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Abstract: With the growing demand for transportation, there has been a significant increase in road-
related projects, leading to potential risks in the safety of existing structures. This paper presents a
study on the influence of new tunnel construction on the stability of an adjacent existing tunnel and
provides valuable insights for the safety technology evaluation of similar tunnel crossing projects.
In order to evaluate the influence of tunnel excavation on adjacent tunnels, the excavation process
of a new tunnel near the original tunnel is simulated using the finite element software Midas GTS.
This analysis includes the evaluation of static and dynamic responses. The results indicate that the
horizontal and vertical displacements caused by the excavation of the railway tunnel are minimal.
Furthermore, during the blasting excavation of the railway tunnel, the vibration velocity experienced
by the highway tunnel remains below the safe allowable limit. These findings demonstrate that in
this project, the influence of blasting excavation for the railway tunnel on the highway tunnel is both
safe and manageable.

Keywords: road-related projects; tunnel excavation; safety assessment

1. Introduction

With the rapid development of China’s economy in recent years, there has been an
increasing demand for transportation. In order to meet the transportation demands, a
considerable number of new road projects are being implemented, resulting in a prolifera-
tion of existing roads intersecting or running parallel to one another, and leading to the
rise of road-related projects [1]. The construction of road-related projects poses significant
risks for existing road infrastructure, especially for road tunnels which require excavation
and explosion [2,3]. During the construction process of such projects, blasting vibrations
induced by new tunnel excavation may cause fissures, cracks or even collapse in medium
and harder rocks [4–7], and cause ground collapse in strongly weathered rock mass [8–10],
thereby compromising road safety. Consequently, it is of immense significance to conduct
technical assessments on the safety of road-related projects [11].

On-site observation and monitoring is the most widely employed approach for evalu-
ating the safety of such projects. By documenting deformation and failure characteristics
before and during construction, the safety of the construction process can be effectively
appraised [12–15]. The physical model test method shrinks the tunnel in equal proportion,
and studies the stability of the project by reducing the true stress state of the surrounding
rock [16–18]. By changing the inclination angle of the ground surface of a geotechnical
model with a scale factor of 1/20, Lei [19] studied the change laws and distribution forms
of structural stress and the failure mechanism of tunnel under different unsymmetrical
pressures. However, both the on-site observation and physical models have drawbacks as
are they costly and time-consuming [20]. The development of computer technology has led
to the widespread adoption of numerical simulation in the field of safety assessment [21–24].
In the evaluation of tunnel support design, Kadir Yertutanol [25] employed a finite element
numerical simulation analysis to predict the vertical displacements of a tunnel during
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its construction. Liang [1] investigated the effect of blast-induced vibration from a new
railway tunnel on an existing adjacent railway tunnel. Asker [26] studied the interaction
mechanism between a tunnel, protection technique, and soil. Various soft computing
techniques involving data mining and machine learning have also found their application
in the tunnelling-related problems [8]. Hybrid neural network approach is used to predict
ground settlements induced by building shield tunneling [27]. In addition, artificial neural
networks (ANNs), radial basis functions (RBFs), decision trees (DTs), random forest (RF)
method, support vector machines (SVMs) are also wildly applied in the prediction of engi-
neering response of tunnels and underground excavations [28–33]. To improve the accuracy
of the safety determination, fuzzy analytical hierarchy process (FAHP) is introduced in
the field of tunnel safety assessment, which has greater convenience and consumes less
time [34]. However, the above studies evaluate the safety of tunnel construction from a
single aspect, and fail to comprehensively evaluate the risks of tunnel construction from an
engineering reality perspective.

This article takes the project of the Jijiapo highway tunnel overpass on the newly
built Yangmuling railway tunnel as the engineering background. By combining laboratory
experiments, on-site monitoring data, and numerical simulation methods, the blasting
design and corresponding parameters are adjusted to mitigate the maximum vibration
velocity resulting from the blasts and ensure construction safety. A numerical calculation
model was established using the finite element numerical software Midas GTS. The influ-
ence of the new railway tunnel construction on the existing highway tunnel was analyzed
from both static and dynamic responses. This study provides references and guidance for
the safety evaluation of similar overpass road projects, which involve crossing highways
and railways.

