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Abstract: To investigate the vibration properties in healthy and fault conditions of planetary gear-
boxes, a phenomenological model is constructed to present the vibration spectrum structure. First, the
effects of the base deflection of the gear fillet and the flexibility between the root circle and the base
circle on the time-varying meshing stiffness are considered in order to construct an equivalent model
of time-varying mesh stiffness and broken tooth faults, exploring the law of variation for meshing
stiffness when differently sized faults occur on the sun gear. Then, considering both the effect of the
vibration transfer path and the meshing impacts, we establish phenomenological models of planetary
gears under healthy and fault conditions. By comparing and analyzing the phenomenological model
based on the cosine function to verify the effectiveness of the proposed model. The experimental
results show that the error of the proposed model is 1.38% lower than that of the traditional phe-
nomenological model, and the proposed model can accurately analyze the frequency, amplitude, and
sideband characteristics of the vibration signals of sun gear with different degrees of broken tooth,
which can be used for the local fault diagnosis of planetary gearboxes.

Keywords: gear fault; phenomenological model; vibration feature

1. Introduction

Planetary gearboxes (PGs) are widely used in aerospace, wind power generation, and
other fields due to their small size, smooth transmission, large transmission ratio, and
high efficiency. However, due to the unique characteristics of the transmission structure,
the complexity of the vibration transmission path of PGs, and the harsh working envi-
ronment, its gears, bearings, and other key components are prone to different types and
degrees of failure, resulting in the degradation of gearbox performance and even causing
major accidents. Therefore, the fault diagnosis of PGs is of great significance in avoiding
safety accidents.

In recent years, the rapid development of numerical simulation technology has pro-
vided convenient and scientific solutions for clarifying the vibration spectrum structure
and carrying out research on fault diagnosis methods of PGs [1]. Two different models
are used to study the vibration features of PGs: the lumped-parameter dynamic model
(LPDM) and the phenomenological model. Based on LPDM, nonlinear factors in the gear-
box, such as shaft misalignment [2], manufacturing errors [3], backlash [4], lubrication [5],
temperature [6] and friction force [7], have been investigated in depth. However, solving
the equations of motion in LPDM is extremely time-consuming and complicated due to a
large number of parameters and freedom degrees in this model. To reduce the parameters
of the dynamics modeling process and computational complexity, scholars proposed to
describe the vibration signal of the gearbox as a function related to the meshing frequency
and then construct a simple and efficient phenomenological model of the gearbox [8].
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Zhou et al. [9] proposed a representative phenomenological model to formulate and il-
lustrate the relationship between fault-induced modulation patterns and characteristic
spectral distributions. Yu et al. [10] established a phenomenological model considering
the time-varying speed conditions of the planetary gearbox, which effectively explained
the sideband symmetry near the resonance frequency. Liu et al. [11] established a phe-
nomenological model of the planetary gearbox considering uneven load distribution among
planetary gears and revealed the mechanism of additional sidebands under nonuniform
load distribution conditions. Parra et al. [12] found the phenomenological model and
the centralized parameter model for PGs without and with faults, respectively, and com-
pared the results of these two models to confirm that the phenomenological model is the
most efficient in generating gearbox vibration signals. However, the phenomenological
model has some drawbacks. Because the phenomenological model is constructed based
on trigonometric functions, there is no impact component in the synthesized vibration
signal, which cannot reflect the meshing impact characteristics better. To overcome this
drawback and further improve the performance and adaptability of the phenomenological
model, Luo et al. [13,14] unified the reference points of the stiffness model and the phase
model and proposed an improved phenomenological model based on the consideration
of transient shock effects to realize the simultaneous characterization of the modulation
characteristics and shock characteristics of the gearbox vibration signal and applied it to
characterize the gearbox vibration mechanism when different sizes of faults occur on the
sun gear. Liu et al. [15] calculated the impact force when the gears were meshed, established
the phenomenological model considering the meshing impact, compared the effects of an-
gular displacement and meshing influence on the vibration signal of the planetary gearbox,
and confirmed that the angular displacement has a more significant effect on the gearbox
spectrum. In addition, Zhang et al. [8] improved the traditional phenomenological model
by considering the gear mesh amplitude’s random magnitude and the transmission path’s
attenuation effect, revealing the spectrum’s asymmetry. Xu et al. [16] used the projection
of the triangular function to represent the time-varying direction of the impact force in
the sensor measurement direction and the Fourier series to represent the transmission
path in order to establish the phenomenological model of the local fault of the sun gear,
effectively deriving the resonance modulation sidebands of PGs. Nie et al. [17] developed
a phenomenological model of a healthy wind turbine gearbox and used the Hanning func-
tion to represent the effect of time-varying transfer paths to reveal the vibration frequency
characteristics of a multistage gearbox system.

