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Abstract: In modern maritime activities, the quality of ship communication directly impacts the
safety, efficiency, and economic viability of ship operations. Therefore, predicting and analyzing ship
communication status has become a crucial task to ensure the smooth operation of ships. Currently,
ship communication status analysis heavily relies on large-scale, multi-source heterogeneous data
with spatio-temporal and multi-modal features, which presents challenges for ship communication
quality prediction tasks. To address this issue, this paper constructs a multi-modal spatio-temporal
ontology and a multi-modal spatio-temporal knowledge graph for ship communication, guided
by existing ontologies and domain knowledge. This approach effectively integrates multi-modal
spatio-temporal data, providing support for subsequent efficient data analysis and applications.
Taking the scenario of fishing vessel communication activities as an example, the query tasks for ship
communication knowledge are successfully performed using a graph database, and we combine the
spatio-temporal knowledge graph with graph convolutional neural network technology to achieve
real-time communication quality prediction for fishing vessels, further validating the practical value
of the multi-modal spatio-temporal knowledge graph.

Keywords: ship communication; multi-modal heterogeneous data; multi-modal spatio-temporal
ontology; multi-modal spatio-temporal knowledge graph

1. Introduction

In recent years, the booming development of maritime activities such as oceanic travel,
coastal aquaculture, and deep-sea mining exploration has led to an increasing number
of ships, offshore platforms, and buoys, thereby driving the growing demand for high-
speed and reliable maritime communication [1]. Currently, decision-making authorities
urgently need to obtain real-time information on the location, activities, and communication
status of ships in remote sea areas, so as to accurately predict the ship’s future trends.
The application of a large number of sensors, increased data storage capacity, cost-effective
devices, and improved database management systems make it possible to predict the
communication status of maritime vessels.
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Various maritime activities have accumulated a large amount of ship situation data
and communication status data, including ship positioning, attribute data and relevant
geographic information, which are stored and managed through relational databases. Geo-
graphic information data related to ship movement and operation include ship operations
and communication environments, natural environmental condition data, and human-
related activity data, which are mainly used to accurately understand and monitor maritime
activities and further provide significant data-driven technological innovation space for
ship communication status analysis. Although many researchers have attempted to apply
traditional big data analysis techniques for analyzing and predicting ship communication
status based on the communication data in MySQL databases, there are still some limita-
tions. For example, similarity-based methods, Kalman filtering, exponential smoothing,
and fuzzy prediction have encountered challenges in parameter adjustment, establish-
ing evaluation functions, limited learning capabilities, and susceptibility to subjective
influences. In response to these issues, Bernhard Schölkopf et al. [2] proposed the anal-
ysis method of Support Vector Machines (SVM). This model exhibits fast convergence
and the ability to address high-dimensional recognition problems, but it transforms orig-
inally simple problems into complex nonlinear regression problems. On the other hand,
artificial neural networks possess strong adaptability, autonomous learning capabilities,
excellent information retention, and optimization algorithms, making them more suitable
for prediction tasks involving unstructured data and considering various interfering factors.
However, artificial neural networks suffer from slow convergence and the potential to
converge to local optima [3,4]. Moreover, these traditional methods primarily utilize ship
positioning data for data mining and visualization, without considering the analysis of
ship spatio-temporal activity processes and behavior patterns, as well as the application of
domain knowledge.

In addition, maritime ship situation and communication status data, originating from
diverse sources, often exhibit challenges in terms of large data volumes, inconsistent for-
mats, and varying descriptions. Also, the voluminous trajectory data for ship activity with
low knowledge density, making it difficult to perform in-depth knowledge mining [5].
Consequently, the unified organization, management, and application of such data become
arduous tasks. As a NoSQL database, the graph database adopts a model of nodes, edges,
and attributes to describe large-scale, multi-source heterogeneous data in a unified man-
ner [6]. It can not only represent and processes complex semantic associations between
data, but also mine and infer more knowledge for data analysis. Furthermore, the graph
database also provides highly flexible and efficient query services. Recently, there has
been a growing focus on the development of spatio-temporal knowledge graphs stored
in graph databases, driven by the continuous improvement in computing efficiency for
the attribute analysis of large interconnected datasets [7]. The robust integration capability
of spatio-temporal knowledge graphs in managing temporal and spatial data resources
offers effective solutions for these challenges. And spatio-temporal knowledge graph
technology has found widespread application in various fields, including forest fire pre-
diction. For example, Ge et al. proposed a forest fire prediction method that combines
spatio-temporal knowledge graphs with machine learning models to efficiently extract
the required features [8]. However, the application of this technology in analyzing and
predicting ship communication quality has been limited. To address this gap, we have
developed a spatio-temporal knowledge graph based on ship communication.

The contributions of this paper are briefly summarized as follows. (1) A multi-modal
spatio-temporal knowledge graph is proposed to effectively address the issue of multi-
source heterogeneous ship communication data management, aiming to facilitate data
sharing and reuse. (2) A multi-modal spatio-temporal ontology is constructed by consid-
ering the multi-modal and spatio-temporal characteristics of ship communication data,
which provides a more comprehensive and accurate data representation standard and im-
proves the semantic interoperability between data. (3) Taking the communication scenario
of fishing vessels going out to sea as an example, we validated the feasibility of using a
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multi-modal spatio-temporal knowledge graph for communication quality prediction and
communication knowledge query tasks.

