
Citation: Kwak, C.; Jung, P.; Lee, S. A

Multimodal Deep Learning Model

Using Text, Image, and Code Data for

Improving Issue Classification Tasks.

Appl. Sci. 2023, 13, 9456. https://

doi.org/10.3390/app13169456

Academic Editors: Robertas

Damaševičius, Sanjay Misra and

Bharti Suri

Received: 27 July 2023

Revised: 14 August 2023

Accepted: 16 August 2023

Published: 21 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Multimodal Deep Learning Model Using Text, Image, and
Code Data for Improving Issue Classification Tasks
Changwon Kwak 1 , Pilsu Jung 1,2,* and Seonah Lee 1,2,*

1 Department of AI Convergence Engineering, Gyeongsang National University, 501 Jinjudaero,
Jinju-si 52828, Gyeongsangnam-do, Republic of Korea; chang_26@naver.com

2 Department of Aerospace and Software Engineering, Gyeongsang National University, 501 Jinjudaero,
Jinju-si 52828, Gyeongsangnam-do, Republic of Korea

* Correspondence: psjung@gnu.ac.kr (P.J.); saleese@gnu.ac.kr (S.L.);
Tel.: +82-55-772-1372 (P.J.); +82-55-772-1377 (S.L.)

Abstract: Issue reports are valuable resources for the continuous maintenance and improvement
of software. Managing issue reports requires a significant effort from developers. To address
this problem, many researchers have proposed automated techniques for classifying issue reports.
However, those techniques fall short of yielding reasonable classification accuracy. We notice that
those techniques rely on text-based unimodal models. In this paper, we propose a novel multimodal
model-based classification technique to use heterogeneous information in issue reports for issue
classification. The proposed technique combines information from text, images, and code of issue
reports. To evaluate the proposed technique, we conduct experiments with four different projects.
The experiments compare the performance of the proposed technique with text-based unimodal
models. Our experimental results show that the proposed technique achieves a 5.07% to 14.12%
higher F1-score than the text-based unimodal models. Our findings demonstrate that utilizing
heterogeneous data of issue reports helps improve the performance of issue classification.

Keywords: issue classification; issue reports; multimodal; deep learning; bug; feature; code; image

1. Introduction

For software maintenance, software developers utilize issue-tracking systems to
quickly incorporate user requirements into their software products. While using the
software products, users report bugs, feature suggestions, and other comments by creating
issue reports. Developers can refer to the issue reports to make changes to the software
products. However, the number of issue reports rapidly increases. In the case of active
open-source software projects, hundreds of issue reports are accumulated daily. Manually
managing such issue reports requires a significant amount of effort from developers.

Researchers have conducted studies on automatically classifying issue reports to sys-
tematically manage issue reports [1–10]. Some of them [1–3,6,7,9] focused on classifying
issue reports into a few categories, such as bug or non-bug. For example, Kallis et al. [7] em-
ployed FastText to classify issue reports into three categories: Bug, Enhancement, and Ques-
tion. Other studies attempt to classify issue reports into more categories [5,8,10]. However,
all of those studies solely utilized a single modality, thereby missing out on the potential
benefits of incorporating heterogeneous information from issue reports. As a result, those
models struggled to attain a comprehensive understanding of the issue report due to the
limitations imposed by the scarcity of information. Consequently, such a single modality
hinders the potential for substantial enhancements in issue classification performance.

In this paper, we notice that issue reports contain various types of information, includ-
ing textual titles, body contents, images, videos, and code. Figure 1 demonstrates an issue
report that contains text, code, and images together. This is an example of an issue report
in VS Code with issue number #147154. We expect that not only text data but also image

Appl. Sci. 2023, 13, 9456. https://doi.org/10.3390/app13169456 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13169456
https://doi.org/10.3390/app13169456
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0005-7318-9865
https://orcid.org/0000-0002-2004-2924
https://doi.org/10.3390/app13169456
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13169456?type=check_update&version=1

Appl. Sci. 2023, 13, 9456 2 of 24

and code data of issue reports can contribute to the performance of the issue classification,
because the additional data can elaborate the representations of issue reports. Therefore,
we propose MulDIC, a multimodal deep learning-based issue classification model that uses
text, image, and code data of issue reports.

Text

Label

Code

Image

Figure 1. Example of an issue report in VS Code.

To evaluate the proposed model MulDIC, we conducted experiments to examine
whether the proposed multimodal model, MulDIC, which combines text, image, and code
data can improve the performance of issue classification. For the experiments, we selected
four projects with many issue reports: VS Code, Kubernetes, Flutter, and Roslyn. With
the four projects, we compared the performance of our proposed multimodal model with
that of the state-of-the-art unimodal model proposed by Cho et al. [10]. Our experimental
results showed that our proposed approach achieved a higher F1-score by 5.07% to 14.12%
compared to the existing method, improving the issue report classification performance in
all projects.

The contributions of our study are as follows:

1. We propose the first multimodal model that combines text, image, and code modalities
for issue classification tasks.

2. We evaluate the effectiveness of our proposed multimodal model by comparing a
text-based unimodal model in issue classification tasks.

3. We analyze the effect of image and code modality by experimenting with a combina-
tion of several different modalities.

Appl. Sci. 2023, 13, 9456 3 of 24

4. We make the code and datasets we used for our experiment available on GitHub.

The remainder of this paper is organized as follows. Section 2 introduces the related
works. Section 3 proposes our approach. Section 4 describes the experimental setup.
Section 5 presents the experimental results and discusses the results. Section 6 concludes
the paper.

2. Related Works

We classify related works in this paper into two categories: studies on (1) classifying
issue reports in open-source projects and (2) applying multimodal deep learning in software
engineering and other domains.

2.1. Issue Report Classification

Researchers proposed machine learning techniques and deep learning techniques for
classifying issue reports. Fan et al. [2] and Pandey et al. [3] classified issue reports into bug
or non-bug using machine learning techniques. Zhu et al. [6], Kallis et al. [7], Kim et al. [8],
Zhifang, Liao, et al. [9], and Cho et al. [10] used deep learning techniques for the same task.

Fan et al. [2] proposed a two-stage issue report classification approach by combining
textual data of an issue report with developer information. In the first stage, the approach
extracts semantic perplexity features from an issue report’s textual data using a text-based
classification model such as support vector machines (SVM), naive Bayes, and logistic
regression. In the second stage, the approach classifies issue reports into bug or non-bug by
applying logistic regression to the textual data of an issue report and developer information.
The two-stage approach showed an average F1-score of 75.21% in the first quartile.

Pandey et al. [3] proposed an approach to classify issue reports into bug or non-bug
using the summary part of an issue report. For the classification, the approach applies
machine learning algorithms of naive Bayes, linear discriminant analysis, support vector
machine (SVM), and logistic regression. The authors experimented with three open-source
projects to evaluate the approach’s Precision, Recall, F1-score, and accuracy. The results
showed an F1-score ranged from 71.11% to 72.15%.

Zhu et al. [6] proposed a deep learning-based approach for classifying issue reports
into bug or non-bug. The approach collects issue data from different issue tracking systems
and pre-processes them. To detect and correct misclassified issues, the approach uses
k-nearest neighbor algorithm. Then, the approach labels issues with bug or non-bug tags
using an attention-based bi-directional long short-term memory network. To evaluate
the approach, the authors used open-source projects such as Apache, JBoss, and Spring
framework. Their experimental results showed a micro F1-score of 85.6%.

Kallis et al. [7] conducted a study that classifies issue reports using existing labeling
techniques [11–13]. Kallis et al. [7] proposed TicketTagger, an automated system that
assigns suitable labels to issue reports opened on GitHub projects. When a developer posts
an issue report on GitHub, TicketTagger assigns one of Bug, Enhancement, or Question to
the issue report. TicketTagger achieved an F1-score of 82.3% to 83.1%.

Cho et al. [10] proposed a deep-learning model for classifying issue reports into
relevant user manuals using CNN and RNN models. They also conducted a comparison
experiment on the task of categorizing issues into relevant labels, which resulted in an
F1-score of 54.34% for Notepad++ (3 labels), 52.73% for Komodo (2 labels), and 67.14% for
VS Code (2 labels). The data used in this study consist of the title and body text of issue
reports and user manuals. The study demonstrated that the proposed model effectively
classifies issue reports, compared to the state-of-the-art approach, TicketTagger [7], for issue
report classification.

Kim et al. [8] proposed a CNN−based approach for classifying bug reports into
Production or Test. The approach uses textual features extracted from source files and
bug reports. The approach trains a source file classifier that classifies a source file into
a production file or a test file using the name and contents of the source file. Then, the
approach fine-tunes the source file classifier to classify a bug report into a production bug

Appl. Sci. 2023, 13, 9456 4 of 24

report or a test bug report using the title and content of a bug report. Their experimental
results showed a macro F1-score of 83.9%.

Zhifang, Liao, et al. [9] proposed a GitHub issue report classification method named
personal information fine-tuning network (PIFTNet). They utilized transfer learning and
the submitter’s personal information to classify issue reports into bugs or non-bugs. The
method involves fine-tuning the pre-training parameters in BERT and using nine traits
reflecting submitter’s project familiarity and influence. Thus, it combines the text charac-
teristics and the characteristics of the submitter’s personal information to construct the
classification model. The experimental results showed the proposed method’s superiority,
achieving an 85.55% F1-score.