2. Geological Conditions
2.1. Geological Conditions of the Existing Highway Tunnel

The entrance of the existing Jijiapo tunnel is situated near Tao Jia Xi in San Dou Ping
town, Yichang. The length of the tunnel is 3527 m and the maximum depth at which the
tunnel is buried is approximately 390 m. Both the left and right tunnel have the same
gradient of 1.6%; the design speed for driving through the tunnel is set at 80 km/h. The
seismic intensity is represented by a peak ground motion acceleration of g = 0.05 g, and a
characteristic period T = 0.35 s is taken into account for strengthening measures. Within
the section spanning from ZK15 + 289 to ZK15 + 767, the horizontal distance between the
highway tunnel and the railway tunnel is less than 40 m. The geological composition in
this section primarily consists of thin to medium-thick dolomite; these rock mass exhibits
a complete structure, with localized fissure development. The main classification of the
Jijiapo tunnel rock mass falls into grade III and IV; the physical and mechanical properties
of the surrounding rock are listed in Table 1.

Table 1. Physical and mechanical parameters of the surrounding rock of tunnel class III and IV.

Surrounding
Rock Grade

Density
(g/cm3)

Deformation
Modulus

(GPa)

Poisson
Ratio

Elastic Resistance
Coefficient (MPa/m)

Friction Angle
(◦)

Cohesive
(MPa)

Calculating
Friction Angle

(◦)

III 2.75 18 0.28 800 45 0.8 65
IV 2.50 5 0.35 400 35 0.4 55

2.2. Geological Conditions of the Newly Excavated Railway Tunnel

The newly excavated railway Yangmuling tunnel is a single line tunnel, located in
Yiling District, Yichang City, Hubei Province, between Muyang Village and Taojiaxi. The
total length of the tunnel is 3640.3 m and the buried depth of the tunnel is about 310~340 m,
which means it is a deep-buried tunnel. The surrounding rock of the tunnel is mainly
dolomite limestone, with no obvious fissure development and weak karst development.
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The surrounding rock of this section is divided into III and IV grades, and its parameters
and geometric dimensions are shown in Table 2.

Table 2. Parameters and geometric dimensions of the newly excavated railway tunnel.

Unit Weight
(kN/m3)

Friction Angle
(◦)

Rock Consolidating
Coefficient

Excavate Equivalent
Diameter (m) Excavation Height

25 35 2.5 6.5 9.63

2.3. Intersection Situation of Tunnels

The newly excavated railway tunnel is positioned above the highway tunnel in
DK 20 + 880 ~ DK 21 + 080, with a plane projection of 12◦. The new railway tunnel
intersects the left hole of the highway tunnel in DK 20 + 880~900, and intersects the right
hole of the highway tunnel in DK 21 + 050~080. The railway tunnel DK 20 + 880 corre-
sponds to the highway tunnel ZK 15 + 607, and the vertical net distance is 23 m. The railway
tunnel DK 21 + 080 corresponds to the highway tunnel YK 15 + 449, and the vertical clear
distance 16.7 m. The intersection situation of the tunnels is shown in Figures 1 and 2.
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Figure 1. Intersection plan of the new railway tunnel and the existing highway tunnel.
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Figure 2. Cross-sectional schematic diagram of the new railway tunnel and the existing highway tunnel.
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3. Analysis of Highway Tunnel Safety
3.1. Judgment of Vertical Alignment Intersection Closeness in Tunnels

The newly excavated railway tunnel is positioned above the highway tunnel and
utilizes the drilling and blasting method for construction. Due to the close proximity of
the two tunnels, there is a potential impact on the traffic safety of the expressway tunnel
during the construction of the railway tunnel. Thus, it is essential to assess this potential
impact due to the proximity between the two tunnels. When a new tunnel is built near the
existing tunnel, the disturbance to the surrounding soil will change the stress and strain of
the surrounding soil, consequently affecting the stress and strain state of the existing tunnel.
In order to evaluate the proximity of tunnel engineering, domestic and foreign scholars
put forward several views on theoretical and practical engineering analogy. Based on the
Approach Tunnel Construction Design and Guide released by Japan, this paper judges
the proximity of the railway tunnel through the existing expressway tunnel of the tunnel,
stratum lithology, tunnel structure section, tunnel construction method, etc.