In summary, the research results on the modeling and analyzing of the phenomenolog-
ical model provide good support for revealing the vibration mechanism and fault diagnosis
of PGs. An in-depth analysis of the internal structure and operating mechanism of the
planetary gearbox reveals that the accurate calculation of the time-varying mesh stiffness is
the basis for the construction of the phenomenological model of the gearbox. In contrast,
the existing phenomenological model ignores the influence of the fillet base deflection
and inter-gear flexibility on the mesh stiffness when using the potential energy method to
calculate the mesh stiffness, which increases the model characterization error. In addition,
the mesh shock generated during gear meshing affects the vibration signal. However,
the existing phenomenological model is weak in portraying the shock component of the
vibration signal and cannot reflect the pulse modulation characteristics caused by the
meshing shock. In this paper, based on the time-varying meshing stiffness, the meshing
shock function and the influence of the vibration signal transmission path are considered
in order to construct a more realistic phenomenological model for PGs, which provides a
theoretical basis for the fault diagnosis of PGs.

2. Vibration Mechanism of Planetary Gearbox
2.1. Time-Varying Meshing Stiffness

Time-varying mesh stiffness is a periodic internal excitation of gear pairs, which is very
important for the vibration analysis of gear systems [18]. Considering the base deflection of
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the gear fillet and the influence of flexibility between the root circle and the base circle [19],
the gear is simplified to a variable-section cantilever beam fixed on the gear base circle
(as shown in Figure 1), and the modified potential energy method is used to calculate
the time-varying meshing stiffness of the planetary gearbox for two cases, i.e., the gear
root circle being smaller or bigger than the base circle, respectively [20]. According to the
knowledge of principle of mechanics, the radius of gear base circle Rb and root circle Rf can
be calculated as follows [21]:

Rb =
mz
2

cos(θ) (1)

R f =
mz
2
− (h∗a + c∗)m (2)

where m, z, and θ represent module, number of teeth, and pressure angle, respectively. h∗a
and c∗ are addendum and tip clearance coefficients.
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Figure 1. The cantilever beam model of gear teeth.

When the gear root circle is bigger than the base circle, the equations of kb, ks, ka, and
kh are expressed as follows [21]:

kb,normal =
1∫ α4

−α1

3{1+cos α1[(α2−α) sin α−cos α]}2(α2−a) cos α

2EL[sin α+(α2−α) cos α]3
dα

(3)

ks,normal =
1∫ α4

−α1

1.2(1+v)(α2−α) cos α cos2 α1
EL[sin α+(α2−α) cos α]

dα
(4)

ka,normal =
1∫ α4

−α1

(α2−α) cos α sin2 α1
2EL[sin α+(α2−α) cos α]

dα
(5)

kh,normal =
πEL

4(1− ν2)
. (6)

When the gear root circle is smaller than the base circle, the energy stored between
the base circle and the root circle (the grid line portions as shown in Figure 1) needs to be
increased on the original basis; then, Equations (3)–(5) are modified as follows [21]:

kb,normal =
1∫ α2

−α1

3{1+cos α1[(α2−α1) sin α−cos α]}2(α2−a) cos α

2EL[sin α+(α2−α) cos α]3
dα +

∫ rb−r f
0

[(d+x1) cos α1−h sin α1]
2

EIx1
dx1

(7)
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ks,normal =
1∫ α2

−α1

1.2(1+v)(α2−α) cos α cos2 α1
EL[sin α+(α2−α) cos α]

dα +
∫ rb−r f

0
(1.2 cos α1)