Existing studies on classifying issue reports used only a single modality. This means
that the studies did not use various types of information, including text, images, and code
of issue reports together. In this paper, we propose MulDIC, an issue classification method
using three modalities from the three different kinds of data (i.e., text, images, and code
of issue reports). We also evaluate the effectiveness of using three modalities of issue
reports by comparing the performance of our MulDIC model with that of Cho et al.’s CNN
model [10]. We would like to note that the performance values reported by existing studies
were based on different data from different projects with different evaluation methods.

2.2. Application of Multimodal Deep Learning
2.2.1. Application of Multimodal Techniques in the Field of Software Engineering

Several studies in software engineering proposed multimodal techniques and success-
fully achieved higher performance than the unimodal techniques. They utilized multimodal
approaches in bug localization [14], code editing [15], and bug report triage [16].

Hoang et al. [14] proposed a multimodal bug localization approach called NetML.
NetML comprises three main components: feature extraction, graph construction, and
integrator. The feature extraction component extracts multimodal input features from a bug
report and a method. The graph construction component computes the similarity graph
among bug reports and methods. The integrator component combines the input features
and the similarity graph to generate a ranked list of methods based on relevancy scores.
The experimental evaluation with 355 real bugs showed that NetML successfully localizes
significantly more bugs than the four baseline approaches.

Chakraborty et al. [15] proposed an automated code editing tool called MODIT based
on a multimodal neural machine translator. MODIT uses three modalities of information:
edit location, edit code context, and commit messages. Given a code fragment that needs to
be edited, the surrounding method body, and a commit message, MODIT automatically
generates a set of patches. The evaluation showed that MODIT achieves better accuracy
than applying the existing deep learning models of CodeBERT, GraphCodeBERT, and
CodeGPT for code editing.

Zhang et al. [16] proposed SusTriage, a multimodal deep learning-based bug report
triage system. SusTriage extracts the textual data and metadata from bug reports. Using the
extracted dataset, SusTriage builds three recommendation models that classify developers
into core, active, and peripheral developers. Then, SusTriage combines the three models
based on ensemble learning. Finally, given a pair of bug reports and developers, SusTriage
recommends suitable developers to resolve the bug report. The evaluation with Eclipse and
Mozilla bug report datasets showed that SusTriage significantly outperforms state-of-the-art
techniques on both accuracy and sustainability.

In software engineering, researchers have applied multimodal deep learning to achieve
state-of-the-art results. They incorporated supplementary information to enhance task per-
formance. For instance, Zhang et al. [16] utilized textual data and metadata to enhance their
model’s comprehension of bug reports, but they did not fully exploit the comprehensive
nature of bug reports beyond textual information. In contrast to those studies, we propose
MulDIC, which utilizes comprehensive information of an issue. MulDIC leverages three
modalities of text, code, and image, considering the characteristics of each modality.

Appl. Sci. 2023, 13, 9456 5 of 24

2.2.2. Application of Multimodal Techniques in Other Fields

Multimodal deep learning has been explored across diverse fields. Summaira,
Jabeen, et al. [17] conducted an extensive study on multimodal deep learning, incorpo-
rating modalities such as image, video, text, audio, body gestures, facial expressions, and
physiological signals. Among those, there have been studies applying multimodal deep
learning combining images and text, including visual-based referred expression under-
standing and phrase localization [18,19], as well as image and video captioning [20–22], text-
to-image generation [23–25], and visual question answering (VQA) [26–30]. Antol et al. [26]
developed a multimodal deep learning model for the visual question answering (VQA)
task. They employed a model with two channels: an image and a text (question) channel.
The image channel used VGGNet for feature extraction, while the text channel utilized
LSTM to embed the textual data. They then combined the two channels’ features through
element-wise multiplication to transform the data into a shared space and obtain the final
classification result.

Lopez-Fuentes et al. [31], Kim et al. [32], Audebert et al. [33], and Palani et al. [34] also
developed multimodal models using both visual and text information. Lopez-Fuentes et al. [31]
proposed a multimodal deep learning model that combines image data and text meta-
data to retrieve social media posts containing important information about floods. Their
model uses a convolutional neural network (CNN) for extracting visual features and a
bidirectional LSTM network for extracting semantic features from the text metadata. The
experimental evaluation showed that combining these two types of information improves
the performance of retrieving flood-related posts.

Kim et al. [32] proposed a multimodal deep learning approach to support interpreting
the intended message of information graphics. An information graphic refers to the
visual representation such as lines or bar graphs in a document or popular media. The
multimodal model uses pixel and text data to classify information graphics into six intention
categories validated as useful for people with visual impairments. For this, the model
utilizes CNN−based layers for processing pixel information graphics and a bag of words
(BOW) for handling OCR-extracted textual information. The authors showed that the
proposed multimodal method performs the best among the compared methods.

Audebert et al. [33] considered the visual and text information extracted from images
to classify digitized documents. Their approach involves processing the visual and text
information separately using CNN−based layers. First, they trained a CNN−based layer
for visual information with grayscale document images resized at 384 × 384. For textual
information, they used Tesseract OCR to extract text from images and conducted text
embedding using FastText to feed the results to the CNN−based layer. Finally, they
concatenated the image and text CNN−based layers. The authors validated their approach
on the Tobacco3482 and RVL-CDIP datasets. The experimental evaluation showed that
their multimodal approach outperforms the existing single modality approaches.

Palani et al. [34] introduced CB-Fake, a multimodal deep learning framework designed
to identify fake news at the early stage by analyzing both the textual and visual content of
the news article. The CB-Fake model incorporates CapsNet to extract crucial visual features
from images and employs the pre-trained BERT language model to capture context-rich
textual features from news articles. These features are synergistically fused to create a
richer data representation, subsequently fed into a classification layer to determine whether
the news is fake or real.

Some studies considered other modalities besides visual and textual information.
Oramas et al. [35] proposed an approach for classifying music genres from different data
modalities, including audio, text, and images. Their method involves training deep neural
networks to learn intermediate representations from audio tracks, text reviews, and cover
art images. They conducted experiments on single and multi-label genre classification.
The experiments showed that fusing different modalities yields better results than using
individual ones in the music genre classification task.

Appl. Sci. 2023, 13, 9456 6 of 24

Huang et al. [36] proposed a fusion method for emotion recognition using two modali-
ties: facial expressions and electroencephalogram (EEG) signals. The method trains a facial
expression classifier to identify four primary emotional states: happiness, neutral, sadness,
and fear. Additionally, the method trains two support vector machine (SVM) classifiers
to detect EEG signals for each of the four primary emotional states and three levels of
emotional intensity, strong, moderate, and weak. Finally, the model combines the decisions
from the two classifiers to recognize emotions. The study demonstrates that combining
facial expressions and EEG data alleviates the limitations of using a single modality in
emotion recognition tasks.

Tripathi et al. [37] proposed a multimodal emotion recognition framework using three
modalities: text, speech, and motion capture data. The method employed the best indi-
vidual models for each modality and fused the three modalities through fully connected
layers. The experiment with the IEMOCAP dataset [38] showed that the proposed ap-
proach achieves a more robust and accurate emotion detection than approaches with a
single modality.

The studies above demonstrated the effectiveness of utilizing multimodal models
in various tasks. In particular, the multimodal models in the studies outperformed the
existing single-modality models. However, as far as we know, we are the first to propose
the multimodal-based approach for issue classification tasks. Additionally, while previous
studies have explored the combination of different modalities, none of them specifically
utilized text, images, and code. Our approach leverages the characteristics of the three
modalities of text, code, and image. Therefore, we combine the three modalities to capture
comprehensive information in issue reports, including textual description, relevant code
snippets, and accompanying visual content.

3. The Proposed Multimodal Model

Section 3.1 provides the overview of our proposed approach. Section 3.2 describes
the pre-processing of different kinds of data. Section 3.3 explains the process of extracting
features from text, images, and code. Section 3.4 explains the concatenation of several
feature vectors.

3.1. Overview

We propose MulDIC, a multimodal model for classifying issue reports. The proposed
model’s architecture is illustrated in Figure 2. In the illustration, “FC” represents “Fully-
Connected”. As shown in Figure 2, the input data consist of three modalities: text, image,
and code. The approach MulDIC preserves the distinctive features inherent to each modality
by using CNN channels.

The proposed model, MulDIC, consists of a total of four stages:

1. To prepare the input data, MulDIC pre-processes text, image, and code data, respectively.
2. MulDIC processes the pre-processed text, image, and code data with respective

CNN−based channels. The second stage generates three feature vectors correspond-
ing to three modalities of text, image, and code data.

3. MulDIC uses an element-wise multiplication operation that combines the feature
vectors generated from all modality data. Then, the proposed model has text, image,
and code representations in a common representation space.

4. MulDIC performs a Softmax operation on the representations.

As a result, an issue report will be classified into one of two categories: “bug” or
“feature”, as shown in Figure 2. Because we experiment with the feasibility of perfor-
mance improvement by adopting a multimodal model in issue classification, we limit the
classification of issue reports to only two “bug” and “feature” categories in this paper.

