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Abstract: The construction of pronunciation dictionaries relies on high‑quality and extensive training
data in data‑driven way. However, the manual annotation of corpus for this purpose is both costly
and time consuming, especially for low‑resource languages that lack sufficient data and resources.
Amultilingual pronunciation dictionary includes some common phonemes or phonetic units, which
means that these phonemes or units have similarities in the pronunciation of different languages and
can be used in the construction process of pronunciation dictionaries for low‑resource languages. By
using amultilingual pronunciation dictionary, knowledge can be shared among different languages,
thus improving the quality and accuracy of pronunciation dictionaries for low‑resource languages.
In this paper, we propose using shared articulatory features among multiple languages to construct
a universal phoneme set, which is then used to label words for multiple languages. To achieve this,
we first developed a grapheme−phoneme (G2P) model based on an encoder−decoder deep neural
network. We then adopted a near‑optimal active learning method in the process of building the pro‑
nunciation dictionary to select informative samples from a large, unlabeled corpus and had them
labeled by experts. Our experiments demonstrate that this method selected about 1/5 of the unla‑
beled data and achieved an even higher conversion accuracy than the results of the large data train‑
ing method. By selectively labeling samples with a high uncertainty in the model, while avoiding
labeling samples that were accurately predicted by the current model, our method greatly enhances
the efficiency of pronunciation dictionary construction.

Keywords: multilingual; grapheme‑to‑phoneme conversion; pronunciation dictionaries; low‑
resource languages; active learning

1. Introduction
A pronunciation dictionary is a database containing words and their corresponding

pronunciations. It is an important component ofmany speech technologies, such as speech
recognition and speech synthesis. The pronunciation dictionary is a critical component
that plays an intermediary role between the languagemodel and the acousticmodelwithin
an automatic speech recognition (ASR) system, as depicted in Figure 1. However, to con‑
struct a pronunciation dictionary, it is necessary to ensure words correspond to their cor‑
rect phonetic symbols. As the spelling and pronunciation of words do not always corre‑
spond to each other, it is necessary to use grapheme‑to‑phoneme conversion techniques
to convert the spelling of words to the corresponding phonetic sequences. G2P technol‑
ogy provides a method of converting the written form (grapheme) into the spoken form
(phoneme), and it is the key technology for building pronunciation dictionaries.

Appl. Sci. 2023, 13, 9408. https://doi.org/10.3390/app13169408 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13169408
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4007-7016
https://orcid.org/0000-0001-5739-634X
https://doi.org/10.3390/app13169408
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13169408?type=check_update&version=1


Appl. Sci. 2023, 13, 9408 2 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 20 
 

G2P technology provides a method of converting the written form (grapheme) into the 
spoken form (phoneme), and it is the key technology for building pronunciation diction-
aries. 

 
Figure 1. The location of pronunciation dictionaries in ASR. 

State-of-the-art end-to-end multilingual automatic speech recognition (ASR) systems 
combine the acoustic model, pronunciation dictionary, and language model into a single 
neural network, resulting in models that are even more data-hungry and unsuitable for 
low-resource multilingual speech recognition. Furthermore, the efficacy of end-to-end au-
tomatic speech recognition (ASR) models utilizing character or word-based modeling 
units is limited in terms of effectively accommodating out-of-vocabulary (OOV), unless 
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lingual pronunciation dictionary is constructed to solve the pronunciation problem in 
multilingual speech technology. Different languages have different phonetic systems and 
phonetic features, which require separate construction of pronunciation dictionaries. 
However, for low-resource languages, the construction of pronunciation dictionaries be-
comes difficult due to the lack of large-scale corpus and phonetic resources. Hence, the 
establishment of multilingual pronunciation dictionaries enables the conversion of pro-
nunciation data from various languages into the pronunciation data of low-resource lan-
guages, facilitating knowledge sharing across different languages. Consequently, this ap-
proach contributes to the development of pronunciation dictionaries for low-resource lan-
guages. For instance, when a low-resource language shares certain phonemes with a high-
resource language, an existing pronunciation dictionary for the latter can assist in con-
structing a pronunciation dictionary for the former. Primarily, this methodology has been 
proven to be advantageous for low-resource languages constrained by limited data [5,6]. 

Regarding categorization, existing studies on the construction of multilingual pro-
nunciation dictionaries can be classified into rule-based methods and deep-learning-based 
methods. For rule-based approaches, each word and pronunciation are manually assigned 
by phonological experts. The pronunciation dictionaries are then developed based on the 
pronunciation rules of the word to train the neural network model. Nevertheless, the la-
borious nature of this approach arises from model size limitations, necessitating the man-
ual acquisition and compilation of mapping data linking words to phonemes for pronun-
ciation dictionaries. Consequently, the resulting pronunciation dictionaries tend to be 
small in scale and prone to inaccuracies. Conversely, certain scholars have explored sta-
tistical models leveraging conditional probability, such as n-gram techniques [7,8]. This 
approach considers previous graphemes, making it fully contextualized and data-driven. 
However, the main drawback lies in the requirement for explicit alignment between 
graphemes and phonemes. 
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State‑of‑the‑art end‑to‑end multilingual automatic speech recognition (ASR) systems
combine the acoustic model, pronunciation dictionary, and language model into a single
neural network, resulting in models that are even more data‑hungry and unsuitable for
low‑resource multilingual speech recognition. Furthermore, the efficacy of end‑to‑end
automatic speech recognition (ASR) models utilizing character or word‑based modeling
units is limited in terms of effectively accommodating out‑of‑vocabulary (OOV), unless
pronunciation dictionaries are employed. As a result, an increasing number of scholars
are exploring the development of multilingual pronunciation dictionaries [1–5]. A mul‑
tilingual pronunciation dictionary is constructed to solve the pronunciation problem in
multilingual speech technology. Different languages have different phonetic systems and
phonetic features, which require separate construction of pronunciation dictionaries. How‑
ever, for low‑resource languages, the construction of pronunciation dictionaries becomes
difficult due to the lack of large‑scale corpus and phonetic resources. Hence, the establish‑
ment of multilingual pronunciation dictionaries enables the conversion of pronunciation
data from various languages into the pronunciation data of low‑resource languages, facil‑
itating knowledge sharing across different languages. Consequently, this approach con‑
tributes to the development of pronunciation dictionaries for low‑resource languages. For
instance, when a low‑resource language shares certain phonemes with a high‑resource
language, an existing pronunciation dictionary for the latter can assist in constructing a
pronunciation dictionary for the former. Primarily, this methodology has been proven to
be advantageous for low‑resource languages constrained by limited data [5,6].