2

GAx1
dx1

(8)

ka,normal =
1∫ α2

−α1

(α2−α) cos α sin2 α1
2EL[sin α+(α2−α) cos α]

dα +
∫ rb−r f

0
(sin α1)

2

EAx1
dx1

. (9)

The equation of k f can be expressed as follows [22]:

1
k f

=
cos2 αm

EL

L∗
(

µ f

S f

)2

+ M∗
(

µ f

S f

)
+ P∗

(
1 + Q∗ tan2 αm

). (10)

where αm is the pressure angle of contact point, µ f and S f are defined as shown in Figure 2.
The coefficients L*, M*, P*, Q* can be approached by polynomial functions [23]:

X∗i = Ai/θ2
f + Bih2

f i + Cih f i/θ f + Eih f i + Fi. (11)
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The values of Ai, Bi, Ci, Di, Ei, Fi are given in Table 1.

Table 1. Values of the coefficient of Equation (11).

Ai Bi Ci Di Ei Fi

L* −5.574 × 10−5 −1.9986 × 10−3 −2.3015 × 10−4 4.7702 × 10−3 0.0271 6.8045
M* 60.111 × 10−5 −28.100 × 10−3 −83.431 × 10−4 −9.9256 × 10−3 0.1624 0.9086
P* −50.952 × 10−5 185.50 × 10−3 0.0538 × 10−4 53.3 × 10−3 0.2895 0.9236
Q* −6.2042 × 10−5 9.0889 × 10−3 −4.0964 × 10−4 7.8297 × 10−3 −0.1472 0.6904

In summary, the total effective meshing stiffness of the planetary gearbox can be
described as follows:

ktotal =


1/
(

1
kh

+ 1
kb1

+ 1
ks1

+ 1
ka1

+ 1
k f 1

+ 1
kb2

+ 1
ks2

+ 1
ka2

+ 1
k f 2

)
, single-tooth-pair

2
∑

i=1

1
1

kh,i
+ 1

kb1,i
+ 1

ks1,i
+ 1

ka1,i
+ 1

k f 1
+ 1

kb2,i
+ 1

ks2,i
+ 1

ka2,i
+ 1

k f 2

, double-tooth-pair
(12)

In the expressions above, subscripts 1 and 2 indicate the driving and driven gears
respectively, and I denotes the gear pair number in meshing.

Based on the above theoretical analysis, the trend of health gear meshing stiffness
change under two cases is calculated as shown in Figure 3. In comparison, the time-
varying mesh stiffness amplitude decreases by 18.75% when the gear root circle is smaller
than the base circle. According to the literature [21], the mesh stiffness values obtained by
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considering the base deflection of the gear fillet and the flexibility between the root circle and
the base circle are more accurate compared with the mesh stiffness values calculated by the
ISO standard, which lays the foundation for establishing a precise phenomenological model.
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Figure 3. Meshing stiffness of the healthy planetary gear: (a) Rf > Rb; (b) Rf < Rb.

2.2. Meshing Stiffness of the Fault External Gear Pair

Based on the normal meshing stiffness variation, the meshing stiffness variation in
the broken teeth of the sun gear is further investigated. Figure 4 is a simplified schematic
diagram of the fractured tooth of the sun gear, ds is the size of the broken tooth of the sun
gear, the cross-section of the broken tooth intersects the tooth profile at point D, and point
K is the intersection of the tooth profile and the tooth apex circle. The meshing force in
the case of a broken tooth is shown in Figure 5. In Figure 5, the gear pair enters meshing
from point A. Point C is an arbitrary meshing point on the tooth profile, and point O is the
rotation center of the sun gear. Theoretically, the meshing point of the external gear pair
enters the mesh from point A and exits from point K. However, due to the presence of the
fault, the meshing process ends early at point D, resulting in the stiffness of the gear pair
being 0 in the DK range.
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Figure 4. Schematic diagram of the sun gear with a broken tooth: (a) three-dimensional diagram;
(b) two-dimensional diagram.