Appl. Sci. 2023, 13, 9456 7 of 24

CNN based
Image Channel

CNN based
Text Channel

FC

Element-wise
multiplication

FC Softmax

“Bug”
or

“Feature”

CNN based
Code Channel

FC

Image

Text

Code

FC

Figure 2. Overall Structure of the Proposed Model, MulDIC.

3.2. Stage 1: Data Pre-Processing
3.2.1. Text Pre-Processing

Text pre-processing involves extracting the useful information from raw text data
and normalizing it to make it suitable for further analysis or modeling tasks. Figure 3
illustrates an example describing the text pre-processing procedure. Our proposed model
pre-processes the text in the following order:

1. Case-folding: The model converts all words to lowercase to ensure case insensitivity
for all text.

2. Tokenization: The model first splits the text in a document into individual sen-
tences. The model then tokenized all sentences into a sequence of tokens by using the
word_tokenize of the NLTK module in Python.

3. Stop-word removal: Stop-words are common words frequently occurring in all doc-
uments but do not provide meaningful information [39]. In order to retain only
meaningful word tokens from the data, the model removes stop-words. We used the
stop-words predefined in the NLTK module in Python and eliminated stop-words
from all generated tokens. Additionally, we removed non-alphabetic tokens such
as numbers.

CodeLens References Missing on TypeScript class constructors after 1.66.1 update

codelens references missing on typescript class constructors after 1.66.1 update

['codelens', 'references', 'missing', 'on', 'typescript', 'class', 'constructors', 'after', '1.66.1', 'update']

['codelens', 'references', 'missing', 'typescript', 'class', 'constructors', 'update']

Case-folding

Tokenization

Stop-word removal

Figure 3. Example of text pre-processing.

3.2.2. Code Pre-Processing

Code data have a different structure and format from natural language in the text
modality. To preserve the unique characteristics of code data, we apply pre-processing

Appl. Sci. 2023, 13, 9456 8 of 24

techniques that are specific to the code. Figure 4 is an example of the code pre-processing,
and the model pre-processes the code in the following order:

1. Comment removal: The proposed model removes comments from the code to separate
natural language from the code.

2. Special token replacement: To maintain the structure of the code, the model uses
special tokens such as ‘\n’ and ‘\t’ to represent the indentation and line breaks that
carry structural meaning in programming languages.

3. Case-folding: The model converts all words to lowercase to ensure case insensitivity
for all code.

4. Tokenization: The model splits the code in a document into individual sentences. The
model then tokenizes all sentences into a sequence of tokens by using the SpaceTok-
enizer of the NLTK module in Python.

export class TestClass { # example of comment 1
public constructor(

public readonly info="My constructor has no CodeLens
Reference Count!"){

}
public testMethod(): string {

return "This method has a CodeLens Reference Count"
}

}
'''
example of comment 2
'''
…

Comment
removal

export class TestClass {
public constructor(

public readonly info="My constructor has no CodeLens
Reference Count!"){

}
public testMethod(): string {

return "This method has a CodeLens Reference Count"
}

}

…

'export class TestClass { \n \t public constructor(\n \t \t public readonly info="My constructor has no CodeLens Reference Count!"){ \n \t } \n \t public testMethod():
string { \n \t \t return "This method has a CodeLens Reference Count" \n \t } \n } \n …

'export class testclass { \n \t public constructor(\n \t \t public readonly info="my constructor has no codelens reference count!"){ \n \t } \n \t public testmethod():
string { \n \t \t return "this method has a codelens reference count" \n \t } \n } \n …

['export', 'class', 'testclass', '{', '\n', '\t', 'public', 'constructor(', '\n', '\t', '\t', 'public', 'readonly', 'info="my', 'constructor', 'has', 'no', 'codelens', 'reference', 'count!"){',
'\n', '\t', '}', '\n', '\t', 'public', 'testmethod():', 'string', '{', '\n', '\t', '\t', 'return', '"this', 'method', 'has', 'a', 'codelens', 'reference', 'count"', '\n', '\t', '}', '\n', '}', '\n’, …]

Special token replacement

Case-folding

Tokenization

Figure 4. Example of code pre-processing.

3.2.3. Image Pre-Processing

Image pre-processing is a process that standardizes the image data to facilitate learning
and improve the performance of the model. Our proposed model pre-processes images
through two main steps. Figure 5 shows an example of the image pre-processing.

1. Resize: The task involves resizing the image data to a consistent size. Since the
collected images may have varying sizes, resizing them to a uniform size is necessary.
We use the transforms module from Torchvision to resize all images to the size of
258 × 258.

2. Normalize: Next, the proposed model normalizes the image data to ensure a consistent
distribution and scale of features. To achieve this, the model uses the transforms
module to normalize the pixel values of the images so that they fall within the range
of (−1 to 1).

Appl. Sci. 2023, 13, 9456 9 of 24

Resize Normalize

Figure 5. Example of image pre-processing.

3.3. Stage 2: Feature Extraction

Feature extraction is the process of extracting feature vectors from pre-processed data.
The model first embeds the pre-processed data for feature extraction and then extracts
important features through several layers.

First, we use an embedding layer to vectorize the pre-processed text and code data
tokens. The embedding layer is a technique for generating random vectors that can
represent tokens [10]. The text and code embedding is to represent the input data as a
set of embedded tokens with zero padding. As the image data are vectorized during the
pre-processing stage, the image data are not embedded in this stage.

Second, the embedded or vectorized text, image, and code data undergo computations
through their respective CNN−based channels. We used the same CNN−based channel
for text and code data. Figure 6 represents the structure of the CNN−based text and
code channels.

The model in Figure 6 consists of four kernels of size (2, vector size), (3, vector size),
(4, vector size), and (5, vector size), respectively. These kernels perform convolution opera-
tions with 64 output channels. The model also maintains three other layers: max-pooling,
concatenation, and fully connected layers. The results of the convolutional operations go
through a max-pooling layer and concatenation layer, resulting in a single vector. Then, a
fully connected layer applies ReLU to the single vector, returning only positive values and
performing linear operations. Finally, the features of the text or code data are extracted.

…

…

…

…

…

…

…

X2

X1

Xn

.

.

.

convolution

max-pooling

concat

fully-connected + ReLU

n×300
1×64(n-4)×64

(n-1)×64
. . . 1×256 1×256

Figure 6. CNN−based text and code channels.

Appl. Sci. 2023, 13, 9456 10 of 24

Meanwhile, we used another CNN−based channel for image data. Figure 7 illustrates
the structure of the CNN−based image channel. The model in Figure 7 receives inputs of
size (258 × 258). The model also maintains three convolution layers with a kernel size of
(5, 5) followed by the ReLU operation. The model also applies a max-pooling operation
twice with a kernel size of (5, 5). After the final max-pooling operation, the results go
through a fully connected layer. Finally, it extracts the image features in a feature size of
(1 × 1 × 256). Now, we obtain all of the representation vectors from the input data of each
single modality.

convolution + ReLU

max pooling

fully-connected + ReLU

258×258×3 254×254×16
250×250×32

50×50×32
46×46×64

9×9×64 1×1×256

Figure 7. CNN−based image channels.

3.4. Stage 3: Concatenation of Feature Vectors (FUSION)

Fusion refers to the process of integrating information extracted from different sources
of single-modal data into a unified multimodal representation. In this process, the model
combines and represents modality-specific feature vectors in a common space to understand
the relationships and meanings between the data. We can fuse vectorized features from
different information sources using simple operations such as weighted sum, element-wise
multiplication, and concatenation [40]. In this study, the model uses the element-wise
multiplication operation proposed by Antol, Stanislaw, et al. [26] as the fusion method.
We chose the element-wise multiplication because it is an entry-level multimodal fusion
technique which is simple to implement. The fused vector is fed into the next layer.

3.5. Stage 4: Classification into ‘Bug’ or ‘Feature’

Classification is the process of classifying the fused multimodal representation vec-
tor into ‘bug’ or ‘feature’. In this process, the proposed model outputs the final result
of the issue report classification task, which is the main task of the model. The model
receives the multimodal representation vector passed from the previous step and applies a
fully connected layer and Softmax operation producing a class-specific probability output
normalized between [0, 1], which can be either a ‘bug’ or ‘feature’. Here, the model is
trained with CrossEntropyLoss as the loss function. Although the model performs binary
classification, it utilizes the Softmax operation to facilitate future extension to multiclass
classification if needed.

Appl. Sci. 2023, 13, 9456 11 of 24

4. Experimental Setup
4.1. Research Questions

We aim to investigate whether a multimodal model can improve the performance
of issue classification through our experiments. Specifically, we focus on the data types
in the issue reports, namely, text, image, and code, to determine if each data type con-
tributes to the improvement. To guide our research, we formulated the following detailed
research questions:

1. RQ1. Does a multimodal model that combines text and image improve the perfor-
mance of issue classification?

2. RQ2. Does a multimodal model that combines text and code data improve the
performance of issue classification?

3. RQ3. Does a multimodal model that combines text, image, and code data improve the
performance of issue classification?

4.2. Datasets
4.2.1. Project Selection

For our experiment, we selected open-source projects publicly available on GitHub.
The reason for choosing open-source projects on GitHub is that GitHub provides an in-
tegrated issue management system, and users frequently submit issue reports on this
platform. We investigated active projects on GitHub and sorted them based on the number
of issue reports. After sorting many projects based on the number of issues, we manually
investigated the top 100 projects. Among these projects, we investigated the labels attached
to issue reports, and we chose projects that maintain ‘bug’ and ‘feature’ labels or the corre-
sponding labels. We specifically chose projects that had issue reports labeled as either ‘bug’
or ‘feature’ since our proposed model aims to perform binary classification of issue reports
into these classes.

