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Abstract: Human pose estimation, as the basis of advanced computer vision, has a wide application
perspective. In existing studies, the high-capacity model based on the heatmap method can achieve
accurate recognition results, but it encounters many difficulties when used in real-world scenarios.
To solve this problem, we propose a lightweight pose regression algorithm (RepNet) that introduces
a multi-parameter network structure, fuses multi-level features, and combines the idea of residual
likelihood estimation. A well-designed convolutional architecture is used for training. By recon-
structing the parameters of each level, the network model is simplified, and the computation time
and efficiency of the detection task are optimized. The prediction performance is also improved by
the output of the maximum likelihood model and the reversible transformation of the underlying
distribution learned by the flow generation model. RepNet achieves a recognition accuracy of 66.1 AP
on the COCO dataset, at a computational speed of 15 ms on GPU and 40 ms on CPU. This resolves
the contradiction between prediction accuracy and computational complexity and contributes to
research in lightweight pose estimation.

Keywords: human pose regression; re-parameterized structure; multi-scale fusion; residual
log-likelihood estimation

1. Introduction

Human pose estimation [1–3] refers to the locating of the keypoints of each part of the
human body and the reconstructing the human joints and limb stems in images or videos,
and it can also be regarded as searching for a specific pose in a space composed of all joint
poses. With the development of deep learning, human pose estimation has become an
important way [4–6] to solve the problems of image analysis and video understanding, and
its research results have been utilized in a variety of fields, such as entertainment, sports,
apparel, animation, and medicine.

Human pose estimation is categorized into 2D pose estimation [7–9] and 3D pose
estimation [3], according to the space to be solved. Two-dimensional pose estimation
deals with image or video frames containing multiple human bodies to determine the 2D
coordinates of keypoints, and there are two ways of thinking to solve this problem. In
the bottom-up approach [10–12], all keypoints are first detected and then assembled into
actual poses using a matching algorithm. In contrast, in the top-down approach [13–15],
the human body is first detected with a detector and cropped to an appropriate size, and
the coordinates of the keypoints for each human body are predicted in a two-stage keypoint
estimation network. In this work, we use a top-down approach that focuses on improving
the detection of a two-stage single-person position estimation network.

The regression-based method [16–18] was first proposed as shown in Figure 1a, and
it uses global mean pooling to reduce the dimensions of the feature graph and gives the
predicted keypoint coordinates directly through the linear layer. Although this method is
fast and efficient, the processing of the feature maps is too simple, and results in a direct loss
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of spatial information. Moreover, the constraints between keypoints are not considered in
the design of the networks, and these shortcomings limit the development of the regression
method. Nevertheless, the regression-based method has great potential, and it is expected
that its concept of end-to-end design will become popular in the future.
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Currently, pose estimation tasks based on heatmap methods [14,15,19,20] have achieved
the best results (SOTA). They use heatmap coding to supervise feature extraction and ex-
pand the size of the feature map via a deconvolution layer, as shown in Figure 1b. The
heatmap method can obtain good spatial information, but it also introduces some disad-
vantages: the image scaling during heatmap coding will cause coordinate offsets and quan-
tization errors [19,20]. In addition, to obtain the final prediction value, the non-maximum
suppression algorithm is usually used, which makes end-to-end training impossible, and
a huge consumption of computing power will be caused by the high-resolution heatmap
required during the training.

Based on the above point of view, this paper is aimed at putting forward a lightweight
human pose estimation model, RepNet, combined with a regression method and the idea of
residual likelihood estimation [21]. It is based on re-parameterization [22] technology, and
achieves the same reasoning efficiency as the simple model, while ensuring the accuracy of
the complex model. The overall design block diagram is shown in Figure 2. In summary,
the contributions of this paper are as follows:

1. In this paper, we propose a lightweight human pose regression framework that uses
an end-to-end network design without a post-processing module, and can directly
specify the coordinates of keypoints. The multi-parameterized module is adopted
to reconstruct the main part of the convolution, while the well-designed training



Appl. Sci. 2023, 13, 9475 3 of 17

structure is used to improve the training performance. Simplifying the structure of
the network also improves the reasoning efficiency;