Based on the broken tooth mesh force distribution variation, the kb, ks, ka, and kh are
first calculated using Equations (13)–(16) and substituted into Equation (12) to calculate the
mesh stiffness for different degrees of broken teeth and plot the variation curve (as shown
in Figure 6).

kb, f ault =

{
kb, normal , α 6 αd
0, α > αd

(13)

ks, f ault =

{
ks, normal , α 6 αd
0, α > αd

(14)
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ka, f ault =

{
ka, normal , α 6 αd
0, α > αd

(15)

kh, f ault =

{
kh, normal , α 6 αd
0, α > αd

(16)
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Figure 6. Stiffness curve of external gear pair under the broken tooth condition of sun gear:
(a) ds = 1 mm(1/4); (b) ds = 2 mm(2/4); (c) ds = 3 mm(3/4); (d) ds = 4 mm(completely broken teeth).
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The comparative analysis of Figure 6 shows that when the sun gear suffers a broken
tooth fault, the meshing stiffness decreases in the range of broken teeth. With the increase
in the fault size, the fall time of the gear pair is significantly earlier, and the meshing process
is terminated earlier. It is also found that when the fault size is less than 1

2 of the tooth
height (ds ≤ 2 mm), the gear pair has a single tooth meshing zone. The variation law of
this meshing stiffness with the fault degree provides theoretical support for constructing
signal models characterizing different fault degrees.

3. Phenomenological Model of Gearbox with Broken Sun Gear Fault
3.1. Phenomenological Model of Planetary Gearbox under Healthy Condition

Gears generate one shock response per engagement at the instant of single versus
double tooth meshing. Setting ω as the intrinsic frequency, the single-mesh shock response
can be expressed as follows [24]:

r(t) =
F√

ktotal(t)

(
1

me1
+

1
me2

)
e−ξωt sin(ωt), (17)

where F donates the impulse, which is the integral of the meshing impact force in a single
impact time, ktotal(t) is the time-varying meshing stiffness, ξ is the damping coefficient,
and me1 and me2 are the equivalent masses of the master and passive gears, respectively. In
this paper, F and ξ are set as 0.139 N·s, and −0.08, me1 and me2 are designated as 0.2 kg and
0.5 kg, respectively. The intrinsic frequency is about 1400 Hz.

It is crucial to calculate the occurring moment of the meshing shock and its amplitude
in order to establish an accurate phenomenological model with meshing impacts. However,
since the planetary gearbox contains multiple gears, it is difficult to calculate these two
values directly, which must be estimated indirectly through the meshing stiffness and
phase model. So, based on the mesh stiffness calculation in Section 2, we use the initial
meshing point as the reference point, and the vibration νrpi(t) and νspi(t) generated by the
ring-planet and sun-planet meshing points can be expressed as follows [25]:

νrpi(t) = ∑Q

q = −Q
q 6= 0

Vrp
q ej2πq fmtej(−2πqγrs+ϕq) (18)

νspi(t) = ∑Q

q = −Q
q 6= 0

Vsp
q ej2πq fmtejϕq . (19)

Because of the complexity of the vibration signals of the planetary gearbox, there are
several possible transfer paths from the meshing point to the sensor, and the influence
of the transmission paths on the vibration signal must be further considered. This paper
mainly considers the six transmission paths, as shown in Figure 7 [26].

Path 1: sun-planet meshing point→ sun gear shaft→ gearbox housing→ transducer;
Path 2: sun-planet meshing point→ planet gear→ ring gear→ gearbox housing→

transducer;
Path 3: sun-planet meshing point→ planet gear→ planet gear shaft→ planet carrier

→ gearbox housing→ transducer;
Path 4: ring-planet meshing point→ sun gear→ sun gear shaft→ gearbox housing