Additionally, we verified whether issue reports simultaneously contained text, image,
and code because we considered multimodal techniques for issue classification (as shown
in Figure 1). Selecting issue reports that contain all three types of data is important to
examine the impact of each data type on issue classification for the same issue report.

We finally chose the top four projects that met our selection criteria. The four projects
are VS Code, Kubernetes, Flutter, and Roslyn. Table 1 presents the number of issue
reports per label for each project on GitHub. The total number of issue reports for each
selected project is as follows: VS Code (160,218 issues), Kubernetes (115,035 issues), Flutter
(118,576 issues), and Roslyn (66,464 issues). Among them, the number of issue reports with
the labels ‘bug’ or ‘feature’ is as follows: VS Code (48,427 issues), Kubernetes (18,243 issues),
Flutter (23,004 issues), and Roslyn (16,706 issues).

Table 1. The total number of data per project.

Project Total Number of Issues Label Num

VS Code 160,218
Bug 28,353

Feature 20,074
Total 48,427

Kubernetes 115,035
Bug 13,059

Feature 5184
Total 18,243

Flutter 118,576
Bug 13,037

Feature 9967
Total 23,004

Roslyn 66,464
Bug 12,882

Feature 3824
Total 16,706

Appl. Sci. 2023, 13, 9456 12 of 24

Each project’s issue reports have unique characteristics. In the case of VS Code, the
issue reports primarily focus on development environment-related issues, with many re-
ports addressing problems encountered during task execution. For Kubernetes, many issue
reports are related to container management and orchestration. Furthermore, there are spe-
cific platform-related issues that are reported when running Kubernetes. In Flutter’s case,
many issue reports pertain to mobile app development, covering topics such as UI, com-
patibility, and app performance. Lastly, in the case of Roslyn, there is a significant number
of issue reports related to C# and VB.NET code analysis. These reports include problems
such as static code analysis, code optimization, and the discovery of potential bugs. In this
experiment, we collected data from projects with these heterogeneous characteristics.

4.2.2. Data Collection

The process of collecting issue reports for each project, namely, VS Code, Kubernetes,
Flutter, and Roslyn, was as follows. We collected issue reports labeled as ‘bug’ or ‘feature’.
We collected these labels to compare the classification performance of our proposed model
with that of the existing method, a CNN−based approach that showed good performance
(Cho et al. [10]). Additionally, we collected issue reports for each project that had at least
one image and at least one code snippet present. The ‘Original Data’ column of Table 2
represents the collected data.

For VS Code, we collected a total of 2331 data samples. Among them were 1351 samples
labeled as ‘bug’ and 980 samples labeled as ‘feature’. In the case of Kubernetes, we col-
lected 1014 data samples, with 866 samples labeled as ‘bug’ and 148 samples labeled as
‘feature’. As for Flutter, we collected 2820 data samples, consisting of 2061 ‘bug’ samples
and 759 ‘feature’ samples. Lastly, we collected 1604 data samples for Roslyn, including
1341 bug and 263 feature samples.

Table 2. Sampled Data Distribution per Label.

Project Label Original Data Down-Sampled Data

VS Code
Bug 1351 (58%) 980 (50%)

Feature 980 (42%) 980 (50%)
Total 2331 1960

Kubernetes
Bug 866 (85%) 148 (50%)

Feature 148 (15%) 148 (50%)
Total 1014 296

Flutter
Bug 2061 (73%) 759 (50%)

Feature 759 (27%) 759 (50%)
Total 2820 1518

Roslyn
Bug 1341 (84%) 263 (50%)

Feature 263 (16%) 263 (50%)
Total 1604 526

4.2.3. Data Sampling

The collected data showed significant class imbalance across all projects. Such data
imbalance can negatively impact the classification process by ignoring the characteristics of
the minority class and biasing towards the majority class [41,42]. To address this issue, we
can consider upsampling and downsampling. Downsampling reduces the quantity of data
in the majority category to match the number of samples in the minority category. Down-
sampling offers advantages such as (1) freedom from overfitting compared to upsampling
and (2) reduced computation time. Additionally, there is a high probability that users will
not re-report issue reports related to outdated data. Therefore, (3) the loss of information
due to data removal is not significant. Therefore, to mitigate the data imbalance problem,
we apply downsampling. We retain all the data from the ‘feature’ class, while for the ‘bug’
class, we use a subset of the most recent data, matching the number of samples in the
‘feature’ class. The resulting dataset used for each experiment is as shown in the fourth

Appl. Sci. 2023, 13, 9456 13 of 24

column of Table 2, with an equal number of samples for each label. We used an 80:20
training/test split on this dataset. For example, out of 1960 issue reports, 1568 were used as
a training set, and 392 were used as a testing set for the VS Code project.

4.3. Models

In the experiment, we compared the existing unimodal deep learning model that
utilizes only text data with MulDIC which is our proposed multimodal deep learning
model. We aimed to investigate the contributions of image and code data in issue report
classification by conducting three experiments: Text-Image, Text-Code, and Text-Image-
Code. In these experiments, we used the Text Only model, which solely relies on text data,
as the baseline for comparison. The experiment involves four models: Text Only, MulDICTI ,
MulDICTC, and MulDICTIC. In the rest of this paper, MulDIC refers to MulDICTIC. We
will provide detailed descriptions of each model in the following subsections.

4.3.1. Unimodal Model

• Text Only
The Text Only model utilizes only the text data from issue reports to classify them
into bug or feature categories. The model uses downsampled issue report data for
each project, as shown in Table 2. We used the Text Only model as the baseline for
comparison with the multimodal models.

4.3.2. Multimodal Models

• MulDICTI
The MulDICTI model utilizes text and image data from issue reports to classify them
into bug or feature categories. Similarly to the baseline model, the model uses each
project’s downsampled issue report data. We compared the performance of the Text
Only model (baseline), which uses only text data, and the MulDICTI model, which
uses text and image data.

• MulDICTC
The MulDICTC model utilizes text and code data from issue reports to classify them.
Similarly, we employed downsampled issue report data for model training. We
compared the performance of the Text Only model (baseline) and the MulDICTC
model, which utilizes text and code data.

• MulDICTIC
The MulDICTIC model represents the final proposed model in this study, which utilizes
the text, image, and code data from issue reports. Similarly, we employed each project’s
downsampled issue report data for classification into relevant labels. We compared
the performance of the Text Only model (baseline) and the MulDICTIC model, which
utilizes text, image, and code data. Additionally, we compared the performance of the
MulDICTIC model with that of the MulDICTI and MulDICTC models.

4.4. Experimental Design

In this study, we conducted experiments to find answers to the research question
set in Section 4.1. To accomplish this, we compared three proposed models (MulDICTI ,
MulDICTC, and MulDICTIC) with the baseline model (Text Only). We conducted all
experiments on a per-project basis.

First, we performed modality-specific pre-processing on the sampled data to train
the baseline and proposed models (see Section 3.2). We used the pre-processed data as
input for each model, and the data used by each model are consistent across modalities.
After inputting the data into the model, we extracted features for each modality (refer
to Section 3.3). In the case of the three proposed multimodal models, we combined the
extracted features from each modality (see Section 3.4). Next, we classified the received
feature vectors into their respective classes and measured their performance by comparing

Appl. Sci. 2023, 13, 9456 14 of 24

the results to the ground truth (see Section 3.5). We performed this process for all models
and compared the results obtained to evaluate the effectiveness of the proposed models.

To evaluate the value of multimodal models utilizing image and code data, we com-
pared the classification performance of three proposed models with the baseline model. In
the MulDICTI and MulDICTC models, we assessed the individual contributions of image
and code data. In the MulDICTIC model, we examined the value of using image and
code together. Furthermore, we compared the MulDICTIC model with the MulDICTI and
MulDICTC models to evaluate the effectiveness of leveraging heterogeneous modalities.

4.5. Evaluation Metrics

The evaluation metrics used to measure the classification performance are Precision,
Recall, and F1-score. We calculated these metrics for each class and utilized the weighted
average based on the data distribution of each class. We calculated each evaluation metric
as follows:

Precision =
∑n

i=0 precisioni · number o f class′is issue reports
∑n

i=0 number o f class′is issue reports
(1)

Recall =
∑n

i=0 recalli · number o f class′is issue reports
∑n

i=0 number o f class′is issue reports
(2)

F1-score =
2 · (Precision · Recall)
(Precision + Recall)

(3)

In the above equations, classi represents the i-th class, which consists of two categories:
‘bug’ and ‘feature’. precisioni is the ratio of issues predicted as classi correctly out of all the
issues predicted as classi. recalli is the ratio of issues correctly predicted as classi out of all
the actual classi issues. F1-score is the harmonic mean of Precision and Recall.

5. Results

We present the overall results of the experiments conducted in this study in Figure 8.
According to Figure 8, the multimodal model MulDICTIC which combined all three different
kinds of data, text, image, and code showed the highest F1-score. We will discuss the details
of the results in the following subsections.

