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Abstract: Infrastructure that was constructed during the high economic growth period of Japan is
starting to deteriorate; thus, there is a need for the maintenance and management of these structures.
The basis of maintenance and management is the inspection process, which involves finding and
recording damage. However, in headrace tunnels, the water supply is interrupted during inspection;
thus, it is desirable to comprehensively photograph and record the tunnel wall and detect damage
using the captured images to significantly reduce the water supply interruption time. Given this back-
ground, the aim of this study is to establish an investigation and assessment system for deformation
points in the inner walls of headrace tunnels and to perform efficient maintenance and management
of the tunnels. First, we develop a mobile headrace photography device that photographs the walls
of the headrace tunnel with a charge-coupled device line camera. Next, we develop a method using
YOLOv7 for detecting chalk marks at the damage locations made during cleaning of the tunnel walls
that were photographed by the imaging system, and these results are used as a basis to develop a
system that automatically accumulates and plots damage locations and distributions. For chalking
detection using continuous wall surface images, a high accuracy of 99.02% is achieved. Furthermore,
the system can evaluate the total number and distribution of deteriorated areas, which can be used to
identify the causes of change over time and the occurrence of deterioration phenomena. The devel-
oped system can significantly reduce the duration and cost of inspections and surveys, and the results
can be used to select priority repair areas and to predict deterioration through data accumulation,
contributing to appropriate management of headrace tunnels.

Keywords: deterioration detection; asset management system; infrastructure maintenance; continu-
ous wall image; headrace tunnel

1. Introduction

Headrace tunnels have various functions, such as flood control, securing urban and
industrial water, and water purification. However, in recent years, similar to other types of
infrastructure such as bridges, headrace tunnels have steadily deteriorated, and there have
been concerns about safety, water quality, and adverse effects on the surrounding ground.
Therefore, considerable effort is directed toward extending the life of headrace tunnels,
including periodic inspections and repairs. Since 2014, the Ministry of Land, Infrastruc-
ture, Transport and Tourism of Japan has implemented a periodic inspection guideline
for all bridges and tunnels longer than 2 m based on a detailed visual inspection once
every five years, and inspections are currently conducted at this frequency for the subject
infrastructure throughout Japan [1]. However, currently, inspections of headrace tunnels
mainly involve visual inspection by inspection engineers, which requires a large amount
of labor. There are also concerns that such visual inspections by inspection engineers may
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lead to individual differences in judging the state of deterioration or the deterioration
being overlooked. Additionally, the following situation is unique to headrace tunnels: the
water supply needs to be interrupted for surveys; however, the water supply cannot be
interrupted frequently, leading to the problem that it is difficult to confirm the inspection
results onsite. Therefore, the current approach is limited to low-cost and simple inspections
during normal times, and in cases of severe deformities or progressing deterioration, the
process is shifted to more accurate inspections and investigations in stages. Given these
issues, for inspecting headrace tunnels, it is desirable to use photography devices that are
easy to operate at various sites for acquiring high-quality wall images in a short period for
highly accurate inspections even in normal times and to conduct damage detection using
artificial intelligence (AI) with the captured images so that the results are not influenced
by the individual differences of inspection engineers. Currently, the information is man-
aged via inspection reports after visual inspections and investigations. The locations of
deteriorated areas, occurrence of deterioration phenomena, and conditions are recorded in
the report as text and listed in a table. There are typically no photographs of deteriorated
areas, and even when there are photographs, they are stored as individual data; thus, they
must be searched for and confirmed by the number in the inspection report. Hence, it is
impossible to comprehensively grasp the deterioration status and its distribution from the
previous survey. Therefore, in this study, we developed a photography device and damage
detection method for a headrace tunnel whose walls are made of steel, and we conducted
an experiment involving an actual headrace tunnel to validate the proposed method.