In this project, the vertical distance of the new tunnel outline is D = 9.63 m, and the
minimum vertical clear distance between the railway tunnel and the existing highway
tunnel is DV = 16.7 m, which is greater than 1.5D (14.4 m) and less than 3D (28.9 m).
According to the division of influence degree, the location of the existing highway tunnel
falls into the category of requiring attention. This implies that the new construction has
some impact on the existing tunnel structure, albeit with a relatively weak influence.

The maximum height of the loose area of the new railway tunnel can be calculated
according to Platts theory (Formula (1)). By comparing the vertical distance with the
existing highway tunnel vault, one can check whether loosening of the surrounding rock
scope caused by the excavation of the new railway tunnel invades the scope of the existing
highway tunnel vault.

h0 =
SW
2 + WW × tan(45− ϕ0

2 )

tan(ϕs)
(1)

In the above equation, Sw is the tunnel excavation span (m); WW is the tunnel excava-
tion height (m); ϕ0 is the friction angle of the surrounding rock at the side wall (◦); and ϕs
is the friction angle of the surrounding rock at the vault (◦).

Based on the calculation results, the influence height of the loosening zone during the
normal excavation of the railway tunnel is determined to be 11.8 m, which is less than the
vertical clearance distance between the two tunnels (16.7 m). However, it is important to
note that the influence height of the loosening zone is very close to the net distance between
the two tunnels. Therefore, it is recommended to reinforce the rock and soil above the
highway tunnel to minimize the extent and degree of rock and soil loosening. Failure to do
so may result in the expansion of the loosening zone during tunnel excavation, posing a
threat to the safety of road traffic.

3.2. Establishment of Numerical Calculation Model

From the analysis above, it is evident that the construction of the new railway tunnel
has a certain impact on the existing highway tunnel. To ensure safe construction of the
railway tunnel, numerical simulation is used to evaluate the construction safety of the
tunnel. In this paper, the impact of railway tunnel construction on the existing highway
tunnel is considered in two steps. The first step does not consider tunnel blasting, and
analyzes the disturbance of railway tunnel construction on the existing highway tunnel.
The second step is to consider the impact of tunnel blasting on the existing highway tunnel.
The establishment process of the numerical calculation model is carried out in three steps:

(1) Geometric model and calculation assumptions: The geometric model of the tunnels is
defined, and necessary assumptions are made to facilitate the numerical calculations.

(2) Calculation parameters and boundary condition settings: The required calculation
parameters and boundary conditions are determined and defined for the numerical
simulation.
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(3) Construction process simulation and implementation: The construction process of the
tunnels is simulated using the numerical model, and the calculations are implemented
to analyze the behavior and response of the tunnels during construction.

By following these steps, the numerical simulation aims to provide insights into the
safety of the construction process and evaluate the potential impact on the existing highway
tunnel caused by the construction of the railway tunnel.

3.2.1. Geometric Model and Calculation Assumptions

In this paper, the numerical simulation model is established using the finite element
numerical analysis software Midas GTS. This software is currently widely utilized in
various geotechnical fields, including the design and evaluation of tunnel excavations and
support systems, slope stability analysis, and foundation pit excavations. It enables the
simulation of three-dimensional strata, tunnels, slopes, and foundation pit excavations,
allowing for a comprehensive analysis of the entire construction process.

Figure 3 illustrates a three-dimensional geometric model diagram generated via the
software. The X-axis represents the horizontal direction, the Y-axis corresponds to the
tunnel axis direction, and the Z-axis represents the vertical upward direction. The single-
lane highway tunnel being excavated has a span of 11.8 m and dimensions of 176 m in the
X direction, 100 m in the Z direction, and 160 m in the Y direction. This model is specifically
employed to simulate the intersection between the highway tunnel and the railway tunnel.
The numerical model comprises 19,071 nodes and 101,888 elements, providing an accurate
representation of the system under consideration. These elements and nodes form the basis
for conducting the numerical analysis and evaluating the behavior and response of the
tunnels during the construction process.
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3.2.2. Calculate Parameters and Boundary Conditions Setting