2. Related Work

A knowledge graph is a data modeling method that represents knowledge as concepts,
entities, and semantic relationships between them in the form of a graph [9]. However,
the world contains a vast amount of dynamic and procedural knowledge that conventional
static knowledge graphs cannot adequately represent [10]. Spatio-temporal knowledge
graphs not only enable the representation of entities but also capture the spatio-temporal
changes in those entities. By connecting multi-source spatio-temporal ship communica-
tion data and expert knowledge in a graph structure, spatio-temporal knowledge graphs
facilitate the dynamic analysis and prediction of communication in monitoring scenarios
involving heterogeneous data sources.

In the research involving the analysis and prediction of maritime communication and
activities through the utilization of a knowledge graph, Liu et al. [11] predicted missing
nodes in a maritime knowledge graph by link prediction in the knowledge graph. However,
they fell short in leveraging temporal and spatial information as guiding factors to achieve
more robust predictions. A dynamic method for predicting knowledge graph links was
proposed in [12] for identifying navigation scenarios at sea. Dynamic knowledge graphs
are used to capture the evolution of entities such as ships, ports, and countries. The study
was limited to conducting rudimentary experiments in positional prediction. To achieve
the event and attribute predictions as described in the article, substantial reliance on
extensive expert knowledge is indispensable. Wen et al. [13] introduced a semantic model
of ship behavior (SMSB) to describe the behavior and status of ships on a route, including
sailing, anchoring, and stopping. The status is recognized and established by rules, and the
potential behavior is inferred by a dynamic Bayesian network (DBN). Liu [5] improved
the SEM (Simple Event Model) model based on the core idea of “process-event-behavior”
and designed a ship activity ontology model. The semantic information of trajectories is
extracted using the Stop/Move model and geographic correlation relationship, and the
relationship between ship sudden events and normal events is extracted using a deep
learning model to complete instance-level filling. Ren et al. [14] used information mining
technology to perform spatio-temporal and event correlation analysis on the historical
information of ships, forming a knowledge graph analysis system for vertical domain
intelligence information on foreign military ship activities. But their works were limited to
basic applications such as querying and visualization, without incorporating inferential
reasoning into the ship activity knowledge graph.

Overall, the application of knowledge graph-driven data analysis technology to
solve maritime multi-scenario prediction tasks has become an important trend at present,
but there is still a lack of research on the management and analysis of ship communication
data. Therefore, this paper designs and constructs a multi-modal space-time knowledge
graph to uniformly organize and manage large-scale multi-source heterogeneous ship
communication data, and provide knowledge support for subsequent data analysis and ap-
plication.

3. Method

The ship communication data used in this paper were collected and obtained by means of
ship-to-shore communication and automatic collection technology, and stored in the MySQL
database. Through further analysis and processing of data, we aim to improve ship manage-
ment and decision-making capabilities. Specifically, ship communication data can be divided
into three categories: ship navigation data, communication basic resource data, and audio–
visual image data. Ship navigation data cover important information such as track points,
speed, sea area, and weather conditions. The communication basic resource database data
include platform basic data, equipment resource basic data, and communication history data
(used frequency band and signal strength and other information).
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For multi-source heterogeneous ship communication data, this paper proposes a multi-
modal spatio-temporal knowledge graph to integrate ship communication data with multi-
modal and spatio-temporal characteristics, which provides outstanding data management
support for subsequent data analysis and application tasks, such as the ship communication
quality prediction task. As shown in Figure 1, multi-modal spatio-temporal ontology
construction is for clear global concepts and semantic relations between concepts of multi-
source heterogeneous ship communication data, and to achieve semantic interoperability
between data. Based on the multi-modal spatio-temporal ontology, the method automatically
maps ship communication data to the ontology by automatic semantic modeling and further
achieves the aim of organizing and representing the data into a multi-modal spatio-temporal
knowledge graph with hierarchical structure and correlation. Moreover, in order to more
naturally organize and represent the relationships between entities, while facilitating more
efficient data querying, this article adopts a graph database based on a graphical structure
to store a multi-modal spatio-temporal knowledge graph containing complex information
such as time and geographic location.

generate

Generation Method Multi-Modal Spatio-Temporal Knowledge Graph

generateguide

Domain Knowledge

Existing Ontologies

Multi-Source Heterogeneous Data

Identify the domain and 

scope

Extract important terms

Define classes and 

conceptual hierarchy

Define properties of classes

Generate domain ontology

Construction Process

Database1 Database2 Databasen

Multi-Modal Spatio-

Temporal Ontology

Spatio-temporal and multi-modal information

Check consistency

Reuse the existing ontologies

Automatic Semantic 

Modeling Algorithm

Multi-Modal Spatio-Temporal Ontology Construction

Multi-Modal Spatio-Temporal Knowledge Graph Generation

BDIVP Semantic 

Annotation Tool

Entity Disambiguation 

Algorithm

Figure 1. Multi-modal spatio-temporal ontology and knowledge graph construction framework.