2. To solve the problem of the loss of precision in a simple model, the advanced idea of
residual likelihood estimation is introduced in this paper. Good estimation perfor-
mance can be realized by learning the underlying data distribution. RepNet achieves
63.4 AP with a parameter of 7.17 M on the COCO dataset, and the real-time perfor-
mance can reach 70 FPS on RTX 3090.
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2. Related Work

Pose estimation methods based on s heatmap. At the beginning of the research, the
partial constraint field (PAF) [11] is mainly used to model the spatial relationship among
points in the pose estimation network, and the Hungarian algorithm is adopted for binary
matching. Additionally, to group the points according to the coding distance [10], the
relative position coding of each keypoint is learned. Since then, SimpleBaseline [14] uses
a simple full-convolution network design to validate that high-resolution information
representation is the key to pose estimation tasks. HRNet [15] has continued this design
idea by adding repeated multi-scale information fusions to the network and proposing a
new network backbone [23], and has achieved great success.

Pose estimation methods based on regression can directly predict the coordinates
or offsets of keypoints of the human body. DeepPose [16] used a convolutional neural
network for the first time to predict the coordinates of keypoints from local to global.
IEF [24] continuously corrected the keypoint offsets predicted by the network through an
iterative error feedback process. The Integral [25] unified heatmap representation using
a simple integration operation and keypoint regression and solved the problem of non-
trivial argmax in post-processing. Recently, Li et al. [21] revisited the pose estimation
problem from a probabilistic statistical perspective, and proposed a new pose regression
paradigm using residual log-likelihood estimation to learn the distribution changes in the
underlying data, which outperformed heatmap-based methods in terms of accuracy for the
first time and demonstrated the great potential of regression-based methods in the field of
pose estimation.

Pose estimation methods based on Transformer. Transformer [26] is a novel se-
quence prediction network based on self-attention, which consists of an encoder and a
decoder. In the field of natural language processing, Transformer achieves optimal results
for multiple tasks, and is rapidly being extended to computer vision [27–29]. To solve
problems such as pose estimation, Transpose [30] uses encoders instead of convolutional
backbones to generate heatmaps, and it shows the spatial information captured by locating
keypoints with the help of powerful global dependency and self-attention visualization
features. PRTR [31] designed a two-level network architecture for human body recogni-
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tion and keypoint coordinate regression. Inspired by the Token representation in NLP,
Token coding is adopted to encode human keypoints in TokenPose [32], and a pure trans-
former pose estimation network is implemented. These methods show that Transformer
has good capabilities for feature extractions and model constraints in both heatmap and
regression methods.

3. Method

Lightweight network models can achieve good operational efficiency on resource-
constrained devices, but the accuracy of their actual detection may be reduced relative to
large models. Therefore, how to achieve a better balance between detection accuracy and
computational complexity is the focus of this paper. In this paper, we propose a lightweight
human pose estimation network with a good detection effect based on a balance between
the two; we first explain its overall design scheme and then introduce the implementation
details of the structural multi-parameterization technique and the functioning principle of
the residual likelihood estimation, respectively, and, in the end, we show the loss function
used in the training process of the model.

3.1. Networking Architecture

The RepNet network is based on a simple pose regression algorithm, developed by
DeepPose [16], which was the first model to propose the idea of direct regression. In
keypoint detection, DeepPose uses a convolutional network to extract image features, inte-
grates global information using average pooling operation, and finally obtains prediction
results in the fully connected layer whose network structure is shown in Figure 3a. This
method provided a feasible direction for early research on regression ideas and, later, as
more and more advanced algorithms were proposed, DeepPose was gradually abandoned
by researchers due to its simple network structure and lower recognition performance. In
this paper, the simple network structure of DeepPose is redesigned based on the structural
multi-parameterization module, which effectively improves the efficiency of network infer-
ence. At the same time, a reference to the idea of residual probability estimation is added
to the adaptive loss function, and the probability distribution of the input data is learned
through training to achieve an improvement in the recognition accuracy, and the network
structure is shown in Figure 3b.
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3.2. Multi-Parameter Trunk and Multi-Level Feature Fusion

In theoretical research, the computational resources required for training algorithms
can usually be satisfied, while in actual engineering, the computational performance of
the model inference is of more concern, and the machines deployed with models are often
characterized by small memory and poor computational performance. Therefore, when
the training network model is relatively large, the structure can be converted using the
multi-parameterization technique, retaining the good characteristics required in the original
model, and replacing the old network parameters with equivalent ones to achieve effective
inference performance improvement.

