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Abstract: The integrated design of the motor and axial piston pump eliminates the coupling structure,
resulting in a compact and lightweight motor-pump structure. The challenge of motors overheating
has always been a major concern. To address this issue, the hydraulic oil throughout the motor
pump is utilized for cooling the high-speed motor, effectively improving the power density and heat
dissipation capability of the hydraulic power unit. This integrated design approach has successfully
resolved the significant issue of overheating motors, leading to enhanced performance of the hydraulic
power unit. To address this concern, the entire motor pump’s oil is utilized to cool the high-speed
motor. Consequently, the thermodynamic prediction of high-speed motor pumps has become
increasingly important. In this study, the impact of motor heat generation on hydrodynamics is
analyzed, and the heat transfer of the motor pump is investigated using the control volume method.
Furthermore, thermodynamic models of hysteresis loss, eddy current loss, alternating current loss,
churning loss, and throttling loss are established for the oil-immersed motor pump. The change
in oil viscosity is also considered. The instantaneous temperature change rule of the oil within the
oil-immersed motor pump is derived. Additionally, the influence of various working conditions
such as pressure and speed on the temperature of the motor pump’s key node is examined. The
experimental results indicate the accuracy of the thermodynamic calculation, and the significant
effect of motor loss on the leakage temperature.

Keywords: motor pump; thermal-hydraulic model; motor loss; temperature calculation; oil viscosity

1. Introduction

The oil-immersed motor pump is a novel electro-hydraulic integrated power unit
comprising an axial piston pump and a motor, exhibiting remarkable advantages of high
efficiency, compact size, high energy utilization rate, high power density, and extended
lifespan. It constitutes the essential component of the rudder control system for future large
airliners and advanced warplanes, and represents a critical technology for the realization of
intelligent actuation of high-end equipment [1–3]. However, due to its high-speed operation,
it generates considerable heat within a limited time [3]. A considerable percentage of
aviation safety accidents, approximately 40%, are caused by hydraulic system malfunction.
Abnormal temperature elevation in the aircraft’s hydraulic system contributes to 15% to
20% of these incidents [4]. Therefore, it is crucial to establish a thermodynamic model of
the oil-immersed motor pump to accurately analyze its temperature distribution, enhance
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its heat transfer and dissipation capacity, and effectively lower the system temperature.
The establishment of a thermodynamic model is deemed crucial for the accurate analysis
of the temperature distribution, enhancement of the heat transfer and dissipation capacity,
and effective reduction of the system temperature in the oil-immersed motor pump.

The 3D model diagram of the motor pump is presented in Figure 1, where the motor
and pump are interconnected via a rotating axis. The cylinder block is driven by the motor
to rotate, thereby enabling the piston cavity to perform the oil-draining and oil-absorbing
action. The pump comprises several components, including the cylinder block, valve plate,
piston, and slipper [5]. The motor is primarily composed of the stator, rotor, permanent
magnet, and winding.
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The practical application of high-speed motor pumps has long been impeded by their
thermal management. The heat generation in the piston pump is specifically attributed
to the frictional forces between its sliding surfaces and the mixing losses arising from
the interaction of the cylinder and piston assembly, which are the underlying causes of
heat generation. Additionally, core loss is induced by the high-speed motor’s alternating
magnetic field during operation, and a significant amount of heat is generated by energizing
the stator winding [6–9]. Failure to effectively manage the aforementioned heat sources
can result in the hydraulic system’s abnormal temperature rise; ultimately a failure of the
hydraulic system is caused.