3.1. Multi-Modal Spatio-Temporal Ontology Construction

Guided by the domain knowledge of ship communication, we consider reusing the
existing ontologies (e.g., the known time ontology, geographic space ontology, and event
ontology) to enhance the quality and efficiency of multi-modal spatio-temporal ontology
construction. We apply different techniques to extract important terms from multi-modal



Appl. Sci. 2023, 13, 9393 5 of 17

data in databases for class and property definitions in the multi-modal spatio-temporal
ontology. And then, consistency checking is performed to obtain the ultimate multi-modal
spatio-temporal ontology for establishing semantic association among heterogeneous data
sources in ship communication.

3.1.1. Preliminary Preparation

Analyzing and determining the domain and scope of the ontology to be constructed
from the existing data and the purpose of using ontology plays an important role. Not only
can this step ensure that the designed ontology meets the practical needs of the application,
but it is of great significance to the development and maintenance of the ontology.

There are “platform (Plat)”, “sensor (Sensor)”, “communication equipment (Equip-
ment)”, “event (Event)”, “weather (Weather)”, “area (Area)”, and other relevant ship com-
munication data from MySQL databases. Several types of data information, such as Event
and Area, involve time and spatial information. For example, Area includes such spatial
information as longitude, latitude, and height. Furthermore, Sensor and Equipment will
generate multi-modal data, such as images and videos during ship communication. These
data are of great significance to the analysis and prediction of ship communication situa-
tions. Therefore, it can be determined that the ontology constructed in this paper needs
to achieve unified constraints and correlation integration of multi-source heterogeneous,
spatio-temporal multi-modal data in ship communication, and further provide outstanding
data management support for subsequent ship communication situation analysis and
prediction tasks.

There are three methods to reuse existing ontologies for improving the quality and
efficiency of ontology construction: (1) extending existing ontologies, (2) reusing existing
ontologies, and (3) integrating multiple existing ontologies. In this paper, we design a multi-
modal spatio-temporal ontology based on ship communication by integrating multiple
existing ontologies.

Specifically, multi-modal spatio-temporal ontology is specifically designed to inte-
grate and describe time and spatial information. There is an existing Time Ontology in
OWL [15] that provides a clear, formal, and standardized description of time concepts
and the relations between them. Therefore, we incorporate concepts Instant and Date-
TimeDescription from the Time Ontology in OWL to define the time-related description in
our ontology. A set of geospatial data types, functions, and predicates have been defined
in the existing ontology-based query language extension GeoSPARQL [16] for processing
geospatial data. We can abstract geospatial concepts and relations between concepts from
GeoSPARQL to form the geospatial ontology. For example, Coordinate Reference System
(CRS) is used to determine the position and shape of geospatial data. Additionally, we
reuse the structure of existing event ontology to define the ship communication event
description and its related semantic information. Table 1 illustrates the reusing concepts
and their corresponding descriptions.

The construction of a multi-modal spatio-temporal ontology involves extracting impor-
tant terms from the data and analyzing their context to accurately identify their meanings
and relations. This process is crucial for guiding the core structure design and semantic
relations construction of the ontology. As the ontology to be constructed is a multi-modal
spatio-temporal ontology, it is necessary to extract professional terms and spatio-temporal
information-related terms from ship communication data, with a specific focus on extract-
ing important terms from multi-modal data. The MySQL databases contain multi-modal
information, including text, images, and videos. Therefore, this paper considers the applica-
tion of various technical methods to extract high-quality important terms for constructing
a comprehensive and accurate multi-modal spatio-temporal ontology, taking into account
both the structural information of the MySQL databases and the characteristics of the
multi-modal data. Specifically, various techniques, such as natural language processing,
image processing, and video analysis can be employed to extract relevant terms from the
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data. The extracted terms can then be utilized to construct a comprehensive and accurate
ontology that effectively represents the spatio-temporal information.

Table 1. Reusing concepts and corresponding descriptions.

Name Description

Instant Representing the occurrence time of a communication event.

DateTimeDescription Describing time information including year, month, day, hour,
minute, second, etc.

CRS Indicating coordinate reference systems (e.g., “WGS84”, “UTM,”
etc.) for determining the position and shape of geospatial data.

Event Linking dynamic ship communication information.

Extract terms from structure information of data

The data type and storage structure related to equipment information in the MySQL
database are presented in Table 2. To extract important terms, we analyze and parse the
structure and content information of the relational data table in the MySQL databases.
The table name “communication equipment (Equipment)” is identified as an important
concept term, as well as column names, such as “identifier (id)”, “name”, “nation”, “type”,
“model”, “description”, “image”, and “status” are also recognized as terms.

Table 2. Equipment data storage form in MySQL database.