The RepNet network proposed in this paper is based on RepVGG and replaces
the ResNet multi-branch convolutional module in the DeepPose model with a multi-
parameterized structure. By constructing a new convolutional module with multiple
branches, the training efficiency can be improved and, by decoupling the training structure
and converting it into a single-branch convolution structure, memory can also be effectively
saved, and fast reasoning speed can be realized. The network structures in two different
states are described below.

3.2.1. Multi-Branch Structure during Training

The traditional single-branch convolution structure has the advantages of fast speed
and small memory consumption, and it can achieve good flexibility and specificity. Unfor-
tunately, due to the lack of skip connections to return information, the network is prone
to gradient disappearance or gradient explosion in the training process, and it is diffi-
cult to achieve accurate detection results. On this basis, the ResNet network explicitly
constructs a residual connection branch for the main part of convolution, whose output
can be expressed as y = x + f (x), as shown in Figure 4a. This multi-branch architecture
can be regarded as a collection of many shallow models, and the information in training
can be flowed to different branches by skip connections to achieve excellent performance.
Inspired by the residuals module in the ResNet network, RepNet adopts a multi-branch
topology for training. During training, 1 × 1 convolution branches are added to each
3 × 3 convolution layer to improve the efficiency of information transmission, and the
output is y = x + g(x) + f (x), where g(x) is the output of 1× 1 convolution. Figure 4b
shows the design details of the structure.
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3.2.2. Re-Parameter Structure in Inferring

After obtaining the trained model, it is necessary to transform each multi-branch
structure into a single 3× 3 convolution for reasoning. For each original module, sup-
pose the input is X, the output is Y, W(3) is a parameter of 3× 3 convolution kernel, and
W(1) is a parameter of 1× 1 convolution kernel. µ(3),σ(3),γ(3),β(3), µ(1),σ(1),γ(1),β(1) are
mean, variance, scaling coefficient, and migration coefficient of the normalized layer sepa-
rately, and µ(0),σ(0),γ(0),β(0) are the parameters of the normalized layer in the identical
connection. The input and output of each module can then be expressed as:

Y = bn
(

X ∗W(3),µ(3),σ(3),γ(3),β(3)
)

+bn
(

X ∗W(1),µ(1),σ(1),γ(1),β(1)
)

+bn
(

X ∗W(0),µ(0),σ(0),γ(0),β(0)
) (1)

where the BN function for each output channel can be written as:

bn(X,µ,σ,γ,β)i = (Xi − µi)
γi
σi

+ βi (2)

According to the above formula, a 3× 3 convolution with a BN layer can be trans-
formed into a new 3× 3 convolution layer. The weight W′ and offset vector b′ of this layer
can be expressed as:

W ′i =
γi
σi
∗W(3)

i (3)

b′i =
µiγi
σi

+ βi (4)

This parametric transformation applies equally to the 1× 1 convolution and the con-
stant connection, where the constant connection can be viewed as a 1× 1 convolution kernel
with the unit matrix as the parameter weight. After applying the above transformations to
all three branches, one 3× 3 convolution kernel and two 1× 1 convolution kernels with
three bias vectors can be obtained equivalently. Then, each bias vector is summed up
to obtain the final bias value and, at the same time, the 1× 1 convolution kernel needs
to be filled up and summed up with other convolution kernels to obtain the equivalent
substituted 3× 3 convolution kernel, and the whole structure’s re-parametrization process
is shown in Figure 5.