Regarding categorization, existing studies on the construction of multilingual pro‑
nunciation dictionaries can be classified into rule‑basedmethods and deep‑learning‑based
methods. For rule‑based approaches, eachword and pronunciation aremanually assigned
by phonological experts. The pronunciation dictionaries are then developed based on the
pronunciation rules of the word to train the neural network model. Nevertheless, the labo‑
rious nature of this approach arises from model size limitations, necessitating the manual
acquisition and compilation of mapping data linking words to phonemes for pronuncia‑
tion dictionaries. Consequently, the resulting pronunciation dictionaries tend to be small
in scale and prone to inaccuracies. Conversely, certain scholars have explored statistical
models leveraging conditional probability, such as n‑gram techniques [7,8]. This approach
considers previous graphemes, making it fully contextualized and data‑driven. However,
the main drawback lies in the requirement for explicit alignment between graphemes
and phonemes.

Significant advancements have beenmade in the development of lexicon construction
methods through deep learning. In the context of grapheme‑to‑phoneme conversion, Kan‑
ishka Rao and Fuchun Peng introduced the sequence‑to‑sequencemodel, employing recur‑
rent neural network (RNN) and long‑short term memory network (LSTM) techniques [9].

Currently, the relevant technology encounters several challenges. Rule‑based meth‑
ods offer high‑quality pronunciation dictionaries, but demand extensive time and labor



Appl. Sci. 2023, 13, 9408 3 of 20

resources. Conversely, deep‑learning‑based methods are faster, but struggle to ensure ac‑
curacy. Moreover, low‑resource languages suffer from limited training data, which makes
direct retraining susceptible to overfitting. Constructing a pronunciation dictionary for
such languages presents difficulties arising from inadequate data sources and expert la‑
beling. To address these issues, recent research has focused on active‑learning‑based data
selection, aiming to minimize the number of labeled instances required for building an ef‑
fective classifier [10–12]. Therefore, this study aims to employ an active learning approach
in pronunciation dictionary construction. While most existing active learning methods
adopt a myopic strategy of labeling one unlabeled sample at a time, which is neither effi‑
cient nor optimal [13], non‑myopic active learning is preferred. However, current meth‑
ods tend to be greedy, selecting the top N unlabeled samples with the highest score [14].
Although this approach improves efficiency, it cannot guarantee learner performance.
Although batch active learning reduces the number of iterations in the training process and
enhances the efficiency of user labeling, the sample set remains locally optimal and fails
to ensure the best classification accuracy using the minimum number of valuable sam‑
ples [15–18]. Active learning has been successfully applied in various natural language
processing (NLP) tasks, including text classification, named entity recognition, and ma‑
chine translation. Moreover, it has been shown to improve the quality of resulting models
compared with learning on the full dataset [19,20].

Traditional speech recognition and speech synthesis systems typically require the cre‑
ation of distinct models and pronunciation dictionaries for each language, resulting in sig‑
nificant time and resource consumption. Conversely, a universal phoneme set facilitates
the classification and standardization of phonemes across different languages, enabling
more effective comparison and matching of pronunciation variations between languages.
Moreover, speech recognition and synthesis often necessitate the utilization of numer‑
ous model parameters and computational complexity to represent diverse phonemes. A
universal phoneme set assists in simplifying the algorithm and reducing computational
complexity. Furthermore, certain low‑resource languages face challenges in acquiring
sufficient speech data for training speech recognition or synthesis models due to data
scarcity [21]. By employing generic phoneme sets, these data gaps can be filled, conse‑
quently enhancing the performance of speech recognition and synthesis. The objective of
this research is to construct a comprehensive, multi‑language phoneme set by amalgamat‑
ing common phonemes across languages while preserving the unique phonemes of each
language. This is achieved through the utilization of pronunciation features for phoneme
differentiation [22]. One advantage of a multilingual phoneme set is that the model can
utilize a standardized set of symbols akin to the Latin alphabet, as well as a shared feature
representation employed across different languages.

This paper presents a three‑fold contribution:
(1) Firstly, we provide a summary of the characteristics of pronunciation and identify

the shared properties of pronunciation across multiple languages. Subsequently, we
establish a universal phoneme set based on these attributes and employ it to annotate
each word in different languages. This approach enables our model to leverage a
combination of universal symbol inventories resembling Latin alphabets and cross‑
linguistically shared feature representations.

(2) We build a deep neural network based on an encoder−decoder architecture as a
grapheme‑to‑phoneme (G2P)model for four languages, namely Chinese, Tibetan, En‑
glish, and Korean.

(3) We exploit a near‑optimal active learning method during the process of the construc‑
tion of a pronunciation dictionary. This method selects valuable samples from a large
unlabeled corpus and sends them to experts for labeling. The goal is to achieve the
same accuracy as the training method on the large data set, while reducing the cost
of manual labeling.
This paper is organized as follows: Section 2 summarizes the approach for build‑

ing a multilingual universal phoneme set. Section 3 describes the G2P model based on
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a deep neural network. Section 4 presents the near‑optimal active learning method for
the construction of the pronunciation dictionary, along with setting the objective function.
Section 6 reports on our experiments and the analysis of the experimental results. Finally,
Section 7 presents the conclusions drawn from this work.