The heat generated by oil-immersed motor pumps is primarily derived from fluid
energy loss and electromagnetic heat generation resulting from the winding current. Re-
searchers from various countries have investigated the thermodynamics of oil-immersed
motor pumps. Zhang et al. [10] examined high-speed pumps, analyzing their power loss
mechanisms, and establishing churning loss and thermodynamic models that account for
churning loss. Shi et al. [11] employed the control volume method to establish a thermody-
namic simulation model of an axial piston pump, predicting the temperature rise in each
node and optimizing the piston design. Jordan [12] proposed models of hysteresis and
eddy current losses based on the mechanism of core loss generation, while Bertotti [13,14]
built on this work by introducing additional loss. Gao et al. [15] constructed a mathematical
model of the fluid and temperature field coupling solution for high-speed hydraulic pump
motors using the finite volume method, deriving the temperature field distribution of
motor pumps. Li et al. [16] analyzed the losses of motor pumps and introduced them
into the flow field as heat sources, accurately predicting the motor temperature. Popescu
et al. [17] directly fed electromagnetic losses into a collective parametric thermal model
to obtain temperature distribution. Lu et al. [18] incorporated losses derived from copper
loss models into a collective parameter model, comparing the results with finite element
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method calculations, which displayed good experimental fit. Guo et al. [19] proposed the
MTC analysis method of motors, integrating calculated loss into fluid analysis based on
fluid–solid coupled heat transfer, and subsequently returning the calculated temperature
back to the electromagnetic field. Amadou Tinni et al. [20] calculated component tempera-
tures by plugging motor losses into a “lumped heat network”. Wang et al. [21] simplified
the space between the stator and rotor into a hollow cylinder to explore the temperature dis-
tribution of motor pumps. The thermodynamic model is commonly employed by scholars
to compute the temperature of piston pumps. Similarly, for motor heating, a comparable
calculation method is employed that incorporates the motor’s losses. In the context of
motor pump temperature computation, the utilization of computational fluid dynamics
software through which the calculation nodes are fewer and the process is time-consuming
is warranted.

This paper focuses on the oil-immersed motor pump as the research subject, and aims
to analyze the power loss and heat generation mechanism of the motor. Through a thorough
analysis of the heat transfer process within the oil-immersed motor pump, a thermodynamic
model is established to investigate the variations in the internal temperature of the motor
pump under different pressure and flow conditions, as well as to clarify the effect of motor
loss on temperature. Finally, experimental validation is conducted to verify the accuracy of
the proposed thermodynamic model.

2. Mathematical Analysis
2.1. Heat Generation Mechanism

The loss of stator and rotor resulting from the fluctuation of magnetic flux is commonly
referred to as core loss. Bertotti conducted a comprehensive investigation on the origin and
constituents of core loss and introduced the separation theory of core loss, which posits
that core loss is composed of hysteresis loss, eddy current loss, and additional loss.

As shown in Figure 2, the variation in magnetic field within the iron core will trigger
the induction of current.
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Based on Ohm’s law and the law of electromagnetic induction, the power loss due to
eddy currents, P, can be expressed as follows:

dpb =
E2

R
(1)
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where R = ρ1
2h
ldx , E =

√
2π f φ, φ = 2Bxh.

By substituting the values of R, E and φ into Equation (1), the expression for eddy
current power loss pb can be derived.

dpb =
∫ d

2

0
dp =

4π2 f 2B2lh
ρ1

dx (2)

Eddy current loss of the iron core Pb as shown in Equation (3).

Pb =
π2

6ρ1
( f B)2d3lh (3)

where ρ1 is the resistivity of the core, f is the frequency of the magnetic field, B is the
strength of the magnetic field.

The hysteresis loss is due to the hysteresis effect, and the hysteresis loss Ph is shown in
Equation (4).

Ph = σh f B2 (4)

The extra loss Pex is shown in Equation (5) [22].

Pex = Kex(B f )1.5 (5)

where σh is the hysteresis loss coefficient and Kex is the additional loss coefficient.
At the same time, the wires that flow through the current also generate a lot of heat,

the direct current loss PAl of the wire is shown in Equation (6).

PAl = ∑ (I2R) (6)

The motor consists of a stator and a rotor, which are separated by an oil-filled gap. As
shown in Figure 3, the rotor and the permanent magnet undergo rotational motion, leading
to the generation of viscous friction loss.
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The mathematical model of viscous friction loss Pmj of rotor under low-speed laminar
flow and high-speed turbulence is shown in Equation (7) [10].

Pmj =
πµω2lcyD3

cy

4t
(7)

where lcy and Dcy are the length and diameter of the rotor, respectively, and t is the spacing
of the air gap.
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The total motor power loss P is shown in Equation (8).

P = Pb + Ph + Pex + PAl + Pmj (8)

The connector between the high-pressure end of the pump and the low-pressure end
of the motor results in throttling power loss when oil flows through it, as shown in Figure 4.
The flow of oil can be simplified as the flow between annular gaps.
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The power loss Pzn at the connector is shown in Equation (9).

pzn = qV∆p =
12µL f q2

V
πd f h23 (9)

where qv is the flow rate through the connector, d f is the diameter of the inner circle, L f is
the gap length, h is the gap width.