The feature fusion of the multi-parameterized backbone is shown in Figure 6 and, in
this paper, we select the feature maps obtained from the last three stages, whose scales are
h1 × w1, h2 × w2, and h3 × w3, and the scale of each level of the feature maps is 1/2 that
of the previous level. We use 3× 3 convolutional layers and dilation convolution [33,34]
to transform the scales of the first and third level feature maps to h2 × w2, respectively,
and each level of the feature maps needs to be transformed to the same dimensions by
1× 1 convolutional layers to transform the number of channels to the same dimension and,
finally, fused as the output of the model backbone.

3.3. Residual Log-Likelihood Estimation

Designs based on regression ideas have shown great potential in the field of pose
estimation compared to heatmap methods. However, regression networks are slightly
less effective in terms of detection performance, while the lightweight model structure
also entails some loss of accuracy. For this reason, we view the standard loss function
as a specific assumption, model the output distribution with the maximum likelihood
estimation, and construct the likelihood function based on the true latent distribution,
which effectively improves the performance of human pose regression.
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In this paper, a novel and effective state-of-the-art idea, called residual log-likelihood
estimation, is introduced in RepNet, which utilizes a normalized flow model to estimate
the true data distribution and promote the development of pose regression. Specifically,
the method first artificially gives a pre-existing data distribution model, and then gradually
makes changes to the original distribution through learning, finally obtaining a loss function
close to the true distribution. Compared with the original keypoint prediction, the RLE
module does not need a complex network structure, and can use a ready-made flow
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generation model to optimize the output results. In the implementation, the RLE module is
trained by a maximum likelihood estimation process, and the regression network backbone
and the RLE module can be updated simultaneously. In addition, the RLE module is not
involved in the inference phase, and can bring significant improvements to the regression
model without any additional time overhead.

3.3.1. Maximum Likelihood Estimation

In keypoint regression networks, maximum likelihood estimation is usually used to
predict coordinates. From this point of view, when given an input image I, the probability
distribution PΘ(x|I ) can be calculated to represent the probability of the predicted result
shown at the position x, where Θ represents the learnable network parameters, and x is
equivalent to the annotated real simple label µg. The whole training process can be viewed
as an update of the parameter Θ to make the predicted result gradually close to the actual
coordinates. The loss of the maximum likelihood estimation process can be expressed as:

Lmle = − log PΘ(x|I )x=µg
(5)

Different regression losses can be realized in the above formulas by making specific
assumptions about the output probability distribution. Taking the l1 and l2 losses commonly
used in human pose estimation as an example, when the density function is set to be Laplace
distribution, the l1 loss can be expressed as:

l1 = − log PΘ(x|I )x=µg
∝ log σ̂+

∣∣∣µg − µ̂
∣∣∣

σ̂
(6)

where µ̂ and σ̂ are the mean and variance of the prediction, respectively. When σ̂ is a
constant, the loss l1 can be expressed as:

l1 =
∣∣∣µg − µ̂

∣∣∣ (7)

Similarly, when the default distribution is a Gaussian probability density function, the
loss l2 can be expressed as:

l2 =
(
µg − µ̂

)2
(8)

It can be seen that the loss function depends on the representation of probability
distribution PΘ(x|I ), and a more accurate density function can produce a better prediction
effect. However, because the representation of the potential distribution is difficult to
predict in advance, the RLE module uses a flow generation model for probability density
function transformation.

3.3.2. Flow Generation Model

By training a generator G and sampling the input data, the depth-generating model
transforms the sample z in simple distribution π(z) into the sample x in complex distribu-
tion pG(x):

pG(x) = π(z)|det(JG−1)| (9)

In the flow-based generation model, pG(x) can be calculated directly by constructing
a reversible transformation function. The key to the method is how to design the target
distribution to be learned, and the details of the implementation of the invertible function
are beyond the scope of this paper, so we will not repeat them here. For the pose estimation
task, a straightforward idea is to first learn a simple Gaussian distribution PΘ(z|I ) through
a regression network, and then transform it to a true distribution PΘ,φ(x|I ) of the data
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with a flow model, as shown in Figure 7a; the relationship between the two is derived from
Equation (10):

log PΘ,φ(x|I ) = log PΘ(z|I ) + log

∣∣∣∣∣det
∂ f−1

φ

∂x

∣∣∣∣∣ (10)
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In Equation (10), Θ is the parameter of the regression network learning, and φ is
the learning parameter of the flow model. As long as fφ is complex enough, it can fit
any distribution. For a given arbitrary x, the likelihood probability can be obtained by
calculating z in reverse. However, the keypoint of this method is the distribution of truth
value in the data set, which does not meet the needs of this paper.