Communication Equipment(Equipment)(
id INT PRIMARY KEY AUTO_INCREMENT, – Equipment ID, self-increasing
name VARCHAR(64) NOT NULL, – Equipment name
nation VARCHAR(64) NOT NULL, – The country of the equipment
type VARCHAR(64) NOT NULL, – Equipment type
model VARCHAR(64) NOT NULL, – Equipment model
description TEXT NOT NULL, – Equipment description
image BLOB, – Equipment image
status VARCHAR(64) NOT NULL, – Equipment malfunction situation

)

For the content information in the table, we employ data preprocessing (including data
cleaning and segmentation) and text mining techniques such as term frequency statistics
and TF-IDF algorithms to automatically extract important terms. For example, shortwave
communication equipment terms such as “7300 type” and “726 shortwave communication
equipment” are extracted from the “model” attribute.

Extract terms from multi-modal data

Ship communication involves multimedia modal data, including images, audio,
and video. It is crucial to establish comprehensive correlations among the different modali-
ties while integrating them.

• For image data in ship communication, both image recognition and manual annota-
tion technology can be comprehensively applied to identify frequent image regions
and use their labels as terms, where image recognition technology includes image
preprocessing such as image denoising and image enhancement, as well as image
segmentation and object detection techniques. Manual annotation technology, on the
other hand, is employed to annotate objects and scenes in images, facilitating the
extraction of relevant terms.

• For audio data in ship communication, the extraction of terms can be accomplished
using audio analysis and manual annotation technology. Similar to extracting terms
from images, we can annotate objects and scenes in audio data to obtain relevant terms.
After automatic speech recognition and speech-to-text conversion, audio classification
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and active speech detection techniques can be used to detect frequent entity targets
from audio data and define their labels as terms.

• For video data in ship communication, image recognition can be employed to identify
frequent image regions and assign their labels as terms after video preprocessing oper-
ations including video frame segmentation, inter-frame difference, image denoising,
and image enhancement. Additionally, manual annotation technology can be utilized
to annotate objects and scenes in the video, enabling the extraction of relevant terms.

3.1.2. Definition of Classes and Conceptual Hierarchy

To improve the semantic expression ability and inductive integration ability of an
ontology, it is crucial to define classes and the hierarchical structure between them. This
entails determining the parent–child relations between classes and ensuring that the classes
possess an appropriate level of generality to encompass and describe a specific range
of instances.

Guided by domain knowledge in ship communication, we identify classes and their
hierarchical structure from the more general terms of table names and column names.
Initially, we establish preliminary unified concepts and semantic relations for describing
ship communication data by defining Plat, Equipment, Event, Image, Video, Instant, and Env
classes as shown in Figure 2. Since ships, submarines, and shore stations are all entities
carried by communication equipment, they have common attributes and functions in the
communication system. In order to maintain conceptual consistency, they are abstracted
into “Plat” classes. Moreover, in ship communication events, the attribute parameters
of communication equipment and the spatial information of the ship will change over
time. In the instantiation process, the communication equipment entities and spatial in-
formation (environment) entities at different times need strict one-to-one correspondence.
Therefore, we design a “State” [17] class connected with Plat class, which describes time
series information, spatial position information, communication equipment information,
and other attributes of ships in different times and spaces. Based on the time node of
the latest communication event that occurred during the voyage, a State class node is
added to the communication subject participating in the event, which connects the spatial
position information of the current communication subject and the resource data of various
communication equipment installed on the communication entity. As a result, consider-
ing the occurrence of communication events, the “State” node is added to represent the
communication situation of the entity during the corresponding period/moment.

Event communication event info Equipment
communication equipment info on 

platforms

Instant communication event time info Env
environment info under a certain 

state 

Image image modal data Video video modal data

Plat ships and other platforms info State
state info of the platform at a given 

time 

Figure 2. Core classes in the multi-modal spatio-temporal ontology.

Based on the above eight core classes, we defined Ship, Submarine, and Shore Station
as subclasses of Plat class as shown in Figure 3. There are six subclasses including Data
Transfer Event, Communication Enhancement Event, Disconnection Event, Connection Device
Event, Voice Call Event, and Message Event for the Event class in Figure 4. As can be observed
from Figure 5, Equipment class has these five subclasses such as Communication Repeater
Equipment, Satellite Communication Equipment, Radio Equipment, Optical Communication Equip-
ment, and Radio Navigation Equipment, where these subclasses also have lower subclasses,
such as GPS Receiver of Radio Navigation Equipment class.
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Plat

Ship

Submarine

Shore Station

Figure 3. Plat class and its corresponding subclasses.

Event

Communication Enhancement Event

Data Transfer Event

Disconnection Event

Connection Device Event

Voice Call Event

Message Event

Figure 4. Event class and its corresponding subclasses.

Equipment

Radio Navigation 

Equipment

Radar

GPS Receiver

Optical Communication 

Equipment

Fiber Optic Transceiver

Fiber Optic Modulator

Radio Equipment
Shortwave Receiver

Ultra-shortwave Transmitter

Ultra-shortwave Receiver

Shortwave Transmitter

Satellite Communication 

Equipment

Satellite Phone

Satellite TV

Satellite Internet Equipment

Communication 

Repeater Equipment

Amplifier

Transponder

Repeater

Figure 5. Equipment class and its corresponding subclasses.