68.36%
66.50%

67.68%

62.89%

78.75%

68.34%

69.60%

66.08%67.94%

79.14%

68.55%
66.05%

80.05% 80.62%

76.25%

67.94%

50%

55%

60%

65%

70%

75%

80%

VS Code Kubernetes Flutter Roslyn

F1-score

Text Only T extOnly Te xtOnly Tex tOnlyMulDIC𝑇𝑇𝑇𝑇𝑇𝑇MulDIC𝑇𝑇𝑇𝑇MulDIC𝑇𝑇𝑇𝑇

Figure 8. Performance comparison of models across projects.

Appl. Sci. 2023, 13, 9456 15 of 24

5.1. RQ1. Results of the Text-Image Experiment

We first conducted the experiment that compared the Text Only model with the
multimodal model that combined text and image data of issue reports. Table 3 shows the
result. In Table 3, the “Project” column represents the target projects for the experiments,
and “Model” indicates the experimental models. The “Precision”, “Recall”, and “F1-score”
columns represent the performance evaluation metrics for each experimental model, with
all values expressed in percentage (%) and rounded to two decimal places. Additionally,
we highlighted the highest scores for each project in bold. The first row per each project in
Table 3 corresponds to the Precision, Recall, and F1-score values of the Text Only model.
The second row per each project in Table 3 corresponds to the Precision, Recall, and F1-score
values of the the multimodal model MulDICTI which combined text and image data.

Table 3. Experimental results that compared MulDICTI with the Text Only model.

Project Model Precision Recall F1-Score

VS Code Text Only 68.45 68.27 68.36
MulDICTI 79.60 77.92 78.75

Kubernetes Text Only 66.91 66.10 66.50
MulDICTI 68.35 68.33 68.34

Flutter Text Only 67.70 67.66 67.68
MulDICTI 69.79 69.41 69.60

Roslyn Text Only 62.92 62.86 62.89
MulDICTI 66.13 66.04 66.08

With regard to the Precision values that are shown in the third column of Table 3, the
Text Only model yielded a Precision of 68.45% and the MulDICTI model a Precision of
79.60% for the VS Code project. The difference was 11.15%. In the case of Kubernetes, the
Text Only model yielded a Precision of 66.91%, while the MulDICTI model a Precision of
68.35%. The difference was 1.44%. For Flutter, the Text Only model yielded a Precision
of 67.70%, while the MulDICTI model yielded a Precision of 69.79%. The difference was
2.09%. For Roslyn, the Text Only model yielded a Precision of 62.92%, while the MulDICTI
model yielded a Precision of 66.13%. The difference was 3.21%. The MulDICTI model
outperformed the Text Only model across four different projects in terms of Precision.

With regard to the Recall values that are shown in the fourth column of Table 3, the
Text Only model achieved a Recall of 68.27% for VS Code, 66.10% for Kubernetes, 67.66%
for Flutter, and 62.86% for Roslyn. In comparison, the MulDICTI model achieved a Recall
of 77.92% for VS Code, 68.33% for Kubernetes, 69.41% for Flutter, and 66.04% for Roslyn.
The MulDICTI model made improvements in Recall of 9.65%, 2.23%, 1.75%, and 3.18% for
VS Code, Kubernetes, Flutter, and Roslyn, when compared to the Text Only model.

With regard to the F1-scores that are shown in the fifth column of Table 3, the Text
Only model achieved an F1-score of 68.36% for VS Code, 66.50% for Kubernetes, 67.68% for
Flutter, and 62.89% for Roslyn. In comparison, the MulDICTI model achieved an F1-score
of 78.75% for VS Code, 68.34% for Kubernetes, 69.60% for Flutter, and 66.08% for Roslyn.
The MulDICTI model made improvements in F1-score of 10.39%, 1.84%, 1.92%, and 3.19%
for VS Code, Kubernetes, Flutter, and Roslyn, when compared to the Text Only model.

These results indicate that the image data in issue reports are helpful in the issue
classification task. This means that images are useful information for classifying issue
reports. Therefore, when the model considers the text and image data of an issue report
together, it gains a better understanding of the issue report.

5.2. RQ2. Results of the Text-Code Experiment

Second, we conducted the experiment that compared the Text Only model with the
multimodal model which combined text and code data of issue reports. Table 4 showed

Appl. Sci. 2023, 13, 9456 16 of 24

the result. The second row of Table 4 per each project corresponds to the results of the
Text-Code experiment.

Table 4. Experimental results that compared MulDICTC with the Text Only model.

Project Model Precision Recall F1-Score

VS Code Text Only 68.45 68.27 68.36
MulDICTC 68.11 67.77 67.94

Kubernetes Text Only 66.91 66.10 66.50
MulDICTC 79.97 78.33 79.14

Flutter Text Only 67.70 67.66 67.68
MulDICTC 68.68 68.42 68.55

Roslyn Text Only 62.92 62.86 62.89
MulDICTC 66.06 66.04 66.05

The Precision values of the MulDICTC model were 68.11% for VS Code, 79.97% for
Kubernetes, 68.68% for Flutter, and 66.06% for Roslyn. The MulDICTC model demonstrated
a Precision improvement of 13.06%, 0.98%, and 3.14% for Kubernetes, Flutter, and Roslyn,
compared to the Text Only model. However, when it comes to the VS Code project, the
Precision value of the Text Only model is 0.34% higher than that of the MulDICTC model.

The Recall values of MulDICTC were 67.77% for VS Code, 78.33% for Kubernetes,
68.42% for Flutter, and 66.04% for Roslyn. The MulDICTC model made improvements in
Recall of 12.23%, 0.76%, and 3.18% for Kubernetes, Flutter, and Roslyn, respectively, when
compared to the Text Only model. However, in VS Code, the performance of MulDICTC is
0.50% lower than the Text Only model.

The F1-score values MulDICTC were 67.94% for VS Code, 79.14% for Kubernetes,
68.55% for Flutter, and 66.05% for Roslyn. For Kubernetes, Flutter, and Roslyn, the
MulDICTC model showed an improvement of 12.64%, 0.87%, and 3.16% in the F1-score
compared to the Text Only model. However, in the case of VS Code, The F1-score of
MulDICTC is −0.42% lower than that of the Text Only model.

We also compared the performance of MulDICTC with that of MulDICTI . In terms of
Precision, MulDICTC outperformed MulDICTI in Kubernetes with 11.62% difference, while
MulDICTI outperformed MulDICTC over the other three projects, VS Code, Flutter, and
Roslyn with 11.49%, 1.11%, and 0.07% differences. MulDICTC and MulDICTI followed the
same trend in terms of Recall and F1-score.

These results indicate that the code data in the issue reports can contribute to the issue
classification task. This implies that code also provides valuable information for classifying
issue reports. Consequently, integrating the text and code data of an issue report in the
model enhances its comprehension of the issue report.

5.3. RQ3. Results of the Text-Image-Code Experiment

The fourth row of Table 5 per each project corresponds to the results of the Text-Image-
Code experiment.

First, when compared to the Text Only model, all of the Precision, Recall, and F1-
score values of the MulDICTIC model are higher than those of the Text Only model. The
MulDICTIC models showed Precision improvements of 11.95%, 14.34%, 9.15%, and 5.03%
for VS Code, Kubernetes, Flutter, and Roslyn. MulDICTIC demonstrated Recall improve-
ments of 11.43%, 13.90%, 8.00%, and 5.07% for VS Code, Kubernetes, Flutter, and Roslyn.
MulDICTIC made F1-score improvements of 11.69%, 14.12%, 8.57%, and 5.05% for VS Code,
Kubernetes, Flutter, and Roslyn.

Second, when compared to the MulDICTI model, all of the Precision, Recall, and
F1-score values of the MulDICTIC model are still higher than those of MulDICTI . The
Precision improvements of MulDICTIC are 0.80%, 12.90%, 7.06%, and 1.82% for VS Code,
Kubernetes, Flutter, and Roslyn. The Recall improvements are 1.78%, 11.67%, 6.25%, and

Appl. Sci. 2023, 13, 9456 17 of 24

1.89% for VS Code, Kubernetes, Flutter, and Roslyn. The F1-score improvements are 1.30%,
12.28%, 6.65%, and 1.86% for VS Code, Kubernetes, Flutter, and Roslyn.

Last, when compared to the MulDICTC model, the Precision, Recall, and F1-score
values of the MulDICTIC model are higher than those of MulDICTC across all projects, VS
Code, Kubernetes, Flutter, and Roslyn. The Precision improvements of MulDICTIC are
12.29%, 1.28%, 8.17%, and 1.89% for VS Code, Kubernetes, Flutter, and Roslyn. The Recall
improvements are 11.93%, 1.67%, 7.24%, and 1.89% for VS Code, Kubernetes, Flutter, and
Roslyn. The F1-score improvements are 12.11%, 1.48%, 7.70%, and 1.89% for VS Code,
Kubernetes, Flutter, and Roslyn.

Table 5. Experimental results that compared MulDICTIC with other models.