→ transducer;
Path 5: ring-planet meshing point→ planet gear shaft→ planet carrier→ gearbox

housing→ transducer;
Path 6: ring-planet meshing point→ ring gear→ gearbox housing→ transducer.
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From the description of the vibration transfer paths, it can be seen that the lengths
of Path 1, Path 3, Path 4, and Path 5 are substantially unchanged, while the lengths of
Path 2 and Path 6 vary with the carrier rotation. In other words, among the above six
paths, Path 1, Path 3, Path 4, and Path5 are time-invariant, while Path 2 and Path 6 are
time-varying. In Path 2 and Path 6, the transfer distance is periodically time-varying with
the rotating carrier (as shown in Figure 8), and it then causes amplitude modulation on the
response signal. The remaining four paths only affect the ratio of amplitude attenuation of
the meshing vibrations and do not cause amplitude modulation influence on the response
signal. Therefore, this paper mainly considers transfer Paths 2 and 6, and a Hanning
function is used to consider the influence of the transfer path [27]. The modulation effects
of transfer paths from the meshing point to the transducer is described as follows [28]:

Wpi(t) = α · [A− cos(2πN fct)]/A. (20)
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Constant coefficient α is used to present the attenuation effect of the time-invariant
part, A is the amplitude coefficient of the transfer function, N is the number of planets, and
fc donates the rotation frequency of the carrier.

In summary, to simplify the computational complexity of the model, it is assumed
that all gears are isotropic for vibration transmitting, and the vibration signal measured
by the fixed transducer is a linear superposition of multiple internal and external meshing
vibration signals, expressed as follows:

x(t) =
N

∑
i=1

(
νrpi(t) + νspi(t)

)
·Φ ·Wpi(t) (21)

where N is the number of planets, νrpi(t) and νspi(t) are the vibration signals of the planet-
ring meshing and the sun-planet meshing, Φ is the meshing impact effect, and Wpi(t)
representing the modulation effect of the transmission path from the meshing point to the
fixed sensor.
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The flowchart of the overall numerical process for solving the proposed phenomeno-
logical model and obtaining the gearbox system vibration response is given in Figure 9.
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Based on Equation (21), a simulated signal and its spectrum of a planetary gearbox
under healthy conditions are shown in Figure 9. Three amplitude modulation envelopes of
the planet carrier in a revolution period can be seen when the planet gear passes directly
below the sensor in sequence. Moreover, Figure 10 shows a vibration signal and its spectrum
of a conventional phenomenological model constructed by cosine functions [15].

1 
 

 
 
 
 
 

 
 
 

Figure 10. A simulated vibration signal of the proposed phenomenological models considering
meshing impacts: (a) waveform; (b) frequency spectrum.

Comparing Figure 10 with Figure 11, it can be seen that the meshing impact force
leads to apparent vibration impacts in the time-domain waveform in Figure 10a, and
each shock interval is the reciprocal of the gear meshing frequency 1/ fm. In contrast,
the three envelopes shown in Figure 10a cannot reflect the impact characteristics caused
by the meshing shock. The meshing frequency is observed in Figures 10b and 11b, and
additional frequency components appear at fm − 3 fc, fm − fc, fm + fc, fm + 3 fc. However,
its amplitudes and sidebands are significantly different; for symmetric sidebands with n fc
intervals spaced around the meshing frequency in Figure 10b, the meshing frequency and
its sidebands are significantly lower in amplitude, and, conversely, the sideband fm + fc
is almost nonexistent in Figure 11b. The comparison of the simulation results shows that
the phenomenological model proposed in this paper can more accurately characterize the
impact characteristics of the actual signal.
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Figure 11. A simulated vibration signal of conventional phenomenological models constructed by
cosine functions: (a) waveform; (b) frequency spectrum.