3.1.3. Definition of Class Properties

The properties of a class include object properties and data properties, where object
properties are used to describe the relations between classes, while data properties are used
to describe relations between a class and its property values. When defining the properties
of classes in ontology, it is necessary to determine both the object properties between classes
and the data properties between a class and its property values. Additionally, it is important
to identify the domain and range of these properties.

In general, verbs or verb phrases can serve as the basis for property naming. Some
property terms have already been obtained while extracting terms from MySQL databases,
such as “hasLongitude” and “hasLatitude”. And these properties can be defined as data
properties of CRS class to describe its specific properties about “longitude” and “latitude”,
whose domain is the CRS class and range is a float.
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In the face of the case where object properties cannot be automatically extracted to
establish semantic relations between classes, we adopt the “verb + class name” method
to define object properties. For example, the object property “hasInstant” can be defined
to describe the time of the communication event, whose domain is the Event class and
range is the Instant class. In the term extraction phase, we also define the object properties
“hasSubject” and “hasObject” for the Event class and the Equipment class based on foreign
keys, where the domain of these two properties is the Event class and range is the Equipment
class. In addition, for multi-modal data such as images, audio, and video, we define
the object properties including “hasImage”, “hasAudio”, and “hasVideo” to establish the
association between multi-modal data classes and other classes.

3.1.4. Consistency Check and Generation of Ontology

After the above steps, the definition of classes and related properties in the multi-modal
spatio-temporal ontology has been basically completed. Where classes and properties in
the ontology is used to organize multi-source, heterogeneous, and spatio-temporal multi-
modal data. Following the above method, there may be contradictions or inconsistencies
between the classes and properties defined from the multi-modal data in the databases.
We primarily consider the following aspects to perform the ontology’s consistency check.
The ultimate multi-modal spatio-temporal ontology based on ship communication after
consistency check is described in Figure 6.

(1) Check whether the classes and properties in the ontology match the actual data in the
data source.

(2) Check whether the relationships between classes and properties in the ontology
are consistent.

(3) Check whether the definitions in the ontology are consistent. If the same classes and
properties are defined in different data sources using different naming or definition
methods, machine learning (such as text similarity algorithms, clustering algorithms,
etc.) or manual review should be used to standardize them to ensure the consistency
of the ontology.

Event

+ id: int

+ channel: float

+ result: string

+ name: string

Instant

+ id: int

+ time: Datetime

State

+ id: int

+ name: string

+ speed: float

Env

+ id: int

+ area: string

+ coordinate: tuple

+ wind speed: int

+ weather: string

Plat

+ id: int

+ name: string

Image

+ id: int

+ title: string

+ description: string

+ image format: string

+ resolution: string

Video

+ id: int

+ title: string

+ description: string

+ video format: string

+ frame rate: float

Equipment

+ id: int

+ number name: string

+ model: string 

+ bandwidth: float

+ symptom: string

hasInstant

hasDevice

hasSubject

hasObject

dependsOn

hasState

hasVideo

hasImage

hasImage

hasVideo

Figure 6. The ultimate multi-modal spatio-temporal ontology based on ship communication.

3.2. Multi-Modal Spatio-Temporal Knowledge Graph Generation

Knowledge graphs are large semantic networks, which encode relations between
real-world facts through nodes and edges associated to semantic entities. One of the
important reasons for integrating ship communication data into the knowledge graph
is that they are helpful for downstream prediction tasks due to the ability of knowledge
reasoning. We apply different techniques to extract knowledge from multi-modal data
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with spatio-temporal information and represent it in the multi-modal spatio-temporal
knowledge graph.

3.2.1. Knowledge Extraction from Unstructured Data

This paper employs the Transformer technology [18], known for its exceptional perfor-
mance in feature extraction tasks, to accomplish the semantic extraction task of multi-modal
unstructured data, encompassing text, image, and speech modalities. Initially, the raw
textual, image, and speech data are preprocessed and transformed into formats compatible
with the Transformer model. Then, the processed input sequences are fed into the Trans-
former encoder through the encoder and decoder of the Transformer, and the features of
each modality data are extracted through the internal multi-head attention mechanism and
other modules of the encoder. Following encoding, the input sequence proceeds to the
decoder, which is followed by specific output heads for multi-modal data and is used to
output the extracted triplets from each modality, providing data support for constructing a
multi-modal knowledge graph.

Data Preprocessing

Due to the different characteristics of data in different modalities, it is necessary to
preprocess the data of each modality and convert it into an input format that can be accepted
by the Transformer encoder. The subsequent section will provide an overview of the data
preprocessing steps for each modality.

For an image, its storage format in a computer is composed of individual pixels.
Typically, each pixel of an image (assuming it is single-channel) is treated as a token, and its
corresponding embedding operation is performed. Then, the embedding result is added to
the corresponding positional encoding to obtain the final image embedding. However, for a
single-channel image with a size of 224× 224, treating each pixel as a token would result in
an input length of 50,176 for the Transformer, which is too large and leads to an excessively
large number of model parameters, making the model cumbersome and requiring more
computational resources and time during training.