Based on the above research, we can further assume that the underlying distribution
of all data shares the same density function cluster, but has different variance and mean
on input I. The normal distribution can then be mapped to a primitive probability density
function Pφ(x) with a flow model, and the translation coefficient µ̂ and the scaling coeffi-
cient σ̂ of the original distribution can be predicted by the regression network to obtain the
final true distribution. At this point, the loss in Equation (5) can be re-expressed as:

Lmle = − log PΘ,φ(x|I )
∣∣∣x=µg = − log Pφ

(
µg

)
+ log σ̂ (11)

where µg =
(
µg − µ̂

)
/σ̂. Thus, the probability distribution based on the flow model allows

for end-to-end training evaluation, as shown in Figure 7b. However, from Equation (11),
it can be seen that the learning of the regression model depends entirely on the results of
the transformation of the flow model, and the performance of the model is reduced. To
avoid this problem, the idea of residual design can be followed, i.e., an initial distribution
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function can be set artificially, and the training is on this basis. The logarithm of distribution
Pφ(x) can be expressed as:

log Pφ(x) = log Q(x) + log Gφ(x) (12)

In Equation (12), Q(x) is a known simple distribution, which can be set as a Gaussian
distribution or a Laplace distribution probability density function, and Gφ(x) is a distribu-
tion learned from the flow model, which is a residual estimate of the simple distribution to
bring Pφ(x) closer to the real data distribution. The design flow is shown in Figure 7c. The
residual log-likelihood estimation can be calculated by Equation (11), which is expressed as:

Lrle = − log PΘ,φ(x|I )
∣∣∣x=µg = − log Q

(
µg

)
− log Gφ

(
µg

)
+ log σ̂ (13)

The RepNet network uses Equation (13) to replace the original regression loss to
train the model. In the concrete implementation of the RLE module, the lightweight flow
model is selected to learn the residual distribution, and the mean µ̂ and deviation σ̂ of the
predicted data are taken as the actual results. In the test phase, the keypoint coordinates
are obtained by outputting the mean value µ̂ directly, and the trained flow model will
no longer participate in the reasoning process to avoid affecting the performance of the
subsequent network operation.

4. Experiment
4.1. Implementation Details

Model settings. RepNet uses several multi-parameterized modules in Figure 4 to
stack and implement the feature extraction backbone. Similar to ResNet, in the network,
five stages are set up to perform downsampling operations on the feature maps to gradually
realize the increase in the number of feature channels. Table 1 demonstrates the specifics of
different stages when the input image is 256 × 256. In this paper, two models, RepNet-A
and RepNet-B, are modelled, using the layer configuration of {1, 2, 4, 14, 1} for the five
stages of the network, and different channel scaling factors are set for controlling the
number of output channels, respectively. Following the setup for the RepVGG network,
the channel scaling factors were set to 0.75 and 2.5 for model A, and 1 and 2.5 for model B.
Model B was used to control the number of output channels.

Table 1. Backbone configuration.

Network Phase Output Size Channel Numbers of
RepNet-A

Channel Numbers of
RepNet-B

1 128× 128 64× 0.75 64

2 64× 64 64× 0.75 64

3 32× 32 128× 0.75 128

4 16× 16 256× 0.75 256

5 8× 8 512× 2.5 512× 2.5

For the RLE module, the fixed distribution terms in Equation (13) are replaced with
the Laplace transform as setup in the original paper. In the training, we use the off-the-shelf
flow generation model RealNVP [35] for learning the residual likelihood estimation, and
the reversible transformation function is obtained by multiple stacked fully connected
layers, where the number of fully connected layers is set to 3, with each layer featuring
64 neutrons. The dimension of the fully connected layers of the final output result is set to
K× 4, and K is the number of predicted keypoints. In the testing phase, the average of the
network predictions µ̂ will be used as the result of coordinate regression.