2.2. Heat Transfer Analysis

This paper employs the oil-immersed motor pump as a controlled object to regulate
the energy conservation process, as shown in Figure 5.
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According to the first law of thermodynamics, the calculation formula is shown in
Equation (10) [10].

dT
dt = 1

cpm [∑
.

min(hin − h)+
.

Q + mTαpυ
dp
dt ]

hin − h = cp(Tin − T) + (1− αpT)υ(pin − p)
(10)

The figures depicting the heat transfer model of oil are presented in Figures 1 and 6.
The motor pump model consists of five fluid nodes and one mass node; Tp is the volume of
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the outlet fluid, Tt is the volume of the intake fluid. Tb, Tj and Tl are the volumes of the
leakage fluid, and Tw is the shell of the motor pump.
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The comprehensive thermodynamic calculation model of the pump is elaborately
explained in Zhang’s [10] article. Nevertheless, the focus of this paper is limited to the
presentation of thermodynamic equations pertaining to the connector and leakage port
nodes.

Oil with a flow rate of Qel is introduced into the motor via the connector located
between the motor and the pump. The temperature of the oil is affected by the power loss
occurring at the connector and subsequently rises to Tj, as shown in Equation (11).

dTj
dt = 1

cpmj
[ρQel

(
cp
(
Tb − Tj

)
+
(
1− αp

(
Tb + Tj

)
/2
)
υ
(

pb − pj
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−k f w A f w
(
Tj − Tw

)
+ pzn + TjαpVj

dpj
dt ]

(11)

The motor end receives an inflow of oil which is subsequently discharged via the
leakage oil port. A considerable amount of heat is generated due to a succession of power
losses occurring at the motor end, resulting in an increase in temperature at the leakage oil
port, denoted as Tl in Equation (12).

dTl
dt = 1

cpml
[ρQel

(
cp
(
Tj − Tl

)
+
(
1− αp

(
Tj + Tl

)
/2
)
υ
(

pj − pl
))

−k f w A f w(Tl − Tw) + P + TlαpVl
dpl
dt ]

(12)

The thermodynamic modeling of the oil-immersed motor pump is shown in Equation (13).
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dTt
dt = 1

cpmt

[
ρQil

(
cp
(
Tp − Tt

)
+
(
1− αp

(
Tp + Tt

)
/2
)
v
(

pp − pt
))

+ 30
π cpρωD(Tin − Tt) + TtαpVt

dpt
dt ]

dTp
dt = 1

cpmp

[ 30
π ρωD

(
cp
(
Tt − Tp

)
+
(
1− αp

(
Tp + Tt

)
/2
)
v
(

pt − pp
))

+ 30
π Dω

(
Pp − Pt

)
+ Lp + TpαpVp

dpp
dt ]

dTb
dt = 1

cpml

[
ρQel

(
cp
(
Tp − Tb

)
+
(
1− αp

(
Tp + Tb

)
/2
)
v
(

pp − pb
))

−k f w A f w(Tb − Tw) + Pc + TbαpVb
dpb
dt ]

dTj
dt = 1

cpmj

[
ρQel

(
cp
(
Tb − Tj

)
+
(
1− αp

(
Tb + Tj

)
/2
)
v
(

pb − pj
))

−k f w A f w
(
Tj − Tw

)
+ pzn + TjαpVj

dpj
dt ]

dTl
dt = 1

cpml

[
ρQel

(
cp
(
Tj − Tl

)
+
(
1− αp

(
Tj + Tl

)
/2
)
v
(

pj − pl
))

−k f w A f w(Tl − Tw) + P + TlαPVl
dpl
dt ]

dTw
dt = 1

cwmw

[
k f w A f w

(
Tb + Tj + Tl − 3Tw

)
−kwa Awa((Tw + 273.15)4 − (Ta + 273.15)4)

]

(13)
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In the relevant research, the parameters of the plunger, cylinder block and valve plate
are necessary [1]. And the main parameters of the motor are listed in Table 1.

Table 1. Main parameters of the motor.

Parameter Unit Value

B T 0.68
d mm 8.3
l mm 11.5
h mm 79
σh W/(kg·Hz·T2) 0.136
kex W/(kg·Hz2·T2) 0.005
N 34
ρc Ω·m 0.0172
E V 270

Dcy mm 39
t mm 1

lcy mm 79

2.3. Analytical Results

Due to the unfavorable flow characteristics of fluids at low speeds and high pressures,
this paper aims to investigate the temperature variations of the leakage port and inlet at
1450 rpm under different outlet pressure conditions, as well as the temperature changes in
the leakage port and inlet at different speeds when the outlet pressure is 6 MPa.