2. Multilanguage Universal Phoneme Set
Given that the International PhoneticAlphabet is intricate to transcribe andnotwidely

recognized by computers, it is crucial to devise a computer‑readable, universal phoneme
set to develop pronunciation dictionaries and train multilingual acoustic models for use in
multilingual speech processing systems. Nevertheless, a large phoneme set can increase
the uncertainty of word annotation results and significantly augment the computational
complexity of the decoding process. On the contrary, a small set of phonemes can re‑
duce the accuracy of word annotations and impair the performance of speech processing
systems. Therefore, an appropriate size phoneme set is crucial for developing an effec‑
tive multilingual speech processing system. Articulatory features have been employed
in multilingual and cross‑lingual speech recognition [23,24]. The inclusion of articulatory
features aids in preserving language‑specific phones during training, a critical aspect for
promoting knowledge exchange in multilingual and cross‑lingual speech recognition sys‑
tems, especially for low‑resource languages. Achieving successful multilingual and cross‑
lingual recognition entails fostering knowledge sharing during multilingual training and
maximizing the transfer of knowledge from well‑trained multilingual models to models
for new languages. Traditionally, similar sounds across languages are merged into a uni‑
fied multilingual phone set, as phones are regarded as the fundamental building blocks of
speech. Nonetheless, it is widely acknowledged in phonology that phones can be decom‑
posed into smaller, more elemental entities known as articulatory features, which can be
shared across all languages [25]. These articulatory features represent phonological units
through a collection of attributes, including voicing, high/low (indicating tongue position
during vowels), roundness (pertaining to lip rounding), and continuity (distinguishing
sounds such as vowels and fricatives from stops), among others. Table 1 provides a typical
classification of generic pronunciation attributes based on two different methods, namely
pronunciation manner (10 categories) and articulatory position (11 categories), in the cur‑
rent international mainstream phonology community. “Pronunciation manner” refers to
the manner or method of articulating sounds in speech. Within the field of phonetics, pro‑
nunciation manner delineates how sounds are produced, encompassing aspects such as
vocal cord vibration, the shaping of the oral cavity and pharynx, and the flow of airflow.
Pronunciationmanner has the capacity to influence the phonetic attributes of a givenword,
thereby aiding in the differentiation of diverse vocabulary or phonetic elements. For in‑
stance, a differentiating factor in the pronunciation manner between the English sounds
“p” and “b” lies in the presence or absence of vocal cord vibration, thereby exerting an
impact on the enunciation and semantic significance of words. “Articulatory position”
refers to the specific location of different speech units (such as phonemes, consonants, or
vowels) within the oral cavity during the production of speech. It involves the position‑
ing, movement, and contact manner of speech organs such as the tongue, lips, and glottis.
Articulatory position constitutes a significant determinant of acoustic distinctions among
various speech sounds.

Table 1. Generic pronunciation attribute table.

Pronunciation Manner Vowel, Fricative, Nasal, Stop, Approximant, Continuant, Round, Tense, Voiced, Sil

Pronunciation position Coronal, High, Dental, Glottal, Labial, Low, Mid, Retroflex, Velar, Anterior, Back

Generic pronunciation attributes are a language‑independently qualitative descrip‑
tionwith relatively few categories, and high accuracy can be achieved by recognizing these
attributes. Although different phonological units exist in each language, many similar or
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identical phonological units can also be identified. In this study, we proposemerging iden‑
tical phoneme units from different languages and including unique phoneme units of each
language to build a complete phoneme collection. Additionally, we construct a specific
multilingual pronunciation dictionary based on this relationship. This approach facilitates
the annotation of corpora using a universally shared symbol library that resembles Latin
letters, enabling cross‑lingual sharing of feature representations.

Generic pronunciation attributes are features that are independent of any specific lan‑
guage and can bewidely applied across languages. The 21‑dimensional phonemic features
of some phonemes in our universal phoneme set are illustrated in the following heatmap
in Figure 2, where each dimension represents a phonetic feature and is denoted by “1” or
“0”. “1” indicates the presence of a feature, while “0” indicates that the phoneme is not
associated with that feature. Phonemes ‘bb’‑’uu’ share the same phonemic features across
all four languages, and we assigned them the same label as shared phonemes. The re‑
maining unique phonemes for each language are reserved and labeled separately, English
phonemes are followed by “E”, Chinese phonemes are followed by “C”, and Tibetan is fol‑
lowed by “T”. Universal phonemes and their corresponding IPA values in our work, as
shown in Appendix A.
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Phonemes that share the same pronunciation characteristics can be annotated using
the same label. As a result, the data samples for the pronunciation dictionary constructed
using our generic phoneme sets are presented in Table 2 Sequence lengths for large pro‑
nunciation dictionaries may vary depending on specific circumstances and design consid‑
erations. Sequence length refers to the number of characters or words in the input or out‑
put text. Typically, in large pronunciation dictionaries, sequence lengths can vary from a
few dozen characters to about one hundred characters. In our study, the shortest sequence
length is one character, and the typical character sequence length is three to five characters.
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Table 2. Data samples.

Word Grapheme Universal Phonemes

Chinese G U O gg uu oo

English go g o gg oo

Tibetan mm

Korean 헤처 ㅎ ㅔ ㅊ ㅓ hK eK chK ee

As shown in the Table 2, in contrast with phonetic scripts, Chinese characters are lo‑
gographic scripts. First, we consolidated the pronunciation information of each Chinese
character, including its pinyin representation and tone (disregarding tone in this context),
into an integrated Chinese phonetic representation, namely a phonemic sequence. This
consolidation could be performed in the order of the text or adjusted based on linguistic
rules. Subsequently, the merged phonemic sequence was transformed into a correspond‑
ing phoneme sequence. First, we consolidated the pronunciation information of each Chi‑
nese character, including its pinyin representation and tone (disregarding tone in this con‑
text), into an integrated Chinese phonetic representation, namely a phonemic sequence.
This consolidation could be performed in the order of the text or adjusted based on lin‑
guistic rules. Subsequently, the merged phonemic sequence was transformed into a corre‑
sponding phoneme sequence.

3. Multilingual G2P Model
Designing aG2P systemposes a significant challenge as it involves creating amany‑to‑

manymapping system that not only learns the correspondence between a single grapheme
and a phoneme, but also handles cases where a phoneme is represented by multiple
graphemes (e.g., ‘sh’ → ‘S’). Such mapping can exhibit inconsistencies and ambiguity,
particularly in languages such as English, where names and foreign words introduce ad‑
ditional complexities. There is also the problem of co‑articulation between different lan‑
guages. “Co‑articulation” is a term within the field of phonetics, referring to the phe‑
nomenon inwhich distinct speech units, such as phonemes or syllables, mutually influence
one another during the process of articulation. This mutual influence results in temporal
and spatial adjustments, facilitating the production of seamless speech. In other words,
one segment of speech is influenced by the preceding and succeeding segments, leading
to a certain degree of overlap and modification. For instance, when we articulate a word
or a sentence, the phonemes within it are not strictly isolated, but rather interact with one
another. This interaction is due to the necessity of our articulatory organs to prepare for
movement to the next articulatory position. During this process, the pronunciation of a pre‑
ceding phonememay impact the articulation of a subsequent phoneme. This phenomenon
of co‑articulation enhances the efficiency and coherence of speech production. For exam‑
ple, in the English word “hand”, the articulation of the /n/ sound is influenced by the pre‑
ceding /æ/ sound, resulting in the /n/ sound being produced with the tongue positioned
close to the alveolar ridge. In the Tibetan word “ ” (language), the initial “ ” affects the
articulation of the following consonant “ ”, showing co‑articulation.