Project Model Precision Recall F1-Score

VS Code

Text Only 68.45 68.27 68.36
MulDICTI 79.60 77.92 78.75
MulDICTC 68.11 67.77 67.94
MulDICTIC 80.40 79.70 80.05

Kubernetes

Text Only 66.91 66.10 66.50
MulDICTI 68.35 68.33 68.34
MulDICTC 79.97 78.33 79.14
MulDICTIC 81.25 80.00 80.62

Flutter

Text Only 67.70 67.66 67.68
MulDICTI 69.79 69.41 69.60
MulDICTC 68.68 68.42 68.55
MulDICTIC 76.85 75.66 76.25

Roslyn

Text Only 62.92 62.86 62.89
MulDICTI 66.13 66.04 66.08
MulDICTC 66.06 66.04 66.05
MulDICTIC 67.95 67.93 67.94

These findings indicate that incorporating multiple modalities leads to significant
performance improvements. The results of this experiment demonstrate the synergistic
effect of using heterogeneous modalities in classifying issue reports.

5.4. Results of Statistical Testing

As shown in Table 5, the MulDICTIC model exhibited the highest performance across
all projects in this experiment. This indicates the potential to generalize and apply
this model to various open-source projects on GitHub. In this section, we conducted
a Mann–Whitney U-test [43] to verify the statistical significance of the results by comparing
the classification accuracy levels between the MulDICTIC model and the baseline model for
all projects. Since the data in the experiment results did not follow a normal distribution,
we adopted the non-parametric statistical test, Mann–Whitney U-test. The hypotheses set
for this test are as follows:

H0 (null hypothesis). The averaged performance of a unimodal model is equal to that of a
multimodal model.

H1 (alternative hypothesis). The averaged performance of a unimodal model is not equal
to that of a multimodal model.

Table 6 presents the test results for the individual and overall projects. The p-values
for the individual projects (VS Code, Kubernetes, Flutter) and the total project (Total) were
very close to 0.00, indicating significantly lower values than the significance level criterion
of 0.05 for the hypothesis test. Therefore, we rejected the null hypothesis (H0) and accepted
the alternative hypothesis (H1). In other words, there is a significant difference between
the baseline and proposed models, and the proposed approach is statistically significant.

Appl. Sci. 2023, 13, 9456 18 of 24

Furthermore, we calculated this test’s effect size [43] to determine practical significance.
The effect sizes ranged from 0.2 to 0.5 in most projects, generally considered moderate.
This indicates that the difference between the proposed model and the baseline model is
statistically significant and practically significant.

The test results for Roslyn showed a marginal difference, with the acceptance of the
null hypothesis (H0) and a small effect size. This is understandable, considering the degree
of performance improvement of the model. Roslyn had the slightest improvement among
the four projects, with a 5.07% increase in the F1-score. However, in deep learning models,
such a level of performance improvement and difference between models is significant.
The test results for Roslyn showed a marginal difference according to the criteria of the
statistical test, but in terms of performance experiments, it achieved a practically significant
improvement. Additionally, the total project’s validation results and effect size indicate
that the proposed model is statistically and practically significant. Therefore, we expect our
proposed model to perform well when applied to other open-source projects.

Table 6. Results of Mann–Whitney U-test and Effect Size.

Project Mann–Whitney U test
p-Value Effect Size

VS Code 2.2 × 10−16 (<0.05) 0.2733451
Kubernetes 4.73 × 10−5 (<0.05) 0.4217934

Flutter 2.2 × 10−16 (<0.05) 0.2554626
Roslyn 0.159 (>0.05) 0.1209764
Total 2.2 × 10−16 (<0.05) 0.2564514

6. Discussion
6.1. Synergistic Effects of Using Multiple Modalities

In our experiments, the MulDICTIC model, which combines information from text,
image, and code data, showed the significant performance improvement of 5.07~14.12%
F1-score, compared to the Text Only model. The MulDICTI model showed an F1-score
improvement of 1.84~10.39%, compared to the Text Only model. On the other hand,
the MulDICTC model showed an F1-score improvement of 12.64% for the Kubernetes
project, but showed a decrease of 0.42% for the VS Code project. The MulDICTIC model
significantly outperformed the MulDICTI and MulDICTC models across all projects. These
results demonstrate the synergistic effect of a multimodal model. Here, the synergistic effect
refers to the phenomenon where using different information sources together produces
better results than using individual sources alone.

Since the three modalities of an issue report contain different information, considering
them together allows us to obtain more heterogeneous and rich information. To illustrate
the information of three modalities, Figure 1 shows the contents of issue report #147154
(https://github.com/microsoft/vscode/issues/147154, accessed on 15 August 2023). In
the issue report, the textual information specifies the conditions where the bug occurs and
steps to reproduce. The code information provides the code lines typed by a reporter, when
s/he faced the bug. The image information shows the buggy result in the situation. The
MulDICTIC model uses all of these different kinds of information for classifying an issue
report and successfully classifies issue report #147154 as a bug.

6.2. Discussion on the Text-Code Experiment for VS Code

As we already discussed in Section 6.1, the MulDICTC model applied to the VS Code
project showed no performance improvement. For the VS Code project, the MulDICTC
model achieved an F1-score of 67.94%, while the Text Only model achieved a 68.36% F1-
score. Therefore, we conjectured and investigated various factors that could be related to
the inability of the MulDICTC model.

First, we investigated the token length of code data, because we set the maximum
input length of code data to the value corresponding to each project’s third quartile of the

https://github.com/microsoft/vscode/issues/147154

Appl. Sci. 2023, 13, 9456 19 of 24

token length of the entire code data. If the input token length is short, the model cuts off
substantial data, resulting in significant data loss. On the other hand, if the length is long,
the model can create excessively sparse vectors, which can hinder training efficiency. We
investigated the statistics of token length for code data across different projects in the form
of a boxplot, as shown in Figure 9. A different color represents each project, and the vertical
axis represents the length of the tokens. We found that the IQR (InterQuartile Range) of VS
Code is the smallest among the projects, so we estimated that VS Code had less data loss
than other projects. We concluded that the token length of code data is not the factor that
affected the exceptional case.

35,000 •
•

•

•
•

30,000

•

25,000
•

•

•
..c •VS CodebO 20,000
C •

QJ
• o Kubernetes•

_J •

C • FlutterQJ

15,000 • RoslynI-

10,000

0

•
• 0

5000 • 0

•
• 0 •
• 0

0 • • 0 •
0 I § •

0 * *

Figure 9. Token length statistics for code data.

Second, when we trained the issue classification models used in our experiments,
we assigned the same learning weights to each modality of text, image, and code. This
arbitrary weight assignment can be a factor affecting the model performance. For instance,
in the case of the VS Code project, if the textual data may be much more informative
than the code data, then the Text Only model can achieve a high performance compared
to the MulDICTC model. In addition, typically, a multimodal model shares information
through interconnections between modalities. If the connectivity among modalities is
weak, it can decrease the model performance. Therefore, we conjecture that our weight
assignment affected the connectivity among modalities and so the MulDICTC model for the
VS Code project had a weak connectivity between the text and code modalities, hindering
the synergistic effect.

Lastly, the difference in the quality of the data can be another factor affecting the model
performance. Data quality is a crucial factor affecting the model performance. However,
since our experimental projects have issue reports written in different ways by different
groups of contributors, the data quality will be different depending on products. Therefore,

Appl. Sci. 2023, 13, 9456 20 of 24

we conjecture that the low-quality nature of the source data in VS Code had a negative
effect on the model.

6.3. Implication and Future Work

The implications of our study for researchers, developers, companies, or users are
as follows. First, researchers can develop issue classification techniques based on the
multimodal model proposed in this paper. For example, we applied the multimodal model
to binary issue classification. We believe this approach can be extended to research trends
involving multi-class and multi-label classification techniques. Second, developers can
save time in reviewing issue reports by using automated issue classification techniques.
Developers need to classify issues related to their software into related tasks for efficient
maintenance. Automated issue classification can reduce developers’ time spent in reading
individual issue reports and help developers to avoid misclassification of software-related
issues. To be practical, high performance of issue classification is crucial, and our multi-
modal model demonstrates its capability to improve the performance of automated issue
classification. Finally, companies can employ automated techniques to classify issue reports,
which can help identify systematic issue trends of the software systems. Our multimodal
model can contribute to making the trends more accurate.

In the future, we would like to explore state-of-the-art feature extraction techniques
and fusion methods. First, while we used CNN−based channels to extract modality
features for text, image, and code data in this paper, we observed that each modality
has its own state-of-the-art feature extraction models. For example, for text data, we
see that the state-of-the-art model is based on BERT, and for code data, we see that the
state-of-the-art model is CodeBERT [44]. For images, we can consider computer vision
models utilizing Transformers. By adopting state-of-the-art feature extraction models,
we expect to improve the performance of issue classification. Second, we would like to
experiment with several multimodal fusion methods, which merge the representation
vectors of the three modalities. In this paper, we employed an entry-level multimodal
fusion technique, namely, element-wise multiplication, which lacks interaction between the
features of modalities. In the future, we will apply the latest methods based on bilinear
pooling, such as Multimodal Compact Bilinear Pooling (MCB) [28], Multimodal Low-rank
Bilinear Pooling (MLB) [29], Multimodal Tucker Union (MUTAN) [27], and Multimodal
Factorized Bilinear Pooling (MFB) [45].These techniques aim to optimize feature interaction
while minimizing computational complexity. We will examine whether the different fusion
methods can contribute to the performance of issue classification.

7. Threats to Validity

We can divide the threats to the validity of the experiment into internal validity threats
and external validity threats.