As shown in Figure 7a, an increase in the outlet pressure is observed to cause a gradual
rise in the temperature of the leakage port. An increase in the temperature of the leakage
port from a minimum of 25.1 to 41.2 ◦C is attributed to two factors. Firstly, an elevated
viscous friction loss of oil is caused by an increase in pressure, resulting in a rise in the
temperature of the oil that leaks into the motor pump. Simultaneously, an increase in motor
power and current results in an elevated motor loss, further contributing to the rise in oil
temperature at the leakage port. Nevertheless, the temperature of the inlet node remains
constant., as the oil absorption rate at the inlet of the motor pump is significantly higher
than the leakage rate. While some of the high-temperature oil may leak into the oil inlet, it
does not significantly affect the overall temperature of the oil tank, and consequently, the
temperature at the inlet remains relatively stable.
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Figure 7. Temperature comparison under different loading conditions: (a) leakage and inlet tem-
perature and under different load pressures; (b) leakage and inlet temperature under different
rotation speeds.

As shown in Figure 7b, the temperature of the leakage port exhibits a gradual in-
crement with escalating rotational speed. The temperature of the leakage port increases
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gradually from an initial value of 25.7 ◦C to 85.4 ◦C, which can be attributed to two pri-
mary factors. As the rotational speed increases, the mixing loss of cylinder block, piston,
and rotor intensifies, resulting in elevated levels of viscous friction loss within the pump
chamber and motor chamber oil, thereby contributing to the increase in temperature of the
leakage port. The rise in motor power and current translates to an amplified motor loss,
consequently leading to a further escalation in oil temperature at the leakage port. Notably,
the inlet temperature remains relatively unchanged owing to the increased heat exchange
rate occurring between the inlet oil and exterior oil per unit time, which in turn preserves
thermal equilibrium between the inlet temperature and the tank temperature.

3. Experimental Validations

Figure 8 shows the experimental picture of measuring the temperature of the motor
pump. Port A and B are oil inlet and outlet, respectively.
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Figure 8. Principle and test system of the experiment [1]: (a) hydraulic principle diagram of test
bench; (b) installation of the motor-pump assembly.

Ascertaining the temperature of the pump cavity and the connector node poses
a challenge due to the sluggish balance temperature of the shell. Consequently, this
study predominantly investigated the impact of motor loss on the overall temperature
variation in the motor pump. Accordingly, the temperature of the inlet, outlet and leakage
was measured in the conducted experiment. As shown in Figure 9, the temperature curve
of the motor pump was depicted at 1450 rpm, measured at distinct outlet pressures. The
solid line denotes the experimental value, while the calculated value is represented by the
dashed line.
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As shown in Figure 9, the experimental and calculated values of the inlet temperature
remained consistent at approximately 22 ◦C and exhibited no changes throughout the
operation of the motor pump. Conversely, the test temperature at the outlet experienced
a surge of 4.86 ◦C, while the calculated temperature value displayed a minimal increment,
albeit with an increasing trend. This phenomenon can be attributed to the escalating
temperature rise of the overall system during the motor pump’s operation. Notably, the
calculated value deviates significantly from the experimental value under low pressure,
with a maximum error of 22.79%. Nevertheless, as the pressure increases, the calculated
value converges more closely to the experimental value.

Table 2 presents the maximum error values of the temperature at both the leakage
port and outlet. The values listed in the upper section correspond to the case where the
temperature at the leakage port is 6 MPa, while those in the lower section correspond to the
case where the temperature at the outlet is 34 MPa. In this context, a represents the actual
measured value, b denotes the corresponding calculated value, and c denotes the resulting
error value.

c =
|a− b|

a
(14)

Table 2. Value of the maximum temperature error of the leakage port and outlet.

Measurement a Calculation b Error c

33.26 ◦C 25.68 ◦C 22.79%
27.52 ◦C 22.67 ◦C 17.7%

Figure 10 illustrates the temperature curve of each node under distinct rotation speeds,
with an outlet pressure of 6 MPa. The temperature of the inlet displays minor fluctuations,
which can be attributed to variations in the ambient temperature. However, the temperature
of the leakage port experiences an upsurge, primarily due to the increase in churning loss
and motor power.
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Figure 10. Comparison of measured and calculated temperature changes at each node with rotational
speed under outlet pressure of 6 MPa.

