
equipment detection model was applied to estimate the productivity of earthwork [23].

As part of site monitoring, many researchers have actively been testing computer
vision for construction safety management to lower accident and death rates. Shim et al.
(2019) utilized YOLOv3, a deep learning-based object detection algorithm, to develop
and implement an algorithm that effectively identifies risks by analyzing the situations
involving construction machine operators and the surrounding workers during earthwork
activities [24]. Similarly, Kim et al. (2019) used a CNN-based construction object detection
model to identify collisions at construction sites [25]. Lee et al. (2019) employed YOLOv3 to
develop an algorithm that automatically detects whether construction workers are wearing
proper safety equipment [26].

In terms of quality control and inspection, which is the field of this research, several
studies have focused on utilizing object detection algorithms for quality management,
particularly in the detection and classification of damages in constructed structures. For
instance, Park et al. (2019) conducted real-time evaluations of structural safety by detecting
surface damages such as cracks, peeling, spalling, and rebar exposure [5]. An et al. (2017)
employed a hybrid image scanning system mounted on unmanned aerial vehicles (UAVs)
to capture image data of concrete samples, using a convolutional neural network (CNN)
to detect surface conditions [6]. Lee et al. (2019) utilized a deep learning algorithm based
on the regional convolutional neural network (R-CNN) to detect bolt images, enabling the
estimation of bolt-loosening angles based on cropped bolt images [7]. Zhou et al. (2021)
utilized a CNN-based YOLOv3 algorithm for detecting fractured bolts in steel bridges [27].
In addition to construction sites, Bahrami and Wang (2022) proposed high-resolution and
temporal context region-based (HRTC R-CNN) for corrosion defect detection on shipping
containers [28]. These studies demonstrate the diverse applications of object detection
algorithms for quality management, providing valuable insights into the identification and
assessment of structural damages in construction projects.

In the computer vision-based approaches that have been introduced so far, large-scale
image data collection is essential to train deep learning algorithms. For example, An et al.
(2017) developed a deep convolutional neural network with 200,000 images of concrete
cracks [6], and Lee et al. (2019) used 50,000 images in the CIFAR-10 dataset [29] for training
pre-training [7]. Bahrami and Wang (2022) also collected 10,000 images and separated the
dataset into three parts: the training set had 8500 images, the validation set contained
1500 images, and the test set contained 1500 images. Recording video and collecting
images manually requires time-consuming efforts. In addition, extensive amounts of image
collection also require significant annotation work. Generally, previous studies collected
images and annotated specific objects in images with annotation software, such as Labelimg,
LabelMe, and Amazon Mechanical Turk [30,31]. Researchers are struggling with extensive
amounts of annotation work. For instance, Soltani et al. (2016) estimated the annotation
time as 11 s per one image [32], and Luo et al. (2018) spent more than 200 h to manually
label 7790 images [18]. Overall, the difficulties of image data collection and annotation can
be an obstacle to applying vision-based quality management at construction sites.
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3. Methodology

This research proposed a systemic approach to applying an object detection algorithm
for construction inspection. To address the difficulties of data collection, this research
tested data augmentation and transfer learning for improving the performance of computer
vision algorithms with a small amount of data. This process includes (1) data collection
and configuration, (2) data augmentation, (3) object detection algorithm selection, and
(4) transfer learning.

3.1. Data Collection and Configuration

Deep learning models rely on the availability of training, validation, and test datasets
for effective training and evaluation. The training set is used to train the model, while the
validation set serves to assess the performance of the trained model. Typically, different
parameters and models are tested on the validation set to identify the optimal model that
achieves the best performance for the intended analysis. Once the preferred model is chosen
based on the validation set, the test set is employed to evaluate the expected performance
of the selected model. It is important to acknowledge that the validation set has already
been utilized in multiple models, which introduces the possibility of random selection bias
as models may have been chosen based on better-observed performance. To mitigate this
potential bias, the performance of the final model is evaluated using a separate test set
containing data that was not included in the training process. This approach helps reduce
the likelihood of biased model selection and provides a more accurate assessment of the
model’s true performance.