Dataset. We verified the effectiveness of the method on COCO [7] and MPII [8]
datasets, respectively. The COCO dataset annotated 17 systemic keypoints for 250 K
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individuals in more than 200 K images. Except for 57 K images that were used for training,
it also included a validation set of 5 K images and a test set of 20 K for evaluating training
results. The MPII dataset contains approximately 25 K images with over 40,000 individual
annotations, highlighting a total of 16 keypoints in the human body. We divided the data
into a 22 K training set and a 3 K test set, according to the official criteria.

Evaluation indicators. Average precision (AP) based on object keypoint similarity
(Oks) is used as the evaluation index in COCO, and its calculation equivalent is shown in
Equation (14). MPII calculates the average PCK index under the given threshold to evaluate
the performance of the algorithm, as is shown in (15):

APM =
∑m ∑p δ

(
oksp > T

)
∑m ∑p 1

(14)

PCKk
mean =

∑p ∑i δ

(
dpi

dde f
p
≤ Tk

)
∑p ∑i 1

(15)

Train settings. All workflows of the RepNet network are based on the MMPose
framework and are validated on the COCO and MPII datasets, respectively. All training
images are pre-processed with random rotation of ±30 degrees and random scale scaling of
[0.75, 1.25]. During the training phase, the COCO dataset is processed by the network using
an input size of 256× 192. The learning rate used for the COCO dataset is 1× 10−3, and the
learning rate trained for the MPII dataset is 5 × 10−4. The optimizer is AdamW [36] with a
multi-stage weight decay strategy, and 210 iterations were performed on an RTX-3090 GPU
at a batch size of 64. The learning rate is reduced to 0.1 in the 170 s and 200 s, respectively.

Test settings. During the test, the same staff detector as DeepPose is adopted for
evaluation, and the keypoints of the clipped single image are detected. The remaining
parameters follow the setting of MMPose. The reasoning efficiency of the re-parameterized
network model and other lightweight algorithms is tested under the environment of an
RTX-3090 GPU and an Intel (R) Xeon (r) CPU E5-2620 V 3@2.40 GHz.

4.2. Experiment Results

COCO Dataset. Table 2 shows the experimental results of the proposed lightweight
network on MS-COCO datasets. We tested the models with the configuration of RepNet-A
and RepNet-B mentioned above. The results show that RepNet-A uses RepVGG-A0 as the
model backbone and is focused on the edge device deployment, and achieves the detection
accuracy of 63.4 AP on the COCO validation, while RepNet-B is based on RepVGG-A1,
is on the focus on the service-side deployment, and achieves the detection accuracy of
66.1 AP on the COCO validation set. Compared to the other regression methods, the
model proposed in this paper has achieved more competitive results. In addition, RepNet
surpasses some earlier algorithms in the heatmap approaches [37], and has achieved results
similar to those of the Lite-HRNet [38] model and PointSetNet [39].

The proposed network model can be used for lightweight pose estimation via the
re-parameterization technique, and Table 3 shows the test results of the reasoning efficiency
of RepNet and various lightweight pose estimation algorithms in the same experimental
environment. Among them, YOLOv7-pose achieves the highest detection accuracy in
a number of lightweight networks, but its parameter number and computation amount
are much higher than other models, and its inference efficiency at the CPU side is poor,
making it difficult to deploy to some edge devices with poor computing performance.
Compared with the benchmark algorithm DeepPose, the RepNet network achieves a
12.1% improvement in detection performance with a reasoning efficiency of nearly five
times, while compared with OpenPose and Integral algorithms, RepNet can improve
detection accuracy and reasoning speed effectively. Both Lite-HRNet and RepNet are
top-down approaches, while RepNet improved its performance by nearly ten times with
an AP accuracy of less than 1.4%, far outperforming the Lite-HRNet test results. Finally,
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we test two networks, MobileNet [40] and ShuffleNet [41], which are designed based
on depth-separable convolutions. The experimental results show that RepNet achieves
better detection performance and lighter reasoning results on the CPU side with similar
computing performance when using residual likelihood estimation. Figure 8 shows the
qualitative results of the COCO dataset.