The observed escalation in the leakage temperature, as determined through calcula-
tions, can be attributed to an exponential growth pattern. This phenomenon is predom-
inantly a consequence of amplified heat generation resulting from heightened churning
losses and motor power losses. Consequently, the system experiences a substantial temper-
ature elevation of precisely 59.68 ◦C. The temperature measurements obtained displayed
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a distinctive pattern characterized by an initial ascent, followed by a subsequent descent,
and then another subsequent ascent. This observed behavior can be plausibly attributed to
the impact of temperature variations on the rheological properties, specifically the viscosity,
of the oil fluid. At lower rotation speeds, the higher viscosity of the oil fluid, attributed to
lower temperatures, gives rise to pronounced friction losses, leading to relatively elevated
temperatures. Nevertheless, as the rotational speed progressively increases, the viscosity
of the oil fluid decreases, resulting in a subsequent temperature decline. However, as the
rotational speed reaches a critical threshold, the impact of the viscosity changes becomes
insufficient to counteract the fluctuations caused by interfacial viscous friction losses. Con-
sequently, this leads to a subsequent temperature rise in the oil fluid. Under high-speed
conditions, a substantial disparity is observed between the two measurements, with a max-
imum deviation of 109.7%. Nonetheless, both measurements demonstrate a convergent
growth trend under these high-speed conditions.

The observed substantial disparities in calculation outcomes at high rotational ve-
locities can be attributed to the inherent variability in oil viscosity resulting from the
temperature elevation of the oil due to dynamic alterations in operating conditions. It
should be noted that the preceding text solely accounted for a constant oil viscosity in
the determination of the calculation results. The viscosity of Newtonian fluids exhibits
a temperature-dependent behavior, whereby changes in temperature directly influence
viscosity variations. However, due to the unavailability of initial temperature data, which is
essential for predicting viscosity alterations, it becomes imperative to establish a correlation
between viscosity and different rotational speeds and their corresponding outlet pressures.
This empirical fitting process is illustrated in Figure 11.
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Regarding the global fitting surface, the dynamic viscosity coefficient demonstrates
a decreasing trend with increasing rotational speed, exhibiting a quadratic relationship.
It initially starts at a value of 3.695 and progressively decreases to 0.496. As the pressure
increases, the dynamic viscosity coefficient displays an initial ascending trend followed by
a descending trend. The maximum value of 4.01 is observed at 12 MPa, while the minimum
value of 2.82 is observed at 18 MPa. Equation (15) defines the fitting equation, wherein
x represents the rotational speed in rpm (revolutions per minute), y represents the outlet
pressure in MPa (megapascals), z symbolizes the dimensionless viscosity coefficient, and µ1
is the dynamic viscosity after fitting. In Figure 12, the circled temperature is 39.4 ◦C, and the
viscosity coefficient z is close to 1. There is a small difference between the corresponding
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viscosity value at 33.7 ◦C and the standard value, which indicates the correctness of the
fitting surface.

z = 3.95217− 0.00157x + 1.61409× 10−7x2−
5.48032× 10−12x3 + 0.37877y− 0.0183y2

µ1 = zµ

(15)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 20 
 

7 2

12 3 2

1

3.95217 0.00157 1.61409 10
5.48032 10 0.37877 0.0183      

z x x
x y y

zμ μ

−

−

= − + × −
× + −

=
 (15)

The viscosity values, recalculated by substituting the fitted viscosity coefficients, are 
employed in subsequent computations. The outcomes of these calculations are illustrated 
in Figure 12. Within Figure 12a, the leakage port temperature exhibits a relatively stable 
profile within the pressure range of 3–18 MPa. However, beyond this range, specifically 
within the 18–34 MPa pressure interval, the temperature demonstrates an exponential in-
crease. Notably, the calculated values exhibit a parallel trend in variation to the measured 
values, indicating a comparable pattern. At low pressures, the calculated and actual values 
of the leakage port oil temperature exhibit a remarkable level of agreement, indicating a 
high degree of fitting. However, at high pressures, there is a comparatively larger devia-
tion between the calculated and actual values. For the purpose of ensuring precise calcu-
lations, the subsequent text will exclusively focus on the temperature fluctuations at dif-
ferent nodes associated with outlet pressures ranging from 3 to 18 MPa . 

  
(a) (b) 

Figure 12. Temperature comparison of the fitted dynamic viscosity: (a) leakage and inlet tempera-
ture and under different load pressures; (b) leakage and inlet temperature under different rotation 
speeds. 