3.2. Data Augmentation

Object detection networks require three types of information: an image, a correspond-
ing class label, and a bounding box that specifies the object’s position within the image.
Bounding boxes consist of a combination of numbers indicating the location of four points,
and the number of combinations increases according to the number of bounding boxes in
the image. To utilize the collected images as an object recognition database, it is necessary
to annotate each image by assigning classification information to identify the target object
and indicating its precise location within the image using bounding boxes. This process
ensures the images are appropriately labeled, facilitating effective object recognition tasks.
The most common way to obtain construction site images would be through manual data
collection and annotation. In general, previous studies in construction have collected site
images directly from site videos and manually annotated them by drawing bounding
boxes on the positions of objects in images. However, due to the unique characteristics of
construction site conditions, sufficient training data collection is often challenging in terms
of time and cost [33,34]. Insufficient training data can cause issues like overfitting and un-
derfitting in deep learning models, consequently limiting the practicality and applicability
of vision-based approaches within the construction industry [9].

To address the challenges associated with limited image data collection and the com-
plex task of annotation, this research employs a data augmentation technique. Data aug-
mentation involves generating new artificial data within a virtual environment, using the
original dataset as a basis, rather than relying solely on data collected directly from real-
world construction sites. For image data, a variety of methods such as cropping, rotating,
flipping, and color adjustments are applied to the original dataset, effectively increasing the
volume and diversity of available training data [10]. This approach enhances the robustness
and generalization capabilities of deep learning models used in vision-based applications
for the construction industry.

3.3. Object Detection Algorithm Selection

When selecting object recognition algorithms, the primary consideration should be
given to either object detection accuracy and speed, depending on its purpose, and it is
needed to train and evaluate multiple algorithms to determine the most suitable one. Object
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detection accuracy is determined by comparing the predicted results of the model with the
ground truth, which includes the object’s bounding box position and class label. Evaluating
the accuracy of object detection algorithms typically involves metrics such as the precision–
recall (PR) curve and mean average precision (mAP). To assess the proposed model’s
performance, standard evaluation indices such as precision and recall, based on a confusion
matrix, are utilized. In this study, the presence or absence of detection was determined
based on the bounding box criterion, including True Positive (TP), False Positive (FP), False
Negative (FN), and True Negative (TN). However, as detection outcomes vary with the
reliability threshold, precision and recall calculated from TP, FP, FN, and TN cannot be
expressed as fixed values. Generally, previous studies have used the reliability threshold
based on the intersection over union (IoU) that measures the overlapping area between the
ground truth and predicted bounding boxes [35]. In the computer vision domain, 0.5 or
0.75 is the common threshold value for IoU, and this study selected a lower IoU threshold of
0.5 to consider roughly shaped target objects such as fastened bolts [36]. In addition to the
IoU threshold, precision and recall would be highly affected by the confidence threshold of
the detector. The object detection model provides confidence scores of all detected objects
that reflect the probability that the bounding box includes target objects, and the confidence
threshold can be used to filter out false positives [37]. Therefore, precision and recall
exhibit an inverse relationship, with high precision tending to correspond to low recall, and
vice versa. Generally, detection performance is evaluated using a precision–recall graph,
where precision represents the ratio of correctly detected data among all detection results,
reflecting how well the predicted results align with the actual objects. The validation of
this chapter aims to test the overall performance of the following detection algorithms, and
thus rather than measuring precision and recall rates with specific confidence threshold
values, the average precision (AP) and mean average precision (mAP) are used as an overall
detection performance indicator. The AP is calculated by obtaining the area under the
precision–recall curve to provide a quantitative evaluation of object detection models. And
mAP serves as the average of AP values across multiple objects.