To tackle these challenges, sequence‑to‑sequence (Seq2Seq) neural network models
have been employed to acquire themappings between graphemes andphonemes, allowing
for variable lengths in both input and output sequences. Originally devised for machine
translation, Seq2Seq models have found extensive applications across various domains,
including generative language models. Recurrent Seq2Seq models offer a distinct advan‑
tage by considering the input history to determine the output state. Consequently, they
frequently outperform n‑gram models in classification tasks. This superiority stems from
the heavy reliance of n‑grammodels on the preceding n graphemes. When confrontedwith
sequence‑related challenges demanding long‑term contextual information and embedding
representations of input sequences, recurrent neural networks (RNNs) emerge as a more
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appropriate selection. Long‑short‑term memory (LSTM) networks exhibit enhanced suit‑
ability in managing extended sequences and can accommodate a greater number of layers
due to their reduced susceptibility to vanishing and exploding gradients. Seq2Seq mod‑
els possess the capability to undergo training on multiple languages simultaneously, fa‑
cilitating their application in multi‑task and multi‑modal learning scenarios. Within the
realm of G2P conversion, these models enable the simultaneous acquisition of alignment
and translation of graphemes and phonemes in an end‑to‑end manner. Consequently,
they represent a natural choice for our multilingual G2P undertaking, particularly given
their compatibility with large pronunciation lexicons characterized by relatively concise
sequence lengths.

3.1. Encoder–Decoder Model
The sequence‑to‑sequence model, in its basic form, is characterized by an

encoder−decoder structure. In this structure, the input sequence is first transformed into a
vector representation by the encoder network, which is then used by the decoder network
to generate a new sequence. Specifically, in the LSTM encoder−decoder model, the input
is processed by the encoder network, and the output is generated by the decoder network.
Figure 3 illustrates the encoding−decoding process.
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3.1.1. Encoder
The encoder network operates according to the LSTM cell structure. At each time step,

the input to the encoder is a grapheme of a word (or, in tasks such as machine translation,
a word or words), and the input ends when the terminator <s> is encountered, and the
encoder represents the sequence of words as a fixed‑length vector v, based on the state
of the last hidden layer. Relying on the ability of LSTM to process information over long
distances, vector v is able to contain grapheme information for the entire word sequence.
At each time t, the state ht of the hidden layer can be expressed in Equation (1),

ht = f (xt, ht−1) (1)

where f denotes the nonlinear activation function, which is the structure of the encoded
LSTM unit; h(t−1) denotes the hidden layer state at the previous moment; xt is the input at
the current moment. The vector v is the weighted sum of the last hidden layer or multiple
hidden layers, and the operation symbol is denoted by φ, as shown in Equation (2).

v = φ(h1, h2, . . . , ht) (2)
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In Equation (2), the operation symbols denoted by φ represent a mathematical func‑
tion to compute theweighted sum of the hidden layer values “h1 , h2 , . . . , ht” as aweighted
sum. This function φ can be any mathematical operation or transformation that combines
these hidden layer values based on some weights or coefficients. The specific form of φ
depends on the situation and the problem to be solved. It can be a simple weighted sum,
a more complex aggregation function, or even a nonlinear transformation. The choice of
φ will determine how the hidden layer values are combined to produce the final vector v.

3.1.2. Decoder
In the decoding process, vector v will be input as the initial state of the hidden layer

to decode the LSTM network. The decoder computes the probability distribution of the
phoneme y_t at the current moment step by step by using the hidden layer state h_t at
time t, the previous phoneme y_(t − 1), and the vector v. The prediction ends when the
terminator </os> is encountered, and the whole output sequence is obtained. This process
is expressed in Equations (3) and (4),

ht = f (xt, ht−1) (3)

p = (yy|v, y1, y2, . . . , yt−1) = g(ht, yt−1, v) (4)

where f denotes the decoding LSTMunit structure and g is the softmax function. The sym‑
bol yy denotes the phonemic unit situated at the present temporal increment “t”during the
computation of the conditional probability distribution. It represents the target phoneme
we are trying to predict based on the given context. p = (yy|v, y1, y2, . . . , yt−1) represents
the conditional probability distribution of the next phoneme (yy) given the vector “v” the
previous phonemes y1, y2, . . . , yt−1, and the hidden layer state ht at time step “t” In other
words, it calculates the probability of the next phoneme being yy based on the current state
and the previously generated phonemes. This function “g” computes the probability dis‑
tribution using the hidden layer state “ht” at time step “t” the previous phoneme yt−1, and
vector “v”. The exact nature of function “g” will depend on the specific architecture and
design of the model. In the context of language modeling, it is common for “g” to be a
softmax function that converts the input values into a probability distribution. So, in sum‑
mary, “yy” in this equation represents the target phoneme you are trying to predict at the
current time step “t” in the decoding process.

In the decoding process, the decoder uses the heuristic beam search algorithm to re‑
trieve a large number of words before the sequence output, and selects the candidate se‑
quence with the highest a posteriori probability as the optimal solution as the phoneme
sequence for the final output of the decoder. The LSTM encoding−decoding model is
trained using the Backpropagation Through Time (BPTT) algorithm, which updates the
weight parameters of the network using the errors generated during the decoding process.

3.2. Word Sequence Encoding‑Decoding Process
The fundamental concept of converting a sequence of words into a sequence of pro‑

nunciations involves encoding an LSTM that progressively reads each grapheme of aword
and maps the sequence to a fixed‑dimensional vector representation. The decoding LSTM
is essentially an LSTM language model that takes input sequences; combines vectors, hid‑
den layer states, and phonemes from the previousmoment; predicts phonemes one by one;
and outputs pronunciation sequences.