Table 2. COCO validation experimental results.

Method Backbone Input Size AP AP50 AP75 APM APL AR

Heatmap-based

OpenPose PAF — 65.3 85.2 71.3 62.2 70.7 —

CPM CPM 384× 288 65.1 86.4 72.9 61.9 71.6 71.0

Lite-HRNet Lite-HRNet 256× 192 67.5 88.0 75.3 64.6 73.3 73.5

SimpleBaseline ResNet-50 384× 288 72.2 89.3 78.9 68.1 79.7 77.6

HRNet HRNet 384× 288 75.8 90.6 82.7 71.9 82.8 81.0

Regression-based

DeepPose ResNet-50 256× 192 54.0 82.3 65.9 55.2 65.0 68.5

Integral ResNet-50 256× 256 63.3 85.9 70.3 59.3 71.5 72.9

PointSetNet ResNeXt — 65.7 85.4 71.8 — — —

CenterNet Hourglass — 64.0 — — — — —

RepNet-A RepVGG 256× 192 63.4 85.1 69.9 60.2 69.6 68.7

RepNet-B RepVGG 256× 192 66.1 86.5 73.5 62.7 72.4 71.1

Table 3. Reasoning speed test results.

Methods Parameter
Acquisition GFLOPs AP AR GPU Speed CPU Speed Model Size

OpenPose 49.8 M 136.0 65.3 — 656 ms 881 ms 199.5 M

Integral 34.0 M 7.28 63.3 72.9 28 ms 288 ms 136.7 M

DeepPose 23.58 M 4.04 54.0 68.5 24 ms 189 ms 97.0 M

Lite-HRNet 1.76 M 0.42 67.5 73.5 182 ms 347 ms 7.2 M

MobileNet 2.36 M 0.31 59.3 64.4 22 ms 359 ms 16.1 M

ShuffleNet 1.02 M 0.14 51.1 56.6 26 ms 128 ms 4.1 M

YOLOv7-
pose 80.2 M 101.6 71.4 77.6 30 ms 561 ms 153 M

RepNet-A 7.17 M 1.49 63.4 68.7 14 ms 32 ms 27.4 M

RepNet-B 11.65 M 2.32 66.1 71.1 15 ms 40 ms 44.5 M

MPII datasets. Table 4 shows the test results of RepNet on the MPII dataset, and
it proves that the method achieves the 85.8PCKh evaluation index with the input size
of 256 × 256, outperforming other regression methods with the same configurations.
Compared with the benchmark algorithm DeepPose, the detection accuracy of Model A
and Model B is improved by 3.3% and 4.2%, respectively. And, Model B achieves similar
results to the Lite-HRNet and SimpleBaseline networks based on the heatmap method with
a lightweight network backbone, as shown in Figure 9.
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Table 4. Experimental results on MPII dataset.

Method Backbone Hea Sho Elb Wri Hip Kne Ank Mean Mean0.1

Heatmap-based

Lite-HRNet Lite-HRNet 96.2 94.6 86.9 80.6 87.1 82.0 76.9 86.9 31.2

Simple-
Baseline

Mobile-
Net 95.2 93.4 85.8 78.4 85.9 79.3 74.3 85.4 27.1

Simple-
Baseline ResNet-50 96.3 95.2 88.6 83.3 87.3 83.5 78.9 88.2 32.8

HRNet HRNet-W32 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3 —

TransPose HRNet-W32 — — — — — — — 90.3 41.6

Regression-based

DeepPose ResNet-50 93.5 92.9 82.7 73.9 85.6 75.4 66.1 82.5 20.5

RLE ResNet-50 — — — — — — — 85.5 26.7

PRTR ResNet-50 94.6 93.1 83.1 74.1 84.7 74.7 69.4 82.8 22.6

PRTR ResNet-152 96.1 94.4 86.1 78.5 87.6 81.8 74.6 86.3 26.8

RepNet-A RepVGG 95.7 94.4 86.3 78.2 88.0 79.7 72.6 85.8 27.6

RepNet-B RepVGG 95.7 95.0 87.0 79.7 88.1 81.5 74.7 86.7 29.2

4.3. Ablation Experiments

To compare the effects of different methods on the performance of the model, the
RepNet-A network is used to perform the ablation experiments on the MPII dataset with
the help of the MMPose framework, the following tables show the results of detection
accuracy and reasoning speed with the improved modules.