Regarding the speed of the algorithm, the inference time refers to the time it takes
for a trained model to process an input image or video and generate the desired output,
such as object detection or image classification results. It is a critical factor in real-time
or time-sensitive applications where timely processing is required. The inference time is
influenced by various factors, including the complexity of the model architecture, the size
and resolution of the input data, the available computational resources (e.g., CPU or GPU),
and any optimizations or hardware accelerations implemented.

Table 1 compares the performance of the three algorithms [38]. Table 1 indicates that
Faster R-CNN achieves high accuracy; however, it exhibits slower object detection speed
compared to the other algorithms. Zhou et al. (2019) conducted a study utilizing the
COCO (Common Objects in Context) dataset to evaluate the performance of representative
object detection algorithms, including Faster R-CNN, RetinaNet, and YOLOv3, based on
average precision and inference time [38]. The COCO dataset, developed by Microsoft, is a
large-scale image dataset designed for tasks such as object detection, segmentation, key
points detection, and caption generation. It comprises 330,000 images, 1.5 million object
instances, 80 object categories, and 91 stuff categories [39]. In terms of speed (inference
time), YOLOv3, a 1-stage detector, operates at a rate of 45 frames per second, enabling
real-time detection. YOLOv3 exhibits the fastest object detection speed, ranging from 24 to
50.3 ms, but shows a slightly lower precision of 10–20% compared to the other two models.
RetinaNet, developed to address the lower accuracy of 1-stage detector algorithms, exhibits
slower object detection speed compared to YOLOv3 but achieves higher detection accuracy.
While RetinaNet is less accurate than 2-stage detectors, it offers faster detection speed.
Faster R-CNN, a two-stage detector, and an improved version of the classic R-CNN object
detection algorithm feature slower detection speed due to the prerequisite RoI (Region of
Interest) step for classification [1]. However, it should be noted that the performance of
these algorithms may vary when tested with the new training data, as obtaining large-scale
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data like the COCO dataset from construction sites can be challenging. Therefore, in this
study, the aim is to enhance detection performance by applying data augmentation and
transfer learning while testing these three aforementioned algorithms.

Table 1. Comparison of performance among algorithms trained with COCO dataset.

Algorithms
Minimum

Average Precision
(%)

Maximum
Average Precision

(%)

Minimum
Inference Time
per Image (ms)

Maximum
Inference Time
per Image (ms)

YOLOv3 28 33 23 50
RetinaNet 34 38 55 115

Faster
R-CNN 39 41 70 145

3.4. Transfer Learning

Transfer learning is a technique that enhances performance by utilizing pre-trained
parameters from extensive data in related domains [11]. In transfer learning, the process
involves removing the classifier from the original model, adding a new classifier tailored to
the specific objective, and training the modified model. When working with a small dataset,
transfer learning leverages the feature extraction layer’s parameters from a model trained
on a large-scale image dataset, and fine-tunes the weights using the available dataset, which
only has parameters related to the final classification layer. Alternatively, when dealing
with a large dataset, it is possible to update parameters across all pre-trained layers through
the training process. Figure 1 illustrates three strategies for transfer learning. Strategy
1 entails training the model from scratch, utilizing only the pre-trained model’s architecture,
which requires a substantial dataset and high-performance computing systems. In Strategy
2, low-level layers extract general features, while high-level layers focus on capturing
specific features, thus determining the extent of retraining the neural network parameters.
This strategy proves useful when working with a large dataset or a smaller model. Strategy
3 involves freezing the convolutional base and solely training the classifier. This method is
suitable for scenarios with limited computing power or small datasets. Therefore, the third
strategy was applied in the case study to address the issues of a small training dataset.
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• Strategy 1: retrain the entire model;
• Strategy 2: freeze some layers of the convolutional base and retrain the remaining

layers and classifier;
• Strategy 3: freeze the convolutional base and retrain only the classifier.
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4. Case Study

This research tested the proposed approach for real-time inspection of T/S bolts in steel
structures. The process of the case study is in the following order: (1) data collection and
pre-processing; (2) training and testing candidate object detection model under the same
conditions by comparing their average precision and inference time; (3) transfer learning
for selected object detection model for improving model performance; and (4) discussions
to determine the optimal algorithm.