For instance, taking the Englishword “cat” [kk aa tt] as an example, Figure 4 illustrates
an example of the LSTM encoding−decoding model. The neural network in
Figure 4 is composed of two layers, where the encoding LSTM is located on the left side
of the dashed line, and the decoding LSTM is on the right side. The encoded LSTM reads
the input sequence “<s> t a c” in reverse chronological order and represents the sequence
“c a t” as a vector v of fixed dimensions based on the state of the last hidden layer. After
encountering the onset <os>, the decoding LSTM is activated, and the vector v is utilized
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as the initial state of the hidden layer to compute the probability of the next phoneme step
by step, resulting in the final phoneme sequence “kk aa tt</os>” through the cluster search
algorithm. During this process, <s> indicates the beginning of the input sequence, and
<os> and </os> signify the start and stop of the output phonemes, respectively. The start
and stop characters enable the model to encode and decode sequences of arbitrary lengths,
and the decoding LSTM stops predicting after </os>. Additionally, the encoder reads the
graphemes in reverse order, which can introduce short‑term dependencies in the data and
simplify the training optimization process.
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4. Active Learning
4.1. Method

Data are a vital component in machine learning applications and their value have
been steadily increasing. In many scenarios, a substantial amount of unlabeled data are
produced, which cannot be used for supervisedmachine learningwithout providing labels.
Labeling data typically involves a manual process that is often challenging and may even
require a domain expert. This process is time consuming and can rapidly increase mone‑
tary costs, making it impractical [26]. Additionally, even with an expert available, it may
be impossible to label each data point due to themassive size of modern datasets. This par‑
ticularly hinders the construction of multilingual pronunciation dictionaries, where both
the dataset and the amount of text in each document can be substantial, resulting in an
overwhelming amount of annotation efforts for human experts.

The basic principle of active learning is to build an initial classifier based on a small
number of class‑labeled training samples. In each iteration of the learning process, the
classifier actively selects the most favorable samples from the unlabeled candidate set, and
adds these samples to the training set in a certain way to further train the classifier. Follow‑
ing this basic principle, the active learning process involves the classifier selecting valuable
samples from the candidate samples based on an objective function in each iteration. The
samples are then sent to the user for labeling, and the labeled samples are added to the
current training set to update the classifier model. This process is repeated until the clas‑
sifier reaches a satisfactory accuracy. If we represent the classifier as C, which is trained
from the training dataset L with annotations, O as the entropy calculation process used to
select the useful sample set S from the unannotated sample set U, andM as the expert who
can provide the true class labels of the sample data; a batch active learning process of a
classifier is shown in Figure 5. Non‑myopic active learning involves repeating this process
to achieve satisfactory classifier accuracy [27].
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4.2. Uncertainty Sampling
Uncertainty sampling [28] is a widely employed active learning strategy, often uti‑

lized as a baseline approach, as evident in the active learning competition [29]. This strat‑
egy exhibits an exploitative nature, wherein it utilizes the existing model to compute un‑
certainty measures that serve as indicators of a candidate’s influence on the classification
performance. The candidate possessing the highest uncertainty measure is selected for la‑
beling. In the influential study carried out by [30], a probabilistic classifier was employed
on a candidate, enabling the calculation of the posterior probability for its most probable
class. The uncertainty measure is determined by the absolute difference between this pos‑
terior estimate and 0.5, with lower values indicating higher uncertainty. According to [31],
the formula for selecting X∗

LC is as follows:

X∗
LC = argmax

x
1 − Pθ(ŷ|x) (5)

X∗
LC is the instance from the pool of unlabeled data Du that our model θ is least confi‑

dent in, while ŷ is the class for which the model calculated the highest posterior estimate,
so ŷ = argmax

y
Pθ(y|x).

In addition to the confidence‑based uncertainty measure, other measures, such as
entropy or the margin between a candidate and the decision boundary, are commonly
used [32]. However, as noted in [32], these measures result in the same ranking and query‑
ing of instances for binary classification problems. This practical issue, combined with cu‑
riosity about redundancies in training material, motivated us to develop a data selection
strategy that is guided by the maximum entropy principle to choose valuable samples.

4.3. Maximum Entropy Principle
The maximum entropy principle is a method based on information theory, aimed at

inferring the maximum entropy distribution from a known data distribution in order to
minimize bias. In active learning, we used the maximum entropy principle to select the
most informative samples for training models and to achieve the best results.

Entropy is defined as the uncertainty of random variables. For discrete random vari‑
able X, if it can take the possible value from {X1, X2, . . . , Xn}, then its entropy is defined
as Formula (6).

H(x) = ∑
p(Xi) log2 l

p(Xi)
= −∑ p(Xi) log2 p(Xi) (6)
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In this work, we used a grapheme‑to‑phoneme (G2P) model to predict phonemes for
unannotated words, and obtained the predicted phonemes sequence along with the maxi‑
mum probability of each predicted phoneme. To select the samples for labeling, we calcu‑
lated the entropy value for each sample and ranked them in descending order. The sample
with the highest entropy value, which has the greatest potential to improve the model, is
then given to an expert for correction and labeling. By using a small number of high‑value
samples, our approach can improve model performance, greatly reduce the workload of
expert labeling, and lower the construction cost of pronunciation dictionaries.

Assuming the grapheme sequence corresponding to sample k is [x1, x2, . . . , xn] and
the predicted probability vector corresponding to phoneme sequence is [y1, y2, . . . , yn], the
entropy value Hk of sample k, is calculated by Equation (7).

Hk = max(y1)logmax(y1) +max(y2)logmax(y2) + . . . +max(yn)logmax(yn) (7)

Calculate the probability vector yn for the predicted phoneme at location n by using
Equation (8).

yn = so f tmax(W∗hn) (8)

W is the weight of the current hidden state hn.