Based on the design documents of the Jijiapo tunnel, the surrounding rock between
section ZK15 + 507 and ZK15 + 707 (YK15 + 507 to YK15 + 607) is classified as grade IV,
and the tunnel is supported using an S4-2 lining system. In the numerical model, an elastic
model is used to represent the behavior of the tunnel lining, while the Mohr–Coulomb
constitutive model is utilized to simulate the stratum. The initial support of the highway
tunnel is simulated using plate elements, and the secondary lining is represented by solid
elements. The supporting structure of the railway tunnel is modeled using plate elements.
The physical and mechanical parameters for the formation and support structures are
crucial for accurately representing the behavior and response of the tunnel system, and
they are provided in Tables 3 and 4, respectively.
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Table 3. Physical and mechanical parameters of the formation structure.

Supporting Materials Unit Weight (kN/m3) Deformation Modulus (GPa) Poisson Ratio

C20 Concrete
(initial support) 24 25.5 0.2

C25 Concrete
(secondary lining of highway tunnel) 24 28 0.2

C35 Reinforced concrete
(secondary lining of railway tunnel) 25 31.5 0.2

Table 4. Physical and mechanical parameters of the support structure.

Supporting Materials Unit Weight (kN/m3) Deformation Modulus (GPa) Poisson Ratio

C20 Concrete
(initial support) 24 25.5 0.2

C25 Concrete
(secondary lining of highway tunnel) 24 28 0.2

C35 Reinforced concrete
(secondary lining of railway tunnel) 25 31.5 0.2

3.2.3. Construction Process Simulation and Realization

The simulation of the construction process is conducted in four distinct steps:

(1) Initial balance, activate stratum, apply displacement boundary condition and gravity,
tick displacement zero, and carry on initial balance;

(2) Simulate the process of highway tunnel construction, simulate the cycle of excavation-
initial support-second lining until the completion of highway tunnel construction;

(3) Simulate the influence of railway tunnel excavation on highway tunnel, and simulate
the cycle of excavation-initial support-second lining until the railway construction
is completed;

(4) Simulate the influence of blasting on highway tunnel, (3) conduct dynamic analysis
based on the stress field obtained with static calculation; when construction reaches the
crossing point of railway tunnel and highway tunnel, apply the equivalent blasting
load at the crossing point. When the boundary conditions around the model are
changed to viscous non-reflection boundary, use nonlinear time history analysis.

By following these four steps, the numerical simulation captures the various stages of
construction and assesses the impact of excavation, support installation, and blasting on
the behavior and safety of the highway tunnel.

3.3. Static Response Analysis
3.3.1. Analysis of Highway Tunnel Excavation

Before the excavation of the highway tunnel and railway tunnel, an initial in situ stress
equilibrium is established to determine the initial stress field. Figure 4 shows the initial in
situ stress field, considering the absence of a 300 m high mountain body model. Instead, its
influence is represented by an equivalent load of 7 MPa applied to the top of the numerical
model. The vertical ground stress gradually increases from approximately 7 MPa to 10 MPa
in a top-down manner.

After completion of the highway tunnel construction, the vertical and horizontal
displacements of the tunnel are evaluated. Figure 5 illustrates the displacement distribution.
The calculation results indicate that, with the completion of the highway tunnel and in
the absence of railway tunnel excavation, the bottom of the tunnel’s arch experiences an
uplift of 2.421 cm, while the top of the arch undergoes a settlement of 3.317 cm. The vertical
displacement at the side wall is estimated to be around 3–4 mm. Moreover, the horizontal
displacement of the left side wall is approximately 2.681 cm, while the right side wall
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experiences a displacement of −3.150 cm. The horizontal displacements of the vault and
the bottom are relatively small, ranging from 0.6 mm to 0.8 mm.
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Figure 5. (a) Vertical displacement and (b) horizontal displacement after highway tunnel construction.