4.1. Data Collection and Pre-Processing

This research focuses on inspecting the fastening bolts of steel structures, which have
become increasingly important due to the structural safety of large-scale construction
projects [27]. The conventional method requires inspectors to visually inspect each bolt
to ensure proper fastening [40]. To develop an object detection model for bolt fastening
inspection, two methods were employed to collect image data. Firstly, image data was
collected during visits to university building construction sites where steel structures were
being erected. Secondly, images of bolts in steel structures were obtained from internet
websites. By using a web-crawling approach, images of bolts on steel frames were collected
from a Google image search. This web-crawling method utilized several keywords for
searching training images, such as ‘T/S bolt’, ‘bolt on steel frame’, and ‘T/S bolt fastening’.
After searching and collecting images, irrelevant images are manually deleted from the
training dataset. This deletion process is decided based on the similarity with real images
collected at the construction site. Next, 30 images were collected from construction sites,
and a total of 174 relevant images were retrieved from internet searches, resulting in a
dataset of 204 images. The dataset was then divided into 154 training images, 20 validation
images, and 30 test images. After image collection, the LabelImg tool, implemented in
Python, was utilized to annotate bounding boxes around the target objects. This process
generated corresponding information in XML format, where the class indicated the type of
object, (x, y) denoted the upper-left coordinate of the bounding box, and (w, h) represented
the width and height of the bounding box. As the detection model aimed to identify
fractures in T/S bolt pintails, the bolts could be categorized into two classes: “no pintail”,
indicating a fastened bolt where the pintail is not visible, and “pintail”, indicating an
unfastened bolt where the pintail is visible.

4.2. Data Augmentation

In this study, data augmentation was carried out using the Python library “imgaug”.
This library enables the augmentation of training images along with their corresponding
labeling information, allowing for augmentation even when the data is already labeled.
The original training images underwent augmentation processes such as rotation (every
15 degrees), vertical and horizontal flipping, as well as adjustments to brightness, contrast,
and color. Since various images can be collected depending on the angle taken by the actual
camera, this task is effective in improving the reality of the training dataset [10]. Through
11 iterations of data augmentation, a total of 1694 training images, 220 validation images,
and 330 test images were obtained (Figure 2).

4.3. Model Training and Comparison

To determine the most suitable algorithm for bolt fastening inspections, this study
conducted a comparative analysis of three deep learning-based object detection algorithms:
YOLOv3, RetinaNet, and Faster R-CNN. Various variables were considered during the
training of the deep learning models. The epoch, which signifies the number of passes
the machine learning algorithm completes on the entire training dataset, was employed
(Figure 3). Batch size, representing the number of training examples utilized in a single
iteration of neural network training, was also considered. Additionally, the learning
rate, a constant determining the step size in each iteration, and the optimal functions
such as Sigmoid, RMSProp, and Adam were explored. Adam, combining the strengths
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of Momentum and RMSProp, emerged as the most widely used training optimization
technique due to its ability to incorporate past changes in gradient and prioritize recent
information. In this study, the batch size and number of epochs were fixed at 16 and 150,
respectively, while Adam was selected as the optimal function for training each object
detection model.
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Table 2 presents the performance test results for the three object detection algorithms.
The loss value represents the disparity between predicted and correct values during ma-
chine learning iterations, with the training process aimed at minimizing this value. Mean
average precision (mAP) serves as the average of AP values across multiple objects. Infer-
ence time per image denotes the duration required to detect a single frame. The detection
speed of the algorithms was measured by determining the inference time per image during
the detection of test images. Following a comparison of the accuracy and speed of the object
detection algorithms, Faster R-CNN exhibited the highest accuracy (84.12%), followed by
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RetinaNet and YOLOv3. YOLOv3 demonstrated the fastest performance, with an inference
time of 0.0089 s per frame, followed by RetinaNet and Faster R-CNN.