4.4. Submodular Function
Most active learning methods select one valuable sample at a time for labeling, which

is referred to as the non‑batch method. However, this method is slow because the rec‑
ognizer is retrained for each selected sample, and it cannot perform simultaneous multi‑
expert online labeling. In contrast, batch active learning methods can select multiple unla‑
beled samples at one time [32–34]. However, using only a single sample selection strategy
in batch active learning can lead to poor results, as the selected samples may have a high
information similarity (e.g., using the N‑best method). To select the optimal subset of sam‑
ples that represent the overall dataset, we optimized the sample selection problem using
submodular function theory [35]. Specifically, we investigated the objective function of
the near‑optimal set of pronunciation dictionary samples and showed that our function
had the submodularity property, which allowed for active learning so as to obtain a near‑
optimal subset of the corpus using a greedy algorithm. For the classifier, the goal of batch
active learning is to form a set S of N unlabeled samples per iteration after user labeling,
which is added to training set L. By retraining the classifier, the classifier can achieve the
maximum performance improvement.

In active learning, the use of themaximumentropy principle as an evaluation criterion
aims to select the most informative data to train the model and to achieve optimal results.
This objective function can be represented as follows:

H(YS) = −∑ p(y)log p(y|s) (9)

In this equation, H(Y|S) quantifies the uncertainty of the target variable Y given a
known set of variables S, using the concept of entropy. The probability distribution of
the target variable y is denoted by p(y), and p(y|s) represents the conditional probability
distribution of y given a known set of variables s. The objective of this function is to max‑
imize the uncertainty of the target variable Y given a set of samples S. In the process, it
is often necessary to select the next sample with the highest information content from a
sample set [36]. The criterion for such a selection is to choose a sample that maximizes the
uncertainty of the target variable Y, because this sample can provide the most informative
new data that will facilitate a better understanding of the relationship between the target
variable Y and the input variables. This, in turn, helps improve the performance of the
model by enhancing its ability to learn from the data.
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Regarding submodular functions, they are a special class of functions that possess
important properties of monotonicity and diminishing marginal returns. In other words,
function f satisfies the following two conditions:

1. Monotonicity: For any sets S_1 ⊆ S_2 ⊆ E and element, the function f satisfies the
inequality f (S_1 ∪ e)− f (S_1) ≤ f (S_2 ∪ e)− f (S_2).

2. Diminishing marginal returns: For any set S ⊆ E and element e ∈ E − S, the
function f satisfies the inequality f (S ∪ e)− f (S) ≥ f (T ∪ e)− f (T) for any subset T ⊆ S,
such that T ∪ e ⊆ S ∪ e.

Now, we will prove that the maximum entropy function H(Y|S) is a submodular
function. Firstly, let us prove the monotonicity of H(Y|S). For any S_1 ⊆ S_2 ⊆ E and
element e ∈ E − S_2, we have:

H(Y|S1 ∪ e)− H(Y|S1)
= −∑ p(y)log(p(y|S1 ∪ e)) + ∑ p(y)log(p(y|S1))
= −∑ p(y)log(p(y|S1)) + ∑ p(y)log(p(y|S1 ∪ e))
≤ −∑ p(y)log(p(y|S2)) + ∑ p(y)log(p(y|S2 ∪ e))

= H(Y|S2 ∪ e)− H(Y|S2)

(10)

As the logarithmic function is a concave function, according to Jensen’s inequality,
we have the following:

∑ p(y)log(p(y|S1))≥ −∑ p(y)log(p(y|S2)) (11)

Therefore, we have the following:

H(Y|S1 ∪ e)− H(Y|S1) ≤ H(Y|S2 ∪ e)− H(Y|S2) (12)

Next, we prove that H(Y|S) satisfies the property of diminishing marginal returns.
For any S ⊆ E and element e ∈ E − S, we need to prove the following:

H(Y|S ∪ e)− H(Y|S) ≥ H(Y|T ∪ e)− H(Y|T) (13)

where T ⊆ S and T ∪ e ⊆ S ∪ e.
According to the definition of H(Y|S), we have the following:

H(Y | S) = −∑ p(y)logp(y | S) (14)

Therefore, we can rewrite the above equation as follows:

∑ p(y)logp(y | S ∪ e) + ∑ p(y)logp(y | S) ≥ −∑ p(y)logp(y | T ∪ e) + ∑ p(y)logp(y | T) (15)

Adding ∑ p(y) log p(y|S ∩ T) to both sides of the above equation, we obtain the following:

∑ p(y)logp(y | S ∪ e) + ∑ p(y)logp(y | S) + ∑ p(y)logp(y | S ∩ T) ≥ −∑ p(y)logp(y | T ∪ e) + ∑ p(y)logp(y | T)+

∑ p(y)logp(y | S ∩ T)
(16)

After simplification, we obtain the following:

∑ p(y)logp(y|S ∩ e)− ∑ p(y)logp(y|T) ≥ −∑ p(y)logp(y|S ∩ T)− ∑ p(y)logp(y|T ∩ e) (17)

We decompose the exponents of each of the two terms on the right‑hand side of the above
equation as follows:

p(y|S ∩ T)p(y|T ∩ e) = p(y|T)p(y|S ∩ eT)p(y|S ∩ e)p(y|T) = p(y|T ∩ e)p(y|ST ∩ e) (18)

Substituting into the above equation, we obtain the following:
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∑ p(y)logp(yS ∩ e) + ∑ p(y)logp(yT)

≥ −p(y)log ∑(p(yT)p(yS ∩ eT))p(y)log ∑(p(yT ∩ e)p(yST ∩ e)))
(19)

By applying the concavity of the logarithmic function and Jensen’s inequality, we can ob‑
tain the following:

∑ p(y)logp(y|S ∩ e) + ∑ p(y)logp(y|T)
≥ −2 ∑ p(y)log√(p(y|T)p(y|S ∩ eT))− 2 ∑ p(y)log√(p(y|T ∩ e)p(y|ST ∩ e))

(20)

As the function is convex, according to Jensen’s inequality, we have the following:

2 ∑ p(y)log√(p(y|T)p(y|S ∩ eT)) ≥ −∑ p(y)log(p(y|T))− ∑ p(y)log(p(y|S ∩ eT)) (21)

Substituting into the above equation, we obtain the following:

∑ p(y)logp(y|S ∩ e) + ∑ p(y)logp(y|T)
≥ ∑ p(y) log(p(y|T)) + ∑ p(y) log(p(y|S ∩ eT))− 2 ∑ p(y)log√(p(y|T ∩ e)p(y|ST ∩ e))

(22)

Simplifying the above equation, we obtain the following:

H(Y|S ∪ e)− H(Y|S) ≥ H(Y|T ∪ e)− H(Y|T)− I(Y; e|S ∩ T) (23)

Therefore, we demonstrate that H(Y|S) is a marginally diminishing function. As
H(Y|S) is a continuous function that satisfies themarginal diminishing property and range
restriction, it is a submodular function.