To address this issue, we adopt a patch-based method, which involves dividing the
original image into small patches and treating each patch as a token, as shown in Figure 7.
For a three-channel color image, its size format is [224, 224, 3]. The size of each patch is set to
16× 16 = 256. Therefore, the original image can be divided into (224/16)2 = 196 patches.
Since it is a three-channel image, the size of each patch is 256× 3 = 768. Hence, after patch
processing, a 224× 224× 3 image can be transformed into tokens with a size of 196× 768,
where num_token = 196 and token_dim = 768, which is in line with the input format
required by Transformer. Before inputting it into the Transformer encoder, positional
embedding needs to be added. After the aforementioned two steps of processing, the data
can be inputted into the Transformer encoder for further processing.

Patches Embeddingpositional embedding

Transformer Encoder

Figure 7. Patch-based image preprocessing.
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The processing of textual data is relatively straightforward. Firstly, the raw corpus
is formatted into sentences. Then, each word in each processed sentence is embedded to
obtain an embedding sequence. This sequence consists of multiple embedding tokens,
where each token represents the embedding of a word. Afterward, a [CLS] token and a
[SEP] token are added to the beginning and end of the embedding sequence, respectively.
Before inputting the sequence into the model, padding processing is performed and a
corresponding padding mask vector is constructed. The purpose of padding processing
is to maintain a consistent length of input sentences. Since the length of text varies,
Pad tokens are added to shorter texts to make the sentence lengths consistent, which
facilitates subsequent model processing and computation. The processed embedding
sequence, positional embedding, and semantic embedding are integrated to form the final
embedding input vector. The embedding input vector is then inputted into the model for
feature extraction, and a classification layer is used to classify each output token. Finally,
the predicted results of each token are post-processed to achieve the entire named entity
recognition task.

For the speech modality, its processing can be briefly summarized as mapping the
raw speech signal into a continuous space. Specifically, the feature sequence of the speech
is transformed into the corresponding character sequence for subsequent operations and
calculations. Since the speech sequence can be described as a two-dimensional spectrogram
with a time axis and a frequency axis, its feature sequence is usually several times longer
than the character sequence. When reading spectrograms, humans rely on the correlation
between different frequencies over time to predict pronunciation. Therefore, focusing on
the time and frequency axes may be advantageous for modeling the temporal and spectral
dynamics in the spectrogram. We choose convolutional neural networks to exploit the
structural locality of the spectrogram and alleviate length mismatch across time, ultimately
transforming it into an input sequence that can be accepted by the Transformer encoder.

Encoder

In the encoder part, we employed three different Transformer encoders to fully extract
the feature information of each modality, namely text, image, and speech. The adoption
of distinct Transformer encoders is based on the unique features of each modality. Using
different encoders can train the model parameters to better fit the needs of each modality.
However, these three Transformer encoders all retain the characteristics of Transformer,
such as dot-product attention and multi-head attention mechanism. The Transformer
encoder for text and speech modalities retains the position-wise feedforward neural net-
work, while the Transformer encoder for the image modality uses a multilayer perceptron
and employs GeLU as its activation function, abandoning the traditional ReLU activation
function in traditional Transformers.

Decoder

To better accomplish the tasks of entity recognition and relation extraction in semantic
extraction, we used different decoders based on the Transformer encoder and employed
different linear layers in the final hidden output state to perform the tasks. For enhanced
entity recognition, we incorporated a conditional random field (CRF) decoder in the de-
coder part. This allows for the better utilization of dependencies among different labels.
For a given feature sequence s = [s1, s2, . . . , sT ] and its corresponding gold label sequence
y = [y1, y2, . . . , yT ], where Y(s) represents the valid label sequence, the probability value of
y can be calculated by the Equation (1):

P(y | s) = ∑T
t=1 e f (yt−1,yt ,s)

∑
Y(s)
y′ e f (y′t−1,y′t ,s)

(1)
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where f (yt−1, yt, s) calculates the transition score from yt−1 to yt and the score of yt. The op-
timization goal is to maximize P(y|s), and the Viterbi algorithm is used to find the path
with the maximum probability during decoding.

In relation extraction, the identification of relations can be viewed as a classification
problem. Entity relation types are generally mutually exclusive, although there are a few
non-mutually exclusive relations, which account for a low proportion and can be artificially
decomposed into mutually exclusive relations. Since Softmax is well-suited for handling
mutually exclusive multi-classification problems, a Softmax classifier is employed to classify
the output generated by the Transformer encoding layer.

3.2.2. Knowledge Extraction from Structured Data

Ship communication data are mostly stored in the structured form, and extracting
knowledge from these data manually requires considerable human cost, and expertise and
can be error-prone. The mapping between the data source and the domain ontology can be
represented as a semantic network, also known as a semantic model, which describes the
implicit semantic relations in the data source according to the concepts and relations defined
in the domain ontology. The constructed semantic model can be used to automatically
transform the data source to RDF triples for publishing to the knowledge graph. In this
paper, we apply an automatic semantic modeling algorithm including seed semantic
model generation and seed semantic model amending these two steps to obtain the most
plausible semantic model [19], and further complete the task of extracting knowledge from
structured data.