3.3.2. Horizontal Displacement Analysis of Highway Tunnel

For clearly observing the impact of railway tunnel construction on road tunnels, a
displacement zeroing process was conducted before the excavation of the railway tunnel.
Section A, which is the closest section of the highway tunnel to the railway tunnel, was
analyzed. Figure 6 displays the horizontal displacement curve of a representative point
in the second lining of the road tunnel at section A. In the figure, positive values indicate
displacement to the right, while negative values indicate displacement to the left. The
results show that the horizontal displacement at the crown and inverted arch of the road
tunnel in section A is minimal. The displacement at the left and right abutments is slightly
larger, and the displacement at the left and right walls is the largest. When section A
is located between −80 m and −20 m from the face of the railway tunnel excavation,
the horizontal displacement of the road tunnel remains nearly constant as the distance
increases. Between −20 m and 20 m, the horizontal displacement of the road tunnel
increases rapidly with distance, reaching a maximum value of 0.59 mm. Beyond 20 m to
80 m, the horizontal displacement of the road tunnel converges and no longer increases
significantly with distance.

Figure 7 presents a contour map of the horizontal displacement of the second lining of
the road tunnel during the excavation of the railway tunnel at distances of 40 m, 80 m, 120 m,
and 160 m, respectively. The calculation results indicate that the maximum horizontal
displacement values for the right tunnel of the road tunnel are 0.540 mm and −0.59 mm
during the excavation of the railway tunnel. Overall, the horizontal displacement caused
by the railway tunnel excavation near the intersection of the road and railway tunnels is
relatively small.
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Figure 6. Horizontal displacement curve of highway tunnel with minimum clear distance.
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Figure 7. Cloud map of the horizontal displacement of the second lining of the highway tunnel
during the excavation of the railway tunnel: (a) excavated to 40 m, (b) excavated to 80 m, (c) excavated
to 120 m, and (d) excavated to 160 m.

3.3.3. Vertical Displacement Analysis of Highway Tunnel

Figure 8 illustrates the vertical displacement curve of a representative point in the
second lining of the highway tunnel at section A. Positive values indicate upward dis-
placement of the tunnel, while negative values indicate downward displacement. It can be
seen from the figure that the maximum vertical displacement occurs at the crown of the
highway tunnel in section A, while the minimum displacement occurs at the springing.
Apart from the significant displacement at the crown, the vertical displacement at the foot
of the arch and the side walls is relatively small. When section A is located between −80 m
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and −20 m from the face of the railway tunnel excavation, the vertical displacement of the
highway tunnel does not increase significantly with distance. However, between −20 m
and 20 m, the vertical displacement of the highway tunnel increases rapidly with distance,
reaching a maximum value of 1.42 mm. Beyond 20 m to 80 m, the vertical displacement of
the highway tunnel converges and no longer increases significantly with distance. Figure 9
presents a contour map of the vertical displacement of the second lining of the highway
tunnel during the excavation of the railway tunnel at distances of 40 m, 80 m, 120 m, and
160 m, respectively. As the railway tunnel is excavated above the highway tunnel, the
vertical displacement is upward.
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Figure 8. Vertical displacement curve of highway tunnel with minimum clear distance.
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Figure 9. Cloud map of the vertical displacement of the second lining of the highway tunnel during
the excavation of the railway tunnel: (a) excavated to 40 m, (b) excavated to 80 m, (c) excavated to
120 m, and (d) excavated to 160 m.
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At 40 m excavation, the maximum vertical displacement of the right tunnel lining of the
highway tunnel is 0.944 mm, while it is 0.176 mm in the left tunnel lining. At 80 m excavation,
the maximum vertical displacement of the right tunnel lining is 1.421 mm, and the maximum
displacement of the left tunnel lining is 0.233 mm. At 120 m excavation, the maximum vertical
displacement of the right tunnel lining is 1.393 mm, and the maximum displacement of the left
tunnel lining is 0.249 mm. Finally, at 160 m excavation, the maximum vertical displacement of
the right tunnel lining is 1.315 mm, and the maximum displacement of the left tunnel lining is
0.249 mm. The calculation results demonstrate that near the intersection of the highway and
railway tunnels, the vertical displacement of the highway tunnel caused by the construction
of the railway tunnel is relatively small, with a maximum value of 1.42 mm.