In this way, we demonstrate that H(S) is a submodular function, allowing us to use
a greedy algorithm for selecting an optimal subset of samples. Specifically, we can select
the next sample to query by computing the marginal gain H(Y|S ∪ e)− H(Y|S) for each
element. We iteratively add elements to the sample set until the desired size is reached.

5. Near‑Optimal Active Learning Algorithm
Starting from S = {}, the greedy algorithmwas used to iteratively select the unlabeled

dictionary corpa and add them to S until Ndictionary corpawere added; then, the obtained
set S was the near‑optimal set. Algorithms 1 and 2 shows the near‑optimal non‑myopic
active learning process and the greedy algorithm for finds S.

Algorithm 1 Near‑optimal non‑myopic active learning process

1. Randomly select a small number of unlabeled samples, assign a phoneme sequence to each of
them, and add them into the training set L;
2. Train the model C on L;
3. Continue executing the following loop until the specified requirements have been satisfied;
  3.1 Greedily find S;
  3.2 Add S with true labels to L;
  3.3 Retrain the classifier C on L+S, and obtain its prediction accuracy on test date set;
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Algorithm 2 greedy algorithm finds S

1. S = {};
2. While|S| ≤ N;
2.1 Predict the annotation of each unlabeled sample in the dataset
U\(L ∪ S) based on the current identifier C∗ (initially C∗ = C).
2.2 Calculate the entropy value of the samples in the pre‑labeled candidate set ac‑cording to the
entropy value calculation Formula (7) and rank them from highest to lowest according to the
entropy value.
2.3 Add the pre−
labeled sample k with the largest entropy value to the training set to obtain the model Ck
2.4 Determine whether the accuracy of Ck is >
C∗, if yes, execute 2.5, otherwise select the next sample and execute 2.3
2.5 S = S + sample k
3. End

6. Experiments
6.1. Near‑Optimal Active Learning Algorithm

The corpus preparation process involves several operations to ensure the quality and
consistency of the data.

(1) Filtering and sifting operations are performed to remove data with problems such as
garbled codes and formatting errors, as well as phrases, sentences, or samples that
do not constitute words.

(2) A phoneme set normalization is performed to label all IPA phonemes in the original
corpus with the corresponding phonemes of the common phoneme set.

(3) A phoneme separation operation is performed to identify and separate each phoneme
in the rewritten phoneme using a space character.

(4) A de‑duplication operation is performed to remove duplicate samples that have the
same word form and pronunciation.

After sorting and filtering, a total of 9620 multilingual lexical data were annotated
with the adapted common phoneme set phonemes, ensuring the quality and consistency
of the data for further analysis.

6.2. G2P Experimental Results
In this paper, 9620 dictionary corpa in the pronunciation dictionary were divided into

two parts—90% training data and 10% testing data for the G2P experiment. The results are
shown in Table 3.

Table 3. Experimental results.

Train Data Test Data Epoch WER

Tibetan 2331 259 20 4.16%

Chinese 2592 288 20 0.7%

English 1035 115 20 13.96%

Korean 2700 300 20 5.53%

Multi‑language 8658 962 20 6.2%

As shown in Table 3, the “word error rate (WER)” for Tibetan was 4.16%, indicating
a satisfactory performance of the G2P model in the Tibetan script. However, some errors
still existed. We focused on data for prediction errors, and the sources of error included
ambiguity introduced by context, i.e., a lexeme with multiple valid phonemic interpreta‑
tions. The WER for Chinese was 0.7%, which is an exceptionally low value that highlights
the remarkable performance of the G2P model in the context of Chinese. This suggests a
relatively straightforward mapping between Chinese characters and their phonemes. The
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WER for English is 13.96%, signifying more errors compared with other languages. Po‑
tential sources of errors encompass ambiguity in English spelling, where the same mor‑
pheme can have different pronunciations (e.g., “read” pronounced as “reed”,while “read”
is pronounced as “red”). Irregularities in English pronunciation, where certain words de‑
viate from typical phonetic patterns, also contribute to errors. The multi‑language WER
for Korean was 5.53%, indicating a moderate level of errors. Some potential sources of er‑
rors stemmed from the intricate phonetic rules in Korean, such as consonant assimilation
or vowel harmony. Pronunciation ambiguity arises as pronunciation can vary based on
context. The multilingual case (average WER across the four languages) was 6.2%. The
average WER across different languages provides a holistic assessment. It is worth not‑
ing that distinct languages possessed varying features and grammatical rules, leading to
noticeable differences in error distribution. However, this relatively low average value
suggests a reasonably good performance of the G2P model across different languages.

6.3. Active Learning Experiments Results
In this paper, we used a self‑built multilingual pronunciation dictionary dataset to

evaluate a proposed approach for constructing multilingual pronunciation dictionaries
based on near‑optimal active learning. The dataset comprised 9620 words, with 1000 of
them selected as the test data. We used 2000 of the remaining 8620 words as the initial
training set for active learning, while the remaining 6658 words constituted the candidate
set. The initial training set’s error rate in active learning was 6.2%. In the near‑optimal ac‑
tive learning algorithm experiments, we selectedN = 5 dictionary corpa each time from the
unlabeled dataset and added them to the initial training set. We performed 263 iterations
and selected 1315 data, and the WER reached 6.04%. To demonstrate the performance of
the near‑optimal active learningmethod, we compared the results with the N‑best method
of S. Tong et al. [14]. Figures 6 and 7 show a comparison graphs of the G2P conversion
accuracy of the two methods and the size of the samples selected. The N‑best method se‑
lected the top five samples with entropy values, obtained their true labels, and added them
to the training sets for retraining the model. TheWER of the N‑best method reached 6.07%
after selecting 3250 data through 650 iterations. In Figure 7, the blue portion of ourmethod
on the left represented the percentage of the total data accounted for by the selected sam‑
ples and the green portion represented the percentage of the remaining number, while the
red portion of the N‑best method on the right represented the percentage of the selected
samples and the blue portion represented the percentage of the remaining data. The ex‑
perimental results indicate that the near‑optimal batch active learning method selected an
unlabeled corpus with 20.3% of the total sample size, while the N‑best method selected
an unlabeled corpus with 48.8% of the total sample size. The results demonstrate that the
proposed near‑optimal active learning method outperformed the N‑best method in terms
of accuracy performance and the number of data selections.