3.2. Phenomenological Model of Planetary Gearbox under Fault Condition

When a broken fault occurs on the sun gear, it can lead to a remarkable decrease in the
mesh stiffness, increase the vibration amplitude, and intensify the impact effects. Replacing
ktotal in Equation (12) with ktotal, f ault, the meshing shock R(t) under fault condition is
expressed as follows:

R(t) =
F√

ktotal, f ault(t)

(
1

me1
+

1
me2

)
e−ξwt sin(ωt). (22)

The vibration of the sun-planet gear pair can be expressed as follows [25]:

νspi(t) =
K

∑
k=−K

∑Q

q = −Q
q 6= 0

ckVsp
q ejϕq ej2π(q fm+k fc)t, (23)

where Vsp
q is the Fourier coefficients of vsp

q , vsp
q is the amplitude of the qth harmonic of

vspi(t)|n=1,...,N , and ck is a coefficients of Fourier series.
According to the meshing stiffness under fault conditions, other parameters are kept

constant, and the phenomenological model with broken sun gear fault vibration signal can
be represented as follows:

x(t) =
N

∑
i=1

(
νrpi(t) + νspi(t)

)
·Φ f ·Wpi(t), (24)

where Φ f is the meshing impact effect under broken fault condition.
Based on Equation (24), Figure 12 depicts the simulated vibration signal and its spectrum

caused by the faulty sun gear. Similarly, three equally spaced envelopes of the planet carrier
exist in a revolution period. However, the impact due to the tooth fault will emerge three
times after the planet gear rotates for one cycle. The obvious impacts with an interval of 1/ frs
caused by the sun gear fault emerge in the time-domain waveform, as shown in Figure 12a.
Figure 12b shows that the same meshing frequency fm, 2 fm, 3 fm also exist. Moreover, the
vibration signal appears as sidebands with frs interval under the fault condition.

To further analyze the variation of vibration characteristics under different degrees of
broken tooth, Figure 13 shows the frequency spectrum of the gearbox vibration signal with
different fault sizes. In Figure 13, the fault frequency of sun gear frs can be observed clearly,
and there is a symmetric sideband spaced by the rotational frequency of planet carrier fc,
which indicates the necessity of considering the time-varying transfer path modulation
and shows that the proposed phenomenological model can effectively simulate the sun
gear broken fault. The amplification near the peak of fault frequency frs shows that the
amplitude of the frequencies related to the fault increase gradually with the increase in the
fault size, which verifies the validity of the signal model from the perspective of frequency.
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4. Experiment and Analysis of Experimental Results
4.1. Introduction of the Test Rig

In order to compare the simulation results with those obtained experimentally, the
simulation parameters are identical to the test rig parameters, which are listed in Table 2. The
experimental platform shown in Figure 14a is used in this paper to carry out our experimental
verification. The testbed is mainly composed of four parts: the driving motor, the speed sensor,
the planetary gearbox, and the brake. The motor is used as the input to drive the entire system.
Three planet gears are equally spaced in the gearbox and share the load from the brake. All
parts are connected by the elastic couplings, which effectively reduces the influence of minor
manufacturing and installation errors. The faulty sun gear is shown in Figure 14c. During the
experiment, the input speed of the motor is 1000 rpm, the sampling frequency is 12,800 Hz.
The characteristic frequencies of the planetary gearbox are listed in Table 3.
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Table 2. Assembled parameters of the planetary gearbox.

Item Sun Gear Plant Gear Ring Gear

Tooth number 18 27 72
Module(mm) 2

Width of teeth (mm) 20
Addendum coefficient 1

Pressure angle (◦) 20
Young’s modulus (Pa) 2.06 × 107

Poisson’s ratio 0.3

Table 3. Values of characteristic frequencies of planetary gearbox.

Item Symbolization Value

Meshing frequency fm 240 Hz
Rotational frequency of planet carrier fc 3.34 Hz

Rotational frequency of sun gear fs 16.67 Hz
Fault frequency of sun gear frs 40 Hz

4.2. Comparison Analysis between Simulated and Measured Vibration Signals under
Healthy Condition

Figure 15 illustrates the waveform and frequency spectrum of the simulated and
measured vibration signals of the planetary gearbox when all the gears are perfect. By
using Equation (25), the waveform error between the simulated signal and the measured
signal is 1.1361%. Comparing Figure 15c,d, the gear meshing frequencies fm, 2 fm, and
3 fm can be observed whether in the simulated signal or the measured signal. Moreover,
major sideband components are annotated in the frequency spectrum. These sidebands are
located on both sides of the meshing frequency, which are consistent with the results of the
theoretical analysis in Section 3.1.

e = (y(t)− ỹ(t))/y(t), (25)

where e is the relative error of waveform distortion, y(t) is the vibration signal obtained
from simulation, and ỹ(t) is the vibration signal obtained from actual measurement.