3.4. Dynamic Response Analysis
3.4.1. Parameter Selection

In dynamic analysis, several factors have an impact on the calculation results, includ-
ing elastic modulus, damping parameters, spatial dimensions, blasting vibration intensity,
and loading time. Accurate values of these parameters are essential to ensure that the
calculated results closely reflect the real situation. Here are some considerations regarding
two of these factors:

(1) Elastic modulus: The elastic modulus significantly affects the calculation results. A
higher elastic modulus of the rock mass leads to smaller vibration velocities at protected
particles. Some researchers propose the concept of dynamic elastic modulus, suggesting
that materials may exhibit an increased elastic modulus under the influence of blasting vi-
brations. However, many researchers do not consider dynamic elastic modulus in dynamic
analysis. For safety reasons, this study adopts the static elastic modulus instead of the
dynamic one. (2) Damping parameters: Damping parameters in the model are related to the
rate of vibration velocity attenuation and have a significant impact on the calculation results.
To ensure consistency between numerical calculations and actual measurements, damping
parameters often require dynamic adjustment based on on-site monitoring data. There are
two main approaches to input damping parameters in numerical calculations. One is to
directly input the coefficients of Rayleigh damping, including the mass damping coefficient
α and the stiffness damping coefficient β. The other approach involves conducting an
eigenvalue analysis on the model to determine the inherent frequency of the structure and
calculate the damping parameters based on the inherent frequency and damping ratio.
Since there is no available on-site monitoring data on vibration velocity in this case, directly
inputting damping parameters α and β lacks a basis for value determination. Therefore,
this study adopts the approach of inputting damping ratio and inherent period of the
structure to generate damping parameters. The inherent period can be obtained through
an eigenvalue analysis. Previous literature suggests that the damping ratio in this model
can be set within the range of 0.02–0.05. For safety considerations, a damping ratio of 0.02
is chosen for this calculation. It is worth noting that the other factors mentioned, such as
spatial dimensions, blasting vibration intensity, and loading time, should also be carefully
considered and accurately valued to ensure the reliability of the dynamic analysis results.

(3) Blasting load intensity: According to the different effects of blasting on rock mass,
the blasting action range can be divided into near field, middle field, and far field. The
near field is the area where rocks are crushed by blasting, while the middle field often
produces fracture damage to the rock mass. In the far field, the rock mass only undergoes
elastic vibration due to blasting. According to the requirements of tunnel construction,
the surrounding rock of the tunnel should not be damaged during blasting, and the
surrounding rock is in an elastic vibration state when establishing the vibration model of
the tunnel excavation blasting, with the following simplified assumptions: ¬ the blasting
vibration load acts on the tunnel perimeter wall in the form of uniformly distributed
pressure load in the normal direction; and ­ the tunnel perimeter wall is in the far field of
blasting action, and the blasting vibration load on the tunnel perimeter wall will not cause
surrounding rock damage. Blasting load has a significant impact on the calculation results,
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with larger blasting peak loads applied to the tunnel wall resulting in greater vibration
velocities at protected particles. For concentrated charge or single-hole cylindrical charge,
wave theory can be used to accurately calculate the initial peak stress of blasting on the
borehole wall and thus calculate the blasting vibration. However, as tunnel excavation
blasting generally uses multi-hole charges distributed in a certain space for initiation, the
stress produced by blasting is the result of the superposition of multiple stress waves,
and currently there is no theoretical method to accurately calculate the stress produced
by multi-hole charge initiation at a particular location. Existing data show that the peak
blasting load applied to the tunnel wall can be approximately calculated using Formula (2).

Pmax =
139.97

Z
+

844.81
Z2 +

2154
Z3 (2)

In the formula, Pmax is the peak of blasting stress (kPa), Z = R/ 3
√

Q is the proportional
distance, R is the distance from the hole to the loading surface (m), and Q is the charge of
the hole (kg).

The calculated peak blasting load is 6.497 MPa, and the approximate form of the
blasting load is a triangular load. The loading time of the blasting load is taken as 10 ms,
and the unloading time is taken as 90 ms. The model calculation time is taken as 200 ms,
and the blasting load function is shown in Figure 10. As the peak vibration caused by tunnel
excavation blasting often occurs during the slot blasting, this calculation only simulates the
blast pressure generated by the slot blasting and ignores the effects of auxiliary holes and
surrounding holes. When the railway tunnel excavation reaches the closest point to the
highway tunnel, the dynamic load is applied to the excavation face of the railway tunnel,
perpendicular to the excavation face.
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Figure 10. The blasting load function.