Appl. Sci. 2023, 13, 9408 16 of 20
Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20 
 

 
Figure 6. Comparison of WER between the two methods. 

 
Figure 7. Comparison of the data selection between the two methods. 

6. Conclusions 
Existing methods for constructing pronunciation dictionaries require an unusually 

large amount of data in order to be annotated by experts, which leads to a redundancy in 
the overall construction process. In this paper, we focused on the construction of multilin-
gual pronunciation dictionaries and proposed an encoder-decoder based neural network 
as a G2P model for grapheme conversion. During the post-processing step of the trained 
G2P model, only samples with the highest information entropy were extracted, and a 
near-optimal active learning method was used for expert correction. The near-optimal ac-
tive learning method proposed in this paper can achieve a high accuracy rate, even sur-
passing that of large-scale training data, using only a small number of valuable samples. 
As a result, the efforts required for expert labeling were significantly reduced, and the cost 
of constructing pronunciation dictionaries was also decreased. 

  

1315 
Our Method 

3250 
N - best 
Method 

20.3% 48.8% 

Figure 6. Comparison of WER between the two methods.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20 
 

 
Figure 6. Comparison of WER between the two methods. 

 
Figure 7. Comparison of the data selection between the two methods. 

6. Conclusions 
Existing methods for constructing pronunciation dictionaries require an unusually 

large amount of data in order to be annotated by experts, which leads to a redundancy in 
the overall construction process. In this paper, we focused on the construction of multilin-
gual pronunciation dictionaries and proposed an encoder-decoder based neural network 
as a G2P model for grapheme conversion. During the post-processing step of the trained 
G2P model, only samples with the highest information entropy were extracted, and a 
near-optimal active learning method was used for expert correction. The near-optimal ac-
tive learning method proposed in this paper can achieve a high accuracy rate, even sur-
passing that of large-scale training data, using only a small number of valuable samples. 
As a result, the efforts required for expert labeling were significantly reduced, and the cost 
of constructing pronunciation dictionaries was also decreased. 

  

1315 
Our Method 

3250 
N - best 
Method 

20.3% 48.8% 
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7. Conclusions
Existing methods for constructing pronunciation dictionaries require an unusually

large amount of data in order to be annotated by experts, which leads to a redundancy in
the overall construction process. In this paper, we focused on the construction of multilin‑
gual pronunciation dictionaries and proposed an encoder‑decoder based neural network
as a G2P model for grapheme conversion. During the post‑processing step of the trained
G2Pmodel, only samples with the highest information entropywere extracted, and a near‑
optimal active learning method was used for expert correction. The near‑optimal active
learning method proposed in this paper can achieve a high accuracy rate, even surpass‑
ing that of large‑scale training data, using only a small number of valuable samples. As a
result, the efforts required for expert labeling were significantly reduced, and the cost of
constructing pronunciation dictionaries was also decreased.
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Appendix A
1. Universal phonemes and their corresponding IPA values in our work.

Chinese
Phonemes

IPA
Values

Korean
Phonemes

IPA
Values

English
Phonemes

IPA
Values

Tibetan
Phonemes

IPA
Values

aa [a] gg [k] bb [b] gyT [c]

oo [ ] GK [k ] dd [d] jyT [nc]

ee [ ] nn [n] gg [g] kyT [c ]

ix [i] dd [t] pp [p] hT [h]

uu [u] DK [t ] tt [t] vT [a:]

vC [y] ll [ ] kk [k] hrT [ ]

bb [p] mm [m] dxE [θ] yT [j]

pp [p ] bb [p] jhE [ ] kk [k]

mm [m] BK [p ] chE [ ] ghT [ŋk]

fC [f] sx [s] sx [s] gg [k ]

dd [t] ssK [s ] shE [ ] ll [l]

tt [t ] ng [ŋ] zx [z] lh [l ]

nn [n] zx [t ] fE [f] mm [m]

ll [l] ZK [t ] thE [ð] nn [n]

gg [k] chK [t ] vE [v] ng [ŋ]

kk [k ] kk [k ] dhE [ð:] nyT [ŋ]

hC [x] tt [t ] mm [m] pp [p]

jC [t ] pp [p ] nn [n] bhT [mp]

qC [t ] hK [h] ng [ŋ] bb [p ]

xC [ ] aa [a] ll [l] rT [r]

zhC [t ] aeK [ ] rE [r] sx [s]

chC [t ] ee [ ] wE [w] tt [t]

shC [ ] eK [e] yE [j] dhT [nt]

rC [ ] oo [o] hhE [h] tshT [ts ]
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Chinese
Phonemes

IPA
Values

Korean
Phonemes

IPA
Values

English
Phonemes

IPA
Values

Tibetan
Phonemes

IPA
Values

zx [ts] oeK [we] iyE [i] tsT [t ]

cC [ts ] uu [u] ix [I] thT [t ]

sx [s] wiK [wi] ee [ ] khrT [t ]

ng [ŋ]. euK [ ] eyE [aI] dd [d]

ix [i] aeE [æ] cT [t ]

aa [ ] jhT [nt ]

awE [ ] qj T [t ]

ayE [aI] brT [br]

ahE [ ː] zx [nt ]

oyE [ I] wT [w]

oo [a ] shT [ ]

uu [ ] ffT [f]

uwE [uː] aa [a]

erE [3ː] abT [ ]

epiE [eI] ee [e]

ebT [e ]

ewT [e:]

euT [ ]

elT [ ]

elbT [ ]

elwT [ :]

fbT [ø ]

fT [ø]

fwT [ø:]

ix [i]

idT [i ]

ilT [¾]

iwT [i:]

oo [o]

owT [o:]

uu [u]

uwT [u:]

ywT [y]

ybT

yuT [Ŷ]
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2. Some sample results from our pronunciation dictionary in this work:
Tibetan tt uu vT aa ng

Korean 다른캐릭 dd aa ll euK n2K kk aeK ll ix g2K

Chinese shC ix ix

English bag bb aa gg
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