7.1. Internal Threats to Validity

Regarding internal validity threats, first, the text pre-processing step may not be able
to identify all the tags or special characters used in the document. However, since we
applied the same pre-processing algorithm with previous studies, the comparison with
those studies is fair. Second, the code comments we excluded during the pre-processing
stage can be a threat that affects the validity of the experimental results. However, mixing
multiple types of data within a modality can decrease the quality of the extracted feature
vectors. For this reason, we decided to remove comments from the code. Third, when
selecting a representative image for each issue report, we chose only the first image among
the attached images. This may result in omitting high-quality images that better represent
an issue report. However, Jiang, Shuo, et al. [46] achieved the best performance using a
similar approach of selecting a single image. Furthermore, we applied the same selection
policies for all the subject products.

Appl. Sci. 2023, 13, 9456 21 of 24

7.2. External Threats to Validity

Regarding external validity threats, first, our four experimental subjects are not enough
to generalize the experimental results. However, we tried to mitigate this threat by selecting
projects from various domains that are actively evolving with many issue reports. Second,
we only used projects from GitHub repositories, excluding other issue-tracking systems.
This can also affect the generality of the experimental results. However, because GitHub
is a very popular open-source repository for developers and has been extensively used in
existing research, experimenting with projects obtained from the GitHub repositories is
reasonable. Finally, as we stated in Section 3.3, the embedding layer used for extracting
feature vectors from the textual data has randomness. Hence, our experimental results may
change each time. To mitigate this issue, we used the identical set of data for each project
across all models.

8. Conclusions

Issue reports contain textual and other modalities, such as images and code. With
this in mind, we proposed MulDIC, a multimodal deep learning model that effectively
classifies issue reports using text, image, and code data. To assess the effectiveness of
MulDIC and investigate the impact of each modality on the issue report classification task,
we conducted experiments. Remarkably, the MulDICTIC model, which utilized text, image,
and code data, demonstrated superior performance with 5.07~14.12% improvement in the
F1-score, compared to the baseline models. When it comes to the impact of each modality,
the image modality with the text modality consistently improved the performance of issue
classification tasks. Meanwhile, the code modality mostly improved the performance of
issue classification tasks, but not in all of the cases. The combination of all three modalities
outperformed any combinations of two modalities. These results indicate that leveraging
multimodal approaches considering heterogeneous content types of issue reports can
enhance the performance of issue report classification and that the combination of text,
image, and code modalities can yield synergistic effects.

In future research, we plan to continue exploring additional aspects of a multimodal
model by considering the characteristics of issue reports and their heterogeneous contents.
First, our proposed model is limited in processing each modality using a CNN−based
channel and merging the modality-specific representation vectors through element-wise
multiplication. We will explore state-of-the-art multimodal models that can increase the
expressive power of each modality and the combination of these text, image, and code
modalities. For example, by applying state-of-the-art fusion methods for combining text,
image, and code data, we could improve the performance of issue classification tasks. In
addition, we could consider adding new modalities or data in future investigations. Second,
we applied our proposed model to four different projects, and in one case, a combination
of text and code modalities yielded lower performance than that of a Text Only modality.
To increase the reliability of our study, we plan to extend our experimental data to include
a large number of software projects. Applying our proposed model to more projects will
yield more consistent and reliable results.

Author Contributions: Conceptualization, C.K. and S.L.; methodology, C.K.; software, C.K.; valida-
tion, C.K. and S.L.; formal analysis, C.K. and S.L.; investigation, S.L.; resources, C.K.; data curation,
C.K.; writing—original draft preparation, C.K.; writing—review and editing, C.K., S.L. and P.J.;
visualization, C.K.; supervision, S.L. and P.J.; project administration, S.L.; funding acquisition, S.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1A2C1094167,
RS-2023-00209720). This research was also funded by the “Leaders in INdustry-university Coopera-
tion 3.0” Project, supported by the Ministry of Education and National Research Foundation of Korea
(LINC3.0-2022-11, 1345356213).

Institutional Review Board Statement: Not applicable.

Appl. Sci. 2023, 13, 9456 22 of 24

Informed Consent Statement: Not applicable.

Data Availability Statement: Our issue report datasets are publicly available at https://github.com/
chang26/MulDIC, accessed on 15 August 2023.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
MulDIC Multimodal Deep learning-based Issue Classification model
MulDICTI MulDIC using Text and Image
MulDICTC MulDIC using Text and Code
MulDICTIC MulDIC using Text, Image, and Code
SVM Support Vector Machines
CNN Convolutional Neural Network
RNN Recurrent Neural Network
MODIT Multimodal Neural Machine Translation-Based Automatic Code Editing
BERT Bidirectional Encoder Representations from Transformer
GPT Generative pre-trained transformer
SusTriage Sustainable Bug Triage with Multimodal Ensemble Learning
VQA Visual Question Answering
VGGNet Visual Geometry Group Net
LSTM Long Short-Term Memory
BOW Bag Of Words
OCR Optical Character Recognition
RVL-CDIP Ryerson Vision Lab Complex Document Information Processing
EEG Electro Encephalo Graphy
IEMOCAP Interactive Emotional Dyadic Motion Capture
FC Fully-Connected
NLTK Natural Language Toolkit
ReLU Rectified Linear Unit
UI User Interface
VB.NET Visual Basic .NET
IQR InterQuartile Range

References
1. Pandey, N.; Sanyal, D.K.; Hudait, A.; Sen, A. Automated classification of software issue reports using machine learning techniques:

An empirical study. Innov. Syst. Softw. Eng. 2017, 13, 279–297. [CrossRef]
2. Fan, Q.; Yu, Y.; Yin, G.; Wang, T.; Wang, H. Where is the road for issue reports classification based on text mining? In Proceedings

of the 2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), Toronto, ON,
Canada, 9–10 November 2017; pp. 121–130.

3. Pandey, N.; Hudait, A.; Sanyal, D.K.; Sen, A. Automated classification of issue reports from a software issue tracker. In
Proceedings of the Progress in Intelligent Computing Techniques: Theory, Practice, and Applications: Proceedings of ICACNI
2016, Rourkela, Odisha, India, 22–24 September 2016; Springer: Berlin/Heidelberg, Germany, 2018; Volume 1, pp. 423–430.

4. Panichella, A. A systematic comparison of search algorithms for topic modelling—A study on duplicate bug report identifica-
tion. In Proceedings of the Search-Based Software Engineering: 11th International Symposium, SSBSE 2019, Tallinn, Estonia,
31 August–1 September 2019; Proceedings 11; Springer: Berlin/Heidelberg, Germany, 2019; pp. 11–26.

5. Lu, M.; Liang, P. Automatic classification of non-functional requirements from augmented app user reviews. In Proceedings of
the 21st International Conference on Evaluation and Assessment in Software Engineering, Karlskrona Sweden, 15–16 June 2017;
pp. 344–353.

6. Zhu, Y.; Pan, M.; Pei, Y.; Zhang, T. A bug or a suggestion? an automatic way to label issues. arXiv 2019, arXiv:1909.00934.
7. Kallis, R.; Di Sorbo, A.; Canfora, G.; Panichella, S. Ticket tagger: Machine learning driven issue classification. In Pro-

ceedings of the 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME), Cleveland, OH, USA,
29 September–4 October 2019; pp. 406–409.

https://github.com/chang26/MulDIC
https://github.com/chang26/MulDIC
http://doi.org/10.1007/s11334-017-0294-1

Appl. Sci. 2023, 13, 9456 23 of 24

8. Kim, M.; Kim, Y.; Lee, E. Deep learning-based production and test bug report classification using source files. In Proceedings
of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings, Pittsburgh, PA, USA,
22–24 May 2022; pp. 343–344.

9. Zhifang, L.; Kun, W.; Qi, Z.; Shengzong, L.; Yan, Z.; Jianbiao, H. Classification of open source software bug report based on
transfer learning. Expert Syst. 2022, e13184. [CrossRef]

10. Cho, H.; Lee, S.; Kang, S. Classifying issue reports according to feature descriptions in a user manual based on a deep learning
model. Inf. Softw. Technol. 2022, 142, 106743. [CrossRef]

11. Antoniol, G.; Ayari, K.; Di Penta, M.; Khomh, F.; Guéhéneuc, Y.G. Is it a bug or an enhancement? A text-based approach to
classify change requests. In Proceedings of the 2008 Conference of the Center for Advanced Studies on Collaborative Research:
Meeting of Minds, Richmond Hill, ON, Canada, 27–30 October 2008; pp. 304–318.

12. Herzig, K.; Just, S.; Zeller, A. It’s not a bug, it’s a feature: How misclassification impacts bug prediction. In Proceedings of the
2013 35th International Conference on Software Engineering (ICSE), San Francisco, CA, USA, 18–26 May 2013; pp. 392–401.

13. Zhou, Y.; Tong, Y.; Gu, R.; Gall, H. Combining text mining and data mining for bug report classification. J. Softw. Evol. Process.
2016, 28, 150–176. [CrossRef]

14. Hoang, T.; Oentaryo, R.J.; Le, T.D.B.; Lo, D. Network-clustered multi-modal bug localization. IEEE Trans. Softw. Eng. 2018,
45, 1002–1023. [CrossRef]

15. Chakraborty, S.; Ray, B. On multi-modal learning of editing source code. In Proceedings of the 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Melbourne, Australia, 15–19 November 2021; pp. 443–455.