The error between the theoretical, simulated, and measured values is calculated and
listed in Table 4. As shown in Table 4, the meshing frequency obtained from the proposed
model is the same as the theoretical value, and the error with the measured meshing
frequency is only 0.025%. This paper refers to the model verification methods in the
literature [24,25], which use the time–frequency domain comparison method to verify the
proposed model. Through the simulation and experimental signal analysis, we believe that
the proposed phenomenological model is correct.
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Figure 15. Comparison of simulated and measured signal under healthy condition: (a) simulated
signal; (b) measured signal; (c) frequency spectrum of simulated signal; (d) frequency spectrum of
measured signal.

Table 4. Comparative analysis of the simulation and measured results for meshing frequency.

Theoretical Value Simulated Value Measured Value e

240 Hz 240 Hz 239.94 Hz 0.025%

4.3. Comparison Analysis between Simulated and Measured Vibration Signals under
Fault Condition

Figure 16 draws the waveform and frequency spectrum of the simulated and measured
vibration signal of the planetary gearbox with one tooth broken on the sun gear. Similarly,
the waveform error between the simulated signal and the measured signal is 1.1361%. The
gear meshing frequencies fm, 2 fm, and 3 fm can be observed in Figure 16c,d. However, it can
be seen that due to the tooth fault, the sidebands are abundant and the spectral structure
turns out to be more complex than that of the healthy condition. These sidebands appear
at the following locations: fm − frs − fc, fm − frs, fm + frs, fm − frs + fc, which can help
diagnose the fault through the spectrum. These results are consistent with the results of the
theoretical analysis in Section 3.2. It should be mentioned that there exist some difference
between simulation signal and experimental signal pertaining to the aspect of amplitude;
this is inevitable because the given parameters of the simulation signal are hard to perfectly
match the actual condition of the experimental planetary gearbox. However, the amplitude
difference does not affect the verification of the proposed model, which focuses on the
frequency features. In general, the simulated signal’s characteristics are consistent with the
measured signal, which proves the correctness of the proposed model.
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Figure 16. Sun gear tooth with 3 mm broken tooth failure: (a) simulated signal; (b) measured signal;
(c) frequency spectrum of simulated signal; (d) frequency spectrum of measured signal.

4.4. Comparative of the Model Descriptive Capability

To verify the correctness of the above analysis, a comparative study between the
traditional models and the proposed model will be given. Referring to ref. [24], the
simulation result is shown in Figure 17. By using Equation (25), the waveform error of
literature [24] is 2.5189%, and that of this paper is 1.1361%, which is reduced by 1.38%.
Comparing Figure 17c,d, the meshing frequencies fm and 2 fm can be observed clearly,
and some sidebands occur at the frequency locations of fm ± fc, fm ± 3 fc. However,
the frequency amplitude of the phenomenological model constructed in this paper is
92.5% higher than that of the literature [24]. To summarize the foregoing, the proposed
model is preferred for its ability to describe the actual vibration of planetary gearbox.
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Figure 17. Comparison of the experimental method [24] and proposed method under healthy
conditions: (a) vibration signal of experimental method [24]; (b) vibration signal of proposed method;
(c) frequency spectrum of experimental method [24]; (d) frequency spectrum of proposed method.