3.4.2. Vibration Speed Analysis

Figure 11 shows the cloud speed of the highway tunnel at 10 ms, 16 ms and 20 ms.
The peak vibration velocity occurs at the right tunnel vault of the highway tunnel; the
right tunnel is 0.555 cm/s at 10 ms and 0.934 cm/s at 20 ms, and the second lining of the
highway tunnel reaches 1.527 cm/s.

Figure 12 shows the vibration time-history curve of a selected point located in the
second lining of the right tunnel of the highway tunnel at the intersection of the railway
and highway tunnels, and Figure 13 shows the vibration time-history curves of the arch
apex mass point in different directions. From Figures 12 and 13, it can be seen that during
the railway tunnel blasting construction process, the vibration velocity at the mass point of
the highway tunnel arch apex is the highest, and it rapidly increases from 0 to 1.527 cm/s
within 0–16 ms, then rapidly decreases, and has a small rebound at 24 ms, after which the



Appl. Sci. 2023, 13, 9459 12 of 15

vibration velocity slowly decreases and reaching 0.02 cm/s. The peak vibration velocity at
the mass point on the left and right walls of the highway tunnel is 0.606 cm/s, and the trend
of vibration velocity with time is consistent with the arch apex vibration velocity curve.
The vibration at the arch apex mainly vibrates along the Z direction, and the vibration
velocity in the X and Y directions is very small.
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Figure 11. Cloud diagram of two-lining vibration velocity of highway tunnel at different times
(a) 10 ms, (b) 16 ms, and (c) 20 ms.
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Figure 12. Vibration time-history curve of road tunnel control point at intersection.

According to the “Technical Regulations for Monitoring and Measurement of Highway
Tunnels” (DB42/T 900-2013) and the “Blasting Safety Regulations” (GB 6722-2014), the per-
missible safe vibration velocity for the existing highway tunnel, subject to the disturbance
caused by the new railway tunnel construction, should be less than 10 cm/s. Considering
the operation of the highway tunnel for a duration of 12 years and the resulting degra-
dation of the lining, the allowable safe vibration velocity is reduced to less than 2 cm/s.
Throughout the dynamic analysis process, it is evident that the vibration velocity of the
existing highway tunnel remains below the allowable safe vibration velocity of 2 cm/s.
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Consequently, these findings indicate that the impact of railway tunnel blasting excavation
on the existing highway tunnel is within manageable limits.
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Figure 13. Time-history curve of arch vibration of highway tunnel at intersection.

4. Conclusions

This study used the finite element software Midas GTS to establish a numerical
model of tunnel excavation and conducted a safety evaluation for the project involving the
crossing of the Jijiapo highway tunnel and the Yangmuling railway tunnel. The following
conclusions can be drawn:

(1) Analysis of the vertical alignment intersection closeness in tunnels shows that the
new railway tunnel has an effect on the existing highway tunnel structure, but the
effect is weak, and it usually does not cause harm;

(2) The horizontal displacement is the smallest at the invert and vault of the highway
tunnel, slightly larger at the left and right arch feet, and the largest at the left and
right side walls. The horizontal displacement of the highway tunnel initially remains
relatively constant with distance from the front face of the railway tunnel, then
increases rapidly, and finally converges without further increase. The maximum
horizontal displacement caused by the railway tunnel construction is 0.540 mm and
−0.59 mm;

(3) The vertical displacement is the largest at the arch top and the smallest at the invert of
the highway tunnel. Similar to the horizontal displacement, the vertical displacement
of the highway tunnel also shows an increasing trend with the distance from the face
of the railway tunnel. The maximum vertical displacement caused by railway tunnel
construction is 1.42 mm;

(4) The vibration velocity is highest at the vault of the highway tunnel and increases
initially before decreasing with time, reaching a peak value of 1.527 cm/s at 16 ms.
Throughout the entire process of blasting construction, the vibration velocity of the
highway tunnel remains below 2 cm/s. The results demonstrate that the excavation
process for the railway tunnel in this study is safe and manageable for the adjacent
highway tunnel.
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