Seed Semantic Model Generation

For the input ship communication data source, we first find all candidate semantic
types for each attribute in the data source, and then generate a candidate semantic model
for it by using the Steiner tree algorithm. In summary, there are two sub-steps, that
is semantic labeling and relation discovery to obtain the initial seed semantic model.
In the semantic labeling phase, we employ the SemanticTyper algorithm proposed by
Krishnamurthy et al. [20] to annotate the semantic types for source attributes. Based on the
annotated semantic types, we obtain a candidate semantic model by modeling the relations
between them using the Steiner tree algorithm [21].

Seed Semantic Model Amending

There are some missed substructures and wrong relations in the obtained seed se-
mantic model after the first step. To improve the quality of the generated semantic model
for the input data source, we use TF-IDF cosine similarity and other measurement ma-
chine learning methods to distinguish some ambiguous relations by analyzing data source
information. Meanwhile, some incorrect substructures in the seed semantic model can
be detected by matching model fragments in an existing relevant knowledge graph. Af-
ter removing incorrect relations and substructures, with the help of the existing relevant
knowledge graph, we can obtain the most plausible semantic model by adding potentially
missed substructures using the modified frequent subgraph mining algorithm [22].

As shown in Figure 8, we have completed the construction of a multi-modal spatio-
temporal knowledge graph based on ship communication through the processing steps of
unstructured knowledge extraction based on transformer and structured data knowledge
extraction based on automatic semantic modeling.
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Figure 8. Multi-modal spatio-temporal knowledge graph.

3.3. Multi-Modal Spatio-Temporal Knowledge Graph Storage

The spatio-temporal knowledge graph constructed in this study is stored using Neo4j,
a high-performance NoSQL graph database designed for storing structured data on a
network rather than in traditional tables. Neo4j exhibits remarkable scalability, enabling the
efficient processing of billions of nodes, relationships, and attributes on a single machine. It
can also be horizontally scaled across multiple machines to facilitate parallel processing.
By leveraging the node-based storage model and establishing relationships between nodes,
we are able to construct intricate nested and interconnected unstructured data structures.
This approach effectively caters to the storage requirements of multi-level nested spatio-
temporal scene data models.

3.3.1. Time Expression Model Based on Neo4j Graph Database

Time expressions in spatio-temporal data models can be categorized into three types:
interval-based methods, point-based methods, and time-based methods. Interval-based
methods partition time into discrete intervals, which are defined by their relationships,
such as ’before’ or ’after’. Point-based methods represent time as specific moments when
entity objects exist or events occur. In this study, a time-based method that integrates
both point-based and interval-based approaches is employed. The interval-based method
is expressed using a link table in the graph database, while the point-based method is
represented using a timeline tree. By combining these two techniques, a comprehensive
time-based method is achieved, enabling the direct inclusion of time as an attribute of node
entities based on the domain model.

3.3.2. Spatial Expression Model Based on Neo4j Graph Database

The Neo4j graph database incorporates the Neo4j Spatial extension plugin, which
facilitates the representation of spatial data using nodes and relationships. The underlying
methodology of the Neo4j Spatial plugin involves the construction of an R-tree, a powerful
library that enables Neo4j to perform comprehensive spatial operations. This plugin sup-
ports the import of ESRI Shapefile files and OSM data, enabling the representation of diverse
geometric shapes, including points, lines, polygons, and more. Additionally, it enables
the execution of topological operations, such as containment, coverage, and intersection,
on spatio-temporal data.
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4. Discussion

Case 1. The ship communication quality prediction task holds significant importance
in enhancing the reliability and safety of maritime communication, thereby ensuring the
security of maritime activities. Specifically, this task aids ship crews in better route planning
and communication strategies, reducing the risks related to communication interruptions or
failures and ultimately enhancing communication reliability. In emergency scenarios, ship
communication quality prediction tasks can help anticipate the performance of emergency
call signal transmissions under different environmental conditions. These predictions
enable maritime rescue organizations to effectively determine the timing and direction of
rescue operations, thereby improving overall operational efficiency.

The knowledge graph constructed in this paper organizes multi-modal data describing
the historical communication tasks of ships from a spatio-temporal perspective and uses
communication event entities to represent the communication situations of ships during
sea voyages. Specifically, communication events are divided into Data_Transfer_Event,
Communication_Enhancement_Event, Disconnection_Event, Connection_Device_Event,
Voice_Call_Event, and Message_Event, which include attributes such as occurrence time,
communication channel, and communication result. The communication result describes
the communication quality of the above events. Therefore, the ship communication quality
prediction problem can be modeled as a task of completing missing attribute values of
communication events in the multi-modal spatio-temporal knowledge graph.