Table 2. Comparison of performance among algorithms.

Algorithms
Validation of

Classification Loss
(%)

Validation of
Objectness Loss

(%)

mAP
(%)

Inference Time
per Image

(s/img)

YOLOv3 4.372 0.6885 49.25 0.0089
RetinaNet 1.115 0.2787 75.99 2.569

Faster
R-CNN 1.093 0.2732 84.12 29.29

In Figure 4, the test result images are displayed, depicting 4 fastened T/S bolts and
10 unfastened T/S bolts. The ground truth of the test image consists of 10 bounding boxes
classified as the pintail class and 4 bounding boxes as the no pintail class. Figure 4b–d
demonstrate the outcomes of test image detection using models trained with the YOLOv3,
RetinaNet, and Faster R-CNN algorithms, respectively. For example, in Figure 4b, all
bounding boxes are classified as ‘pintail’. And blue bounding boxes are the ‘pintail’ class,
and bounding boxes with the sky (light) blue color are the ‘no pintail’ class in Figure 4d.
Lastly, in Figure 4d, blue bounding boxes are the ‘pintail’ class, and red bounding boxes
are the ‘no pintail’ class.
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In terms of the detection result, in Figure 4b, YOLOv3 detected only 12 out of the
14 objects and failed to identify 2 objects in the no pintail class located below the center of the
test image. The class probability for each object ranged from 62% to 80%. YOLOv3 exhibited
the fastest inference time per image (0.0089 s) among the three algorithms. In Figure 4c,
RetinaNet successfully detected 12 objects in the test image but also missed 2 objects in
the no pintail class positioned below the center of the test image. The class probability
for each object ranged from 51% to 99%, indicating better accuracy than YOLOv3. The
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inference time per image for RetinaNet was 2.569 s. Finally, Figure 4d illustrates that Faster
R-CNN detected all 14 objects in the test image, with class probabilities ranging from 52%
to 100%, showcasing the highest accuracy among the three algorithms. However, Faster
R-CNN exhibited the slowest inference time per image (29.29 s) compared to the other two
algorithms.

4.4. Transfer Learning

Based on the performance comparison results, Faster R-CNN demonstrated the highest
accuracy, while YOLOv3 exhibited the shortest inference time per image among the three
algorithms. Considering the requirement for real-time inspection, it becomes challenging
to develop object detection models with slower detection speeds such as Faster R-CNN
and RetinaNet. Hence, this study aimed to enhance the accuracy of the YOLOv3 model
and employed transfer learning to improve its performance.

TensorFlow Keras offers a range of transfer learning models, and ResNet50 was chosen
as the network for transfer learning in this research. Since the dataset used in this study is
relatively small, the third strategy was employed. The parameters of the pre-trained neural
network are kept unchanged, and the existing convolutional base as a feature extractor is
utilized, followed by the introduction of a new classifier [41]. Figure 5 presents the mAP
values obtained during the model training using Strategy 3 transfer learning, in which
mAP values consistently converge after 100 epochs.
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4.5. Results and Discussions

In the previous chapter, YOLOv3 was considered suitable for real-time inspection due
to its significantly shorter inference time per image compared to other algorithms. However,
its accuracy was comparatively lower than the other algorithms. Transfer learning was
applied to improve the detection performance of the YOLOv3 model. Table 3 presents
a comparison of the performance between the YOLOv3 model after transfer learning,
YOLOv3 before transfer learning, RetinaNet, and Faster R-CNN models.

When comparing the performance of the transfer learning YOLOv3 model with Reti-
naNet and Faster R-CNN after transfer learning, the objectness loss validation decreased
by 0.5% compared to before transfer learning. Consequently, the differences compared
to RetinaNet and Faster R-CNN decreased by 0.0024 and 0.0279, respectively. The mean
average precision (mAP) improved by 22.85% compared to YOLOv3 before transfer learn-
ing, resulting in reduced differences of 3.9% and 8.13% compared to RetinaNet and Faster
R-CNN, respectively. Additionally, the inference time per image decreased to 0.045 s, which
is nearly twice as fast as YOLOv3 before transfer learning.
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Table 3. Algorithm performance comparison after transfer learning.