As shown in Figure 18, a comparison was made between the simulated signal and the
measured signals at three different rotational speeds when the sun gear had a broken tooth.
The resulting waveform errors were found to be 0.61%, 1.14%, and 0.35%, respectively, all
within the range of 2%. Moreover, the variance of the three error values was 0.0013, indicat-
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ing that the model exhibits relatively stable error behavior during speed variations. This
observation suggests that the model demonstrates robustness across different rotational
speeds, yielding dependable results.
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5. Discussion and Conclusions
5.1. Discussion

In this paper, the effects of the degree of broken teeth on the time-varying meshing
stiffness and vibration of gears are discussed. Through simulation and experimental
analysis, we evaluate the accuracy of the proposed model. Under the broken fault condition,
the relative error of the waveform between the simulated signal and the actual signal at
three speeds are calculated, respectively. The results show that the proposed model has
good robustness with respect to the speed. Moreover, in the actual operation of the gearbox,
there are many nonlinear factors, such as shaft misalignment, tooth backlash, friction force
and temperature, etc. Owing to the shaft misalignment and tooth backlash, the internal
dynamic excitations of gear pair will change compared with the ideal meshing condition,
which will lead to variation in the system vibration. The friction force will cause time-
varying meshing stiffness to slightly decrease. In addition, the temperature will cause the
gear contact stress to increase, which will increase the wear between the tooth surfaces. We
will also consider more influencing factors in order to improve our research in the future.

5.2. Conclusions

This paper proposes a phenomenological model considering the base deflection of the
gear fillet and the influence of the flexibility between the root circle and the base circle, the
transmission path, and the meshing shock for planetary gears. The meshing stiffness and
vibration response of a gear with different fault sizes were investigated. The conclusions of
this paper are as follows:

(1) When calculating the mesh stiffness via the potential energy method, the flexibility
between the root circle and the base circle should be considered.

(2) The movement of the falling edge with the stiffness of the faulty gear pair caused by
the fault shows a tendency to advance as the fault size increases. When the fault size
is large (≥1/2 of tooth height), the stiffness of the faulty gear pair may be 0, leading
to the unstable state of the gear system.

(3) Meshing impact is an important vibration excitation in the planetary gearbox. Com-
pared with the traditional phenomenological model constructed by a series of cosine
functions, the phenomenological model established in this paper considers the influ-
ence of the meshing impact and obtains a simulation signal that is more in line with
the time–frequency domain characteristics of the actual signal.

(4) Under healthy conditions, the frequency components at the meshing point of the
gearbox are the meshing frequency fm and its frequency doubling; the amplitude
shows a gradual decreasing trend; and the sidebands appear at fm ± fc, fm ± 3 fc.
Under the sun gear broken tooth fault, the same frequency component and sidebands
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appear at the meshing point as in the healthy case. In addition, there are also sidebands
with the sun gear fault frequency frs as the interval near the meshing frequency under
the fault condition, and a symmetrical sideband with fc as the interval appears on both
sides of frs. Analyzing the vibration signal characteristics of the planetary gearbox
under normal conditions and with sun gear broken tooth faults is helpful in the local
fault diagnosis of the planetary gearbox.

Author Contributions: This paper was completed by the authors in cooperation. M.Z. carried
out theoretical research, data analysis, experiment analysis, and paper writing; J.M., X.X. and R.L.
provided constructive suggestions; and J.M. revised the paper. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(No.62163020, No.62173168) and Kunming University of Science and Technology ‘Double First-Class’
Science and Technology Project (No. 202202AG050002).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

F The meshing force ν Poisson’s ratio
Rb Base circle radius E Young’s modulus
Rf Root circle radius L Width of gear
ka Axial compression stiffness G Shear modulus
kb Bending stiffness Ax Cross-sectional area of the section in X direction
ks Shear stiffness Ix Area moment of inertia
kh Hertz contact stiffness ds Size of the broken tooth

kf Matrix stiffness νrpi(t)
Vibration generated at the meshing point between the ring
and the planet i

c, s, r, p Planet carrier, sun gear, ring gear, and planet gear νspi(t)
Vibration generated at the meshing point between the sun
and the planet i

frs Fault frequency of sun gear vsp
q Vibration amplitude of the qth harmonic of vspi(t)|n=1,...,N

fc, fs, fr, fp
Rotational frequencies of the planet carrier, sun gear, ring
gear, and planet gear PG Planetary gearbox

Fa The meshing force is divided in the X-direction LPDM Lumped-parameter dynamic model
Fb The meshing force is divided in the Y-direction
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