Suppose a fishing boat named “Nanggang Fishery No. 1” as shown in Figure 9 is
fishing in the Huanghai Sea and suddenly encounters severe winds and waves, resulting in
significant damage to the vessel. The crew urgently needs to send a distress signal to the
nearby fishing boat “Nanggang Fishery No. 2”. However, due to the complex maritime
environment, the communication result attribute is missing in the communication event of
this fishing boat, making it impossible to determine the quality of this communication.
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Figure 9. Ship communication quality prediction based on the multi-modal spatio-temporal knowl-
edge graph.

As shown in Figure 9, the blue area describes the communication scenario where “At
8 June 2023 6:14, Nangang Fishery No. 1 encountered cloudy weather with strong winds
of level 10–11 in the Huanghai Sea (37.25278° N, 120.46378° E) area and needed to use
the NF1ST0048 shortwave transmitter to send rescue information to the nearby Nangang
Fishery No. 2 fishing vessel (37.43496° N, 121.0438° E)”. In this scenario, it is necessary to
predict the communication quality result of this Message_Event to guide the rescue ship to
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adjust communication methods and rescue direction and complete the rescue operation in
a timely manner.

Through the analysis of historical data, it is evident that environmental factors such as
weather conditions, wind speed, and geographic coordinates at a specific time can indeed
impact the transmission quality of communication signals. Moreover, considering the ex-
tensive coverage of the Huanghai Sea and the high volume of maritime traffic, it is plausible
that this fishing vessel may experience interference from other ships during communication.
Thus, a deep learning approach based on graph convolutional neural networks can be
employed to effectively address the missing communication result attribute for this specific
communication event. This approach will enable the prediction of the communication
quality, providing valuable insights into the effectiveness of the communication process.

We trained a graph convolutional neural network model on historical data to address
missing values in ship communication events. Subsequently, we utilized environmental
factors, communication equipment parameters, and other relevant variables at the given
time point as features to predict the likelihood of poor communication quality in similar
communication events. Such predictions are crucial as they directly impact the transmission
quality of emergency signals in comparable environments. Leveraging these results, we
can effectively guide Nangang Fishery No. 2 to make timely adjustments to the rescue time
and direction, ultimately enhancing the efficiency of rescue operations and ensuring the
safety of crew members.

Case 2. Compared to traditional relational databases, graph databases model based
on entities and relationships in the real world, and their expression is more intuitive
and concise. Graph databases are very suitable for querying and analyzing complex
relationships with multiple levels and diversity; relational databases are complex and
inefficient in handling complex relationship queries, especially when involving multi-
table associations or recursive queries. Cypher is a property graph data query language
implemented in the graph database Neo4j [23]. Cypher query language provides the
basis for data correction, analysis, and expansion for the ship knowledge graph system.
The following will introduce in detail the operation content and implementation method
of querying ship knowledge based on Cypher language. Cypher query language relies
on matching graph patterns. The MATCH keyword is used to specify the search pattern,
the WHERE keyword is used in conjunction with the MATCH keyword to add predicate
constraints to the matching pattern, and the RETURN keyword is used to return result
variables. Below are two examples of querying ship communication knowledge.

Example 1. Query the sailing speed of Nangang Fishery No.1 at 17:10 on 7 June 2023.

MATCH (x1:Plat)-[:hasState]->(x2:State)-[:hasDevice]->(:Equipment)
<-[]-(:Event)-[:hasInstant]->(x3:Instant)

WHERE x1.name = “Nanggang Fishery No.1” AND x3.time = “2023-06-07 17:10”
RETURN x2.speed as Speed

Query Result

Speed: 25Kn/h

Example 2. Query the communication status of Nangang Fishery No.1 and Nangang
Fishery No.1 at 17:10 on 7 June 2023.

MATCH(x1:Plat)-[*]-(x2:Event)-[*]-(x3:Plat)
WHERE x1.name = “Nanggang Fishery No.1” AND x2.time = “2023-06-07 17:10”

AND x3.name = “Nangang Fishery No.2”
RETURN x2.result as Result

Query Result

Result: Successfully



Appl. Sci. 2023, 13, 9393 16 of 17

5. Conclusions

This paper proposes an effective approach to integrate ship communication data with
spatio-temporal and multi-modal features by constructing a multi-modal spatio-temporal
knowledge graph, which provides excellent data management support for subsequent data
applications and situational awareness.

To address the heterogeneity among multi-source data, we establish the association
between data by constructing a multi-modal spatio-temporal ontology based on existing
ontologies, which guides the integration and aggregation of multi-modal spatio-temporal
information and facilitates information sharing and reuse. We use different techniques
to extract ship communication knowledge and obtain a high-quality multi-modal spatio-
temporal knowledge graph for structured and unstructured data. Taking the commu-
nication scenario of fishing boats going to sea as an example, we use the constructed
multi-modal spatio-temporal knowledge graph and graph convolutional neural network
model to predict communication quality, and the query tasks for ship communication
knowledge were accomplished through a graph database.

In future work, we intend to further improve the performance of the proposed ap-
proach by incorporating more advanced techniques, such as deep learning and natural
language processing. Moreover, we will evaluate the proposed approach in real-world
scenarios to verify its effectiveness and applicability. Overall, the proposed multi-modal
spatio-temporal knowledge graph has significant potential to enhance ship communica-
tion management.
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