16. Zhang, W.; Zhao, J.; Wang, S. SusTriage: Sustainable Bug Triage with Multi-modal Ensemble Learning. In Proceedings of
the IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Melbourne, Australia,
14–17 December 2021; pp. 441–448.

17. Summaira, J.; Li, X.; Shoib, A.M.; Li, S.; Abdul, J. Recent advances and trends in multimodal deep learning: A review. arXiv 2021,
arXiv:2105.11087.

18. Yu, L.; Poirson, P.; Yang, S.; Berg, A.C.; Berg, T.L. Modeling context in referring expressions. In Proceedings of the Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part II 14;
Springer: Berlin/Heidelberg, Germany, 2016; pp. 69–85.

19. Plummer, B.A.; Wang, L.; Cervantes, C.M.; Caicedo, J.C.; Hockenmaier, J.; Lazebnik, S. Flickr30k entities: Collecting region-to-
phrase correspondences for richer image-to-sentence models. In Proceedings of the IEEE International Conference on Computer
Vision, Santiago, Chile, 7–13 December 2015; pp. 2641–2649.

20. Johnson, J.; Karpathy, A.; Fei-Fei, L. Densecap: Fully convolutional localization networks for dense captioning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4565–4574.

21. Xu, J.; Mei, T.; Yao, T.; Rui, Y. Msr-vtt: A large video description dataset for bridging video and language. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5288–5296.

22. You, Q.; Jin, H.; Wang, Z.; Fang, C.; Luo, J. Image captioning with semantic attention. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4651–4659.

23. Yan, X.; Yang, J.; Sohn, K.; Lee, H. Attribute2image: Conditional image generation from visual attributes. In Proceedings of the
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part
IV 14; Springer: Berlin/Heidelberg, Germany, 2016; pp. 776–791.

24. Reed, S.; Akata, Z.; Yan, X.; Logeswaran, L.; Schiele, B.; Lee, H. Generative adversarial text to image synthesis. In Proceedings of
the International Conference on Machine Learning, New York City, NY, USA, 19–24 June 2016; pp. 1060–1069.

25. Xu, T.; Zhang, P.; Huang, Q.; Zhang, H.; Gan, Z.; Huang, X.; He, X. Attngan: Fine-grained text to image generation with
attentional generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 1316–1324.

26. Antol, S.; Agrawal, A.; Lu, J.; Mitchell, M.; Batra, D.; Zitnick, C.L.; Parikh, D. Vqa: Visual question answering. In Proceedings of
the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2425–2433.

27. Ben-Younes, H.; Cadene, R.; Cord, M.; Thome, N. Mutan: Multimodal tucker fusion for visual question answering. In Proceedings
of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2612–2620.

28. Fukui, A.; Park, D.H.; Yang, D.; Rohrbach, A.; Darrell, T.; Rohrbach, M. Multimodal compact bilinear pooling for visual question
answering and visual grounding. arXiv 2016, arXiv:1606.01847.

29. Kim, J.H.; On, K.W.; Lim, W.; Kim, J.; Ha, J.W.; Zhang, B.T. Hadamard product for low-rank bilinear pooling. arXiv 2016,
arXiv:1610.04325.

30. Liang, W.; Jiang, Y.; Liu, Z. GraghVQA: Language-guided graph neural networks for graph-based visual question answering.
arXiv 2021, arXiv:2104.10283.

31. Lopez-Fuentes, L.; van de Weijer, J.; Bolanos, M.; Skinnemoen, H. Multi-modal Deep Learning Approach for Flood Detection.
MediaEval 2017, 17, 13–15.

32. Kim, E.; McCoy, K.F. Multimodal deep learning using images and text for information graphic classification. In Proceedings
of the 20th International ACM SIGACCESS Conference on Computers and Accessibility, Galway Ireland, 22–24 October 2018;
pp. 143–148.

http://dx.doi.org/10.1111/exsy.13184
http://dx.doi.org/10.1016/j.infsof.2021.106743
http://dx.doi.org/10.1002/smr.1770
http://dx.doi.org/10.1109/TSE.2018.2810892

Appl. Sci. 2023, 13, 9456 24 of 24

33. Audebert, N.; Herold, C.; Slimani, K.; Vidal, C. Multimodal deep networks for text and image-based document classification. In
Proceedings of the Machine Learning and Knowledge Discovery in Databases: International Workshops of ECML PKDD 2019,
Würzburg, Germany, 16–20 September 2019; Proceedings, Part I; Springer: Berlin/Heidelberg, Germany, 2020; pp. 427–443.

34. Palani, B.; Elango, S.; Viswanathan K, V. CB-Fake: A multimodal deep learning framework for automatic fake news detection
using capsule neural network and BERT. Multimed. Tools Appl. 2022, 81, 5587–5620. [CrossRef] [PubMed]

35. Oramas, S.; Barbieri, F.; Nieto Caballero, O.; Serra, X. Multimodal deep learning for music genre classification. Trans. Int. Soc.
Music. Inf. Retr. 2018, 1, 4–21. [CrossRef]

36. Huang, Y.; Yang, J.; Liao, P.; Pan, J. Fusion of facial expressions and EEG for multimodal emotion recognition. Comput. Intell. Neurosci.
2017, 2017, 2107451. [CrossRef] [PubMed]

37. Tripathi, S.; Tripathi, S.; Beigi, H. Multi-modal emotion recognition on iemocap dataset using deep learning. arXiv 2018,
arXiv:1804.05788.

38. Busso, C.; Bulut, M.; Lee, C.C.; Kazemzadeh, A.; Mower, E.; Kim, S.; Chang, J.N.; Lee, S.; Narayanan, S.S. IEMOCAP: Interactive
emotional dyadic motion capture database. Lang. Resour. Eval. 2008, 42, 335–359. [CrossRef]

39. Sarica, S.; Luo, J. Stopwords in technical language processing. PLoS ONE 2021, 16, e0254937. [CrossRef]
40. Zhang, C.; Yang, Z.; He, X.; Deng, L. Multimodal intelligence: Representation learning, information fusion, and applications.

IEEE J. Sel. Top. Signal Process. 2020, 14, 478–493. [CrossRef]
41. Ali, H.; Salleh, M.M.; Saedudin, R.; Hussain, K.; Mushtaq, M.F. Imbalance class problems in data mining: A review. Indones. J.

Electr. Eng. Comput. Sci. 2019, 14, 1560–1571. [CrossRef]
42. Thabtah, F.; Hammoud, S.; Kamalov, F.; Gonsalves, A. Data imbalance in classification: Experimental evaluation. Inf. Sci. 2020,

513, 429–441. [CrossRef]
43. Arcuri, A.; Briand, L. A practical guide for using statistical tests to assess randomized algorithms in software engineering. In

Proceedings of the 33rd International Conference on Software Engineering, Honolulu, HI, USA, 21–28 May 2011; pp. 1–10.
44. Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. Codebert: A pre-trained model

for programming and natural languages. arXiv 2020, arXiv:2002.08155.
45. Yu, Z.; Yu, J.; Fan, J.; Tao, D. Multi-modal factorized bilinear pooling with co-attention learning for visual question answering. In

Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1821–1830.
46. Jiang, S.; Hu, J.; Magee, C.L.; Luo, J. Deep learning for technical document classification. IEEE Trans. Eng. Manag. 2022. 1–17.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11042-021-11782-3
http://www.ncbi.nlm.nih.gov/pubmed/34975284
http://dx.doi.org/10.5334/tismir.10
http://dx.doi.org/10.1155/2017/2107451
http://www.ncbi.nlm.nih.gov/pubmed/29056963
http://dx.doi.org/10.1007/s10579-008-9076-6
http://dx.doi.org/10.1371/journal.pone.0254937
http://dx.doi.org/10.1109/JSTSP.2020.2987728
http://dx.doi.org/10.11591/ijeecs.v14.i3.pp1552-1563
http://dx.doi.org/10.1016/j.ins.2019.11.004
http://dx.doi.org/10.1109/TEM.2022.3152216

	Introduction
	Related Works
	Issue Report Classification
	Application of Multimodal Deep Learning
	Application of Multimodal Techniques in the Field of Software Engineering
	Application of Multimodal Techniques in Other Fields

	The Proposed Multimodal Model
	Overview
	Stage 1: Data Pre‑Processing
	Text Pre-Processing
	Code Pre-Processing
	Image Pre-Processing

	Stage 2: Feature Extraction
	Stage 3: Concatenation of Feature Vectors (FUSION)
	Stage 4: Classification into `Bug' or `Feature'

	Experimental Setup
	Research Questions
	Datasets
	Project Selection
	Data Collection
	Data Sampling

	Models
	Unimodal Model
	Multimodal Models

	Experimental Design
	Evaluation Metrics

	Results
	RQ1. Results of the Text-Image Experiment
	RQ2. Results of the Text-Code Experiment
	RQ3. Results of the Text-Image-Code Experiment
	Results of Statistical Testing

	Discussion
	Synergistic Effects of Using Multiple Modalities
	Discussion on the Text-Code Experiment for VS Code
	Implication and Future Work

	Threats to Validity
	Internal Threats to Validity
	External Threats to Validity

	Conclusions
	References