Algorithm
Validation of
Classification

Loss (%)

Validation of
Objectness

Loss (%)
mAP (%)

Inference Time
per Image
(sec/img)

YOLOv3
(after transfer learning) 3.382 0.1811 72.09 0.0042

YOLOv3
(before transfer learning) 4.372 0.6885 49.25 0.0089

Lastly, when comparing the transfer learning YOLOv3 model with Faster R-CNN,
which exhibited the highest accuracy, the former displayed slightly lower accuracy with a
mAP difference of 8.13%. However, the detection speed was 700 times faster. Therefore,
the transfer learning YOLOv3 model can be considered an appropriate detection model for
real-time bolt fastening at construction sites.

5. Conclusions

In the construction industry, performing comprehensive inspections has become in-
creasingly challenging as building projects grow in size and complexity. To address these
difficulties, the industry has been embracing computer vision algorithms, in particular,
have shown promise in enhancing the accuracy and efficiency of construction inspections.
However, the limited collection of sufficient data poses a significant challenge to the appli-
cability of vision-based approaches. Therefore, to address the limitation of data collection
on construction sites, this study aims to develop and evaluate deep learning-based object
detection models incorporating data augmentation and transfer learning approaches.

The focus of this study is on T/S high-tension bolts, commonly used to join steel
materials in construction projects. To train the object detection models, an image dataset
was collected by searching Internet websites and visiting steel construction sites. The
dataset underwent preprocessing to prepare it for training the deep learning algorithms,
including Faster R-CNN, RetinaNet, and YOLOv3. The performance of these models
was then compared to identify the most suitable algorithm for construction inspections.
Notably, there were clear differences in terms of accuracy and speed among the models
based on each algorithm. Faster R-CNN demonstrated the highest accuracy, but its object
detection speed was too slow for real-time construction inspections. On the other hand,
YOLOv3 exhibited the fastest object detection speed but the lowest accuracy among the
three algorithms. RetinaNet fell between Faster R-CNN and YOLOv3 in terms of detection
accuracy and speed. Given the importance of fast detection speed for real-time construction
inspection, this study employed transfer learning to improve the accuracy of the YOLOv3-
based model. By leveraging transfer learning, the YOLOv3 model’s mean average precision
(mAP) value increased by 22.84%, from 49.25% to 72.09%. As a result, a YOLOv3-based
object detection model suitable for construction inspections was developed through transfer
learning, achieving similar accuracy to RetinaNet even with the smallest inference time.

The findings of this study indicate that the proposed object detection model can signif-
icantly enhance the efficiency of construction inspections with a small amount of training
data. By leveraging the proposed vision-based approaches for checking bolt fastening on
steel frames, project managers can conduct inspections with higher accuracy and efficiency
compared to traditional visual judgment methods employed by inspectors. Although there
are possible benefits of the proposed methodology in this research, there are still limitations
to be addressed in further research. This research validated the proposed methodology
with bolt fastening inspection on the steel frame. The proposed approach can be utilized
for other construction inspection tasks, such as form installation, rebar installation, or
finishing works. But it needs additional tasks of data customization, training algorithm,
and validation. Hence, it is required to investigate the specific characteristics of inspection
work, and to develop a vision-based algorithm for diverse features of image data from
construction sites. Moreover, the proposed model can be applied to real construction sites,
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allowing inspections to be conducted in areas with limited accessibility or requiring ele-
vated work, using images captured by drones or robots. Therefore, further research should
be conducted to integrate deep learning technologies into unmanned aerial vehicles, such
as drones, and to develop diverse datasets and models for inspecting different construction
phases. After more research achievement and technical development, vision-based inspec-
tion can contribute to improving both the efficiency of construction site management and
the quality of buildings.
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