As depicted in Figure 12b, the calculated values exhibit a trend of variation similar to 
that of the measured values. The temperature follows a pattern characterized by an initial 
increase with rotational speed, followed by a subsequent decrease, and then a subsequent 
increase. The underlying mechanism can be explained as follows: with an increase in ro-
tational speed, the churning losses intensify, resulting in an escalation of viscous friction 
losses between the oil molecules, consequently leading to an elevation in temperature. 
However, as the temperature surpasses a certain threshold, the viscosity of the oil de-
creases, leading to a reduction in the viscous friction losses between the oil molecules, 
which in turn causes a decline in temperature. At 6500 rpm , the temperature reaches its 
minimum value and the maximum error is 14.1%. Subsequently, the further decrease in 
oil viscosity caused by the increase in rotational speed fails to counteract the amplified 
viscous friction losses between the oil molecules, resulting in an upward trend in temper-
ature. 

Figure 13 shows the loss value of the motor when the outlet pressure is 6 MPa, and 
the six loss values of the motor are similar at low speed, while the power loss of the motor 
increases with the increase in speed; stirring loss Pal and resistance loss increase most 
obviously, and the two values are relatively close. 

Figure 12. Temperature comparison of the fitted dynamic viscosity: (a) leakage and inlet temperature
and under different load pressures; (b) leakage and inlet temperature under different rotation speeds.

The viscosity values, recalculated by substituting the fitted viscosity coefficients, are
employed in subsequent computations. The outcomes of these calculations are illustrated
in Figure 12. Within Figure 12a, the leakage port temperature exhibits a relatively stable
profile within the pressure range of 3–18 MPa. However, beyond this range, specifically
within the 18–34 MPa pressure interval, the temperature demonstrates an exponential
increase. Notably, the calculated values exhibit a parallel trend in variation to the measured
values, indicating a comparable pattern. At low pressures, the calculated and actual values
of the leakage port oil temperature exhibit a remarkable level of agreement, indicating a
high degree of fitting. However, at high pressures, there is a comparatively larger deviation
between the calculated and actual values. For the purpose of ensuring precise calculations,
the subsequent text will exclusively focus on the temperature fluctuations at different nodes
associated with outlet pressures ranging from 3 to 18 MPa.

As depicted in Figure 12b, the calculated values exhibit a trend of variation similar to
that of the measured values. The temperature follows a pattern characterized by an initial
increase with rotational speed, followed by a subsequent decrease, and then a subsequent
increase. The underlying mechanism can be explained as follows: with an increase in
rotational speed, the churning losses intensify, resulting in an escalation of viscous friction
losses between the oil molecules, consequently leading to an elevation in temperature.
However, as the temperature surpasses a certain threshold, the viscosity of the oil decreases,
leading to a reduction in the viscous friction losses between the oil molecules, which in
turn causes a decline in temperature. At 6500 rpm, the temperature reaches its minimum
value and the maximum error is 14.1%. Subsequently, the further decrease in oil viscosity
caused by the increase in rotational speed fails to counteract the amplified viscous friction
losses between the oil molecules, resulting in an upward trend in temperature.

Figure 13 shows the loss value of the motor when the outlet pressure is 6 MPa, and
the six loss values of the motor are similar at low speed, while the power loss of the motor
increases with the increase in speed; stirring loss Pal and resistance loss increase most
obviously, and the two values are relatively close.
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Figure 13. Calculated loss under 6 MPa outlet pressure.

4. Discussion

Considering the negligible discrepancy observed between the calculated leakage
temperature and the corresponding actual temperature, the thermodynamic model utilized
in this study is demonstrated to possess high accuracy. Therefore, the investigation is
further expanded to incorporate a more comprehensive range of operating conditions.