The re-parameterization technique achieves lightweight reasoning performance by
transforming the structure of the training model. Table 5 shows the test results of RepNet
at different stages. It can be seen that the transformed reconfiguration model reduces both
the number of parameters and the computational load, improves the reasoning speed on
GPU and CPU significantly, and effectively reduces the size of the model capacity.



Appl. Sci. 2023, 13, 9475 14 of 17

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 18 
 

   

   

Figure 8. Results on COCO dataset. 

   

   

Figure 9. Results on MPII dataset. Figure 9. Results on MPII dataset.

Table 5. Results of model experiments at different stages.

Method Stage The Number of
Parameters GFLOPs Reasoning Speed

(GPU/CPU) Size of Model

RepNet-A
Training 7.96 M 1.49 36 ms/81 ms 38.14 M

Reasoning 7.16 M 1.34 26 ms/50 ms 27.38 M

RepNet-B
Training 12.95 M 2.59 40 ms/115 ms 57.52 M

Reasoning 11.64 M 2.32 28 ms/67 ms 44.47 M

Table 6 demonstrates the impact of residual likelihood estimation and re-parameterized
structure on model detection accuracy. A simple substitution of the direct regression header
using the RLE module yields a 3.6% improvement in accuracy compared to the benchmark
algorithm. In addition, when using the re-parameterized structure as the model backbone,
the detection accuracy decreases by 0.3%, but the model parameters are reduced by 70%
and the inference time per image is reduced to 26 ms. Overall, the improved algorithm
proposed in this paper achieves a 3.3% enhancement in detection accuracy and a more than
80% increase in inference speed compared to the original network, and, in Figure 10, the
qualitative results of the two approaches are compared.

Table 6. Ablation results of improved modules.

Method The Number of Parameters GFLOPs Mean Mean@0.1 Reasoning Speed
(GPU/CPU)

ResNet + Direct
Regression 23.57 M 4.04 82.5 20.5 33 ms/274 ms

ResNet + RLE 23.69 M 4.04 86.1 27.7 33 ms/277 ms

Multi-parameterized
Structure + RLE 7.16 M 1.34 85.8 27.6 26 ms/50 ms
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The regression network presented in this paper can achieve a more lightweight perfor-
mance by reducing the input size. Table 7 shows the ablation comparison between RepNet
and the SimpleBaseline method. As can be seen from the experimental results, when the
heatmap-based pose estimation method reduces its input size to half of the original, the
detection accuracy of keypoints will decrease sharply, which proves that the heatmap
method is highly dependent on the input size. In contrast, the network proposed in this
paper can still retain effective detection under the deterioration of the data environment
and shows good robustness to be well deployed on some edge computing devices.

Table 7. Input Size Ablation Results.

Method Input Size Mean@0.1

SimpleBaseline
256× 256 32.8

128× 128 15.7

RepNet
256× 256 27.6

128× 128 17.1

5. Conclusions

In this paper, from the perspective of lightweight network design, a human pose
estimation model with a re-parameterization structure is proposed. In order to design an
easy-to-deploy network model, RepNet improves the regression algorithm by adopting the
re-parameterization technique with the residual likelihood estimation idea, and implements
a pose regression algorithm with a concise structure and good performance. Meanwhile,
we validate the effectiveness of the proposed method through multiple sets of comparison
experiments on COCO and MPII datasets. Overall, this paper achieves a good improvement
to the early pose regression network based on the current advanced ideas in the field of
deep learning, which provides a feasible direction for the research of lightweight models.
The current RepNet still has some shortcomings when it comes to images with noise and
low contrast. With the continuous development of deep learning technology in the future,
more data enhancement methods will be used to innovate lightweight models, and they
will further promote the application of human pose estimation in real scenarios.
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