Figure 14 depicts the temporal evolution of individual nodes in the context of a motor
pump operating at a speed of 1450 rpm and an outlet pressure of 6 MPa. To be specific, the
temperature of the inlet, outlet, leakage port, and connector node all exhibit an upward
trajectory, beginning simultaneously from their respective initial values. After approxi-
mately 20,000 s of operation, the temperature of each node ultimately attains a steady-state
condition. The temperature attained at the leakage port, connector, pump chamber, and
shell were recorded as 26.5, 27.1, 32.9, and 27.6 ◦C, respectively. It is noteworthy that the
temperature of the inlet and outlet nodes is observed to be nearly identical, with the outlet
temperature being only 0.05 ◦C higher than that of the inlet. Furthermore, owing to the
distinctive radiative heat transfer process that occurs through the surrounding air, the
temperature of the shell undergoes a relatively slow and gradual stabilization process.
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The temperature readings in Figure 15 reveal that the inlet, outlet, leakage outlet, shell,
pump chamber and connector experienced, respectively, temperature increments of 0.04,
0.2, 0.4, 2.2, 5.1 and 3.7 ◦C. The rise in outlet temperature corresponds to an increase in
outlet pressure, which induces a higher input torque, thus augmenting the external input
power to the pump and elevating the outlet temperature. Meanwhile, the inlet temperature
elevation arises from heightened heat leakage from the outlet into the inlet, raising the
temperature of the inlet oil. Furthermore, the increase in motor power and the change in oil
viscosity cause the temperature of the leakage port to change. Lastly, as the oil temperature
within the motor pump escalates, the temperature of the shell increases, given that the
contact area and heat transfer coefficient between the shell and the oil remain constant.
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As the outlet pressure is increased, there is a trend towards temperature equalization
observed between the pump chamber, connector, and leakage port. The rise in outlet
pressure results in an elevation of the pump oil leakage rate, which in turn increases the
influx of oil into the pump chamber, connector, and leakage port, ultimately leading to
an accelerated rate of heat exchange between the motor pump and its internal components.
Consequently, this dynamic process causes the temperature distribution within the motor
pump to become more uniform. As the outlet pressure is raised, there is a more linear and
progressive increase observed in the temperature of each connector.

Figure 16 illustrates that the temperatures of the inlet and outlet nodes remain stable,
exhibiting minimal fluctuations over time. The temperature change follows a specific
order, with the highest temperature change occurring at the leakage port, followed by
the connector, pump chamber, shell, oil outlet, and oil inlet nodes. The temperature
change values of each node are 9.7, 2.7, 2.3 and 1.6 ◦C, respectively. As the rotational
speed increases, the temperature demonstrates a non-linear variation characterized by
an initial rise, followed by a decline, and then a subsequent rise. This behavior primarily
arises from the consequential impact of temperature fluctuations on the viscosity of the
oil fluid. The similarity observed in temperature changes between the pump chamber
and the connector can be attributed to the influence of throttling losses on the pump
chamber and the heat generated through viscous friction between the oil fluids. The small
temperature difference between the connector and the pump chamber indicates that the
effect of connector throttling loss is negligible. The observed elevation in oil temperature
can be predominantly ascribed to churning losses resulting from high-velocity lubricating
oil at the leakage end, accompanied by a subsequent escalation in motor power losses.
This underscores the notable significance of temperature increment induced by the electric
motor, warranting careful consideration.
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As shown in Figure 17, the leakage port oil temperature across different operational
scenarios is calculated. At low pressure conditions, the oil temperature remains within
an acceptable range. However, as the pressure and rotational speeds increase, limitations
become evident. This is primarily due to the fact that under high-pressure and high-
speed conditions, the oil fluid temperature is more prone to reaching elevated levels.
Consequently, this leads to a deterioration in the overall performance of the motor pump
system. At a pressure of 9 MPa, the temperature is relatively elevated. However, it is
important to highlight that a critical threshold is observed at a pressure of 15 MPa. At
this critical point, a transition occurs in the oil temperature regime, shifting from higher
temperatures to lower temperatures.
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Figure 17. The dynamic evolution of oil fluid temperature at the leakage across the entire range of
operating conditions.

As shown in Figure 17, the calculated values of oil temperature at the leakage point
under various operating conditions are shown in the diagram. At low pressure, the oil
temperature remains within a reasonable range, with a maximum temperature of 57.5 ◦C.
However, at 8–12 MPa, the temperature shows an increasing trend with higher rotational
speeds, while at other pressures, it exhibits a decreasing trend followed by an increase.
This is mainly because the leakage of oil at 3–8 MPa gradually increases, leading to an
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increase in heat exchange efficiency between the oil, resulting in temperature reduction.
However, as the rotational speed increases, motor losses such as churning losses also
increase, causing the temperature to rise. At 12–18 MPa, the continuous temperature
increase causes a decrease in oil viscosity, which in turn leads to temperature reduction.
However, with the continuous increase in motor losses, the temperature variation caused
by viscosity no longer suppresses the temperature rise caused by the motor. At a constant
rotational speed, the temperature exhibits a trend of initially increasing and then decreasing.
At a pressure of 9 MPa, the temperature is relatively high. However, it is worth noting
that at a pressure of 15 MPa, it is the critical value where the oil temperature begins to
transition from high to low. In conclusion, the variation in oil temperature is influenced
by the leakage amount of oil flowing inward, oil viscosity, and motor losses, which all
contribute to these changes.

As shown in Figure 18a, when the outlet pressure condition is changed, it is observed
that the temperature change with motor power loss is more than 2.8 ◦C than that without
motor power loss. This observation highlights the significant impact of motor power loss
on the resultant changes in oil viscosity. In low-pressure conditions, a distinct temperature
disparity is observed between scenarios with motor power loss and without motor power
loss. However, as the pressure rises, the temperature gap between the two scenarios
diminishes, and the temperature response tends towards linearity. This phenomenon can
be ascribed to the similarity in oil viscosity corresponding to these temperature levels.
Additionally, under higher pressures, the oil leakage rate experiences a substantial increase,
leading to accelerated heat exchange at the leakage port. Consequently, the temperature
tends to converge towards a state resembling that of no motor power loss.
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As shown in Figure 18b, when considering changes in rotational speed, it can be
observed that the temperature increases by 9.7 and 2.6 ◦C due to motor power loss and
non-motor power loss, respectively. In general, there exists a notable disparity in tempera-
ture between the two scenarios, with the maximum temperature differential observed at
12,000 rpm, reaching 16.8 ◦C. However, at higher rotational speeds, the impact of churning
losses becomes more pronounced, leading to a more conspicuous temperature elevation at
the leakage port. Hence, the influence of motor power loss should not be underestimated,
as it can result in a substantial escalation of leakage temperature, particularly during
operations involving high-speed rotation.

5. Conclusions

This paper took the integrated oil-immersed motor pump as the research object,
and carried out research work in three aspects: loss source of motor, thermodynamic
modeling, and experimental verification. The heat generation mechanism of the motor
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was analyzed, and a thermodynamic model suitable for the integrated oil-immersed motor
pump was established. The accuracy of the thermodynamic model was demonstrated
through experiments. The research results are as follows:

(1) In this paper, the heat generation mechanism of the oil-immersed motor pump was
analyzed, and the mathematical models of the copper and iron consumption of the
motor, the churning loss of the rotor and the throttling loss of the damping hole were
established.

(2) The influence of rotational speed and outlet pressure on the temperature of each node
was verified by experiments, and the fitted equation capturing the variation in oil
fluid viscosity with operating conditions was established. The viscosity coefficient
was close to 1 when the measured temperature was 39.4 ◦C. Upon applying the fitted
equation, the maximum error between the calculated value and the experimental
data was 14%, thereby validating the accuracy of the thermodynamic model for
oil-immersed motor pumps.

(3) Based on the conservation of energy theory, a thermodynamic model for the oil-
immersed motor pump was established and solved and the temperature variation in
key nodes with time was obtained. Each node reached equilibrium in 20,000 s, and
the temperature of the leakage port was the highest, reaching 32.9 ◦C. At the same
time, the influence of pressure and rotating speed on the heat-balance temperature
of the oil-immersed motor pump was analyzed. The temperature of the oil at the
leakage port exhibited a non-linear relationship with the working condition, display-
ing a distinctive pattern of initial ascent followed by descent. The peak temperature
recorded was measured at 57.5 ◦C. Subsequently, temperatures at higher pressures
and rotational speeds were tested to determine the expected final operating state.
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Abbreviations

Pb eddy current loss of the iron core
Ph hysteresis loss of the iron core
Pex extra loss of the iron core
Pw alternating current loss of the wire
PAl direct current loss of the wire
Pmj viscous friction loss of rotor
Pzn power loss of the connector
P total motor power loss
f frequency
ρ1 resistivity
B flux density
d thickness of the steel sheet
l length of the steel sheet
h height of the steel sheet
σh hysteresis loss coefficient
Kex additional loss coefficient
µ0 permeability of air
ω1 angular frequency
d1 diameter of conductor
N number of conductors
I current intensity
l1 length of conductor
ρc resistivity of a conductor
b width of groove
h1 depth of groove
R resistance of conductor
µ viscosity of the oil
ω angular velocity
lcy length of rotor
Dcy diameter of rotor
t4 oil gap
ρ density of oil
L f length of the damping hole
d f diameter
h width of the damping hole
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