2. Literature Review

In many recent studies, including those conducted by the authors, specific parts
were automatically detected by combining AI with image-processing technology. For
example, the authors have conducted research on detecting slope failure regions from aerial
photographs taken during landslides [2], detecting buried pipes from penetrating radar
measurements [3], and detecting bridge damage and integrating it into three-dimensional
data using Structure from Motion (SfM) [4,5]. In the field of civil engineering, there
have been numerous studies on infrastructure, especially on bridges, many of which
involved crack detection. For example, Xu et al. [6] conducted crack detection for concrete
bridges with semantic segmentation using an extended convolutional layer called ASPP,
and Chun et al. [7,8] conducted crack detection for concrete structures using LightBGM,
which is a machine-learning method, and crack detection for roads using ResNet [9],
which is a convolutional neural network (CNN). There have been many other studies on
deformation detection in concrete [10–14], but relatively few studies have been performed
on steel damage. Nonetheless, there has been research [15–18] on the detection of corrosion
points in steel using fully convolutional networks [19], including the study of Shi et al.
As mentioned above, various methods have been discussed and actively researched for
deterioration/damage detection in bridges. However, for headrace tunnels, which were
the focus of the present study, effective maintenance and management methods have not
been developed, despite their importance, and little research has been performed on the
subject [20]. As a method for conducting inspection surveys, Otsu et al. constructed a
tunnel inspection system that can accurately capture piping facilities that are difficult to
check visually, such as those hidden in walls, as visual information by using a Mixed
Reality device and a model of the channel shape that is created by attaching a plan view
recorded by past inspections to a three-dimensional model generated from design and
construction data of the channel tunnel [21]. Mori et al., developed a float-type image-
capturing device equipped with a CCD camera for agricultural canal tunnels and detected
cracks in the captured images [22]. In addition, they constructed a functional diagnosis
system using electromagnetic radar that can be used when water is cut off [23]. Chen et al.,
conducted a safety risk assessment in tunnels using a robot that can operate in underwater
environments [24]. Although inspection and survey systems have been developed, there
have been few studies on comprehensive headrace-tunnel maintenance and management
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systems, e.g., the construction of databases of inspection and survey results and analyses
based on the obtained data. Thus, both the image-acquisition method and the analysis
method are still in early stages.

3. Research Purpose

Given this background, in the present study, we sought to efficiently survey and
diagnose headrace tunnels by first developing a continuous nondestructive survey system
for headraces that can acquire high-quality wall surface images in a short period. The
developed system adopts a CCD line camera for wall image acquisition, which allows
continuous images of the wall to be captured at 1.0 km/h. The time required for visual in-
spection depends on the number of deformed areas, but with this photography equipment,
measurements can be performed in a short period and at a fixed time, and they can even
be recorded. This is useful for headrace tunnels, where the survey time is often limited
owing to water supply interruption time restrictions. Furthermore, it is a compact system
that can be easily disassembled and assembled inside a tunnel, and it can be applied to
headrace tunnels of various shapes and sizes. Furthermore, we ensured sufficient accuracy
for the purposes of this research. Next, the positions of the wall damage were detected
using the continuous images of the wall that were captured using the aforementioned
system. Currently, chalk is used to mark damage that is found during the removal and
cleaning of shells stuck to the wall, but the chalk mark positions are difficult to identify,
record, and tally because the chalk marks are made arbitrarily for all instances. Therefore,
in this study, we constructed a system that detects chalking positions using YOLOv7,
which is an object-detection method based on deep learning, and records and plots the
results. The corroded areas surrounded by chalk are the detection targets. The features of
corroded areas are not included in the training, because the corroded areas are small and it
is difficult to capture the features in the obtained images. This system can contribute to the
advancement of headrace-tunnel asset management based on the identification of locations
where severe damage has occurred, as well as our understanding of the increase in damage
over time. The results clarify deterioration trends and can contribute to the advancement
of headrace-tunnel asset management.

4. Detecting Chalking Position by Photographing and Analyzing Wall Surfaces
4.1. Development of Nondestructive Survey System Using CCD Line Camera for Capturing
Continuous Wall Images

In this study, we developed a device that can comprehensively capture wall images in
headrace tunnels such as that shown in Figure 1 to record chalking positions, which are
damage markers, and detect them using AI. The device is equipped with a charge-coupled
device (CCD) line camera, and it constructs a continuous wall image by connecting long
and narrow images captured by the CCD camera at regular intervals and recording and
saving them as high-precision digitally developed images. Figure 2 shows an overview of
the equipment used for continuous nondestructive surveys of the headrace tunnel in this
study, as well as a photograph of the actual equipment, and the state of the survey using
this equipment. The device was made with a focus on miniaturization and unitization
so that it could be applied to headrace tunnels with a diameter of =1.3 m. Furthermore,
the measurement speed is 1.0 km/h, allowing efficient operation, and the device can be
used even during short water supply interruption periods. For example, if the images are
captured from a distance of 2.5 m, the size of one pixel is 1 mm × 1 mm, which is sufficient
performance for capturing chalking positions. Furthermore, the images are 8-bit for each
RGB color, with a total of 16,277,216 colors.

An innovation of this device is the identification of the camera shooting position.
The CCD line camera collects the acceleration data while driving, converts them into a
displacement, and corrects the camera shooting position. However, there is a risk that
errors will accumulate when shooting from long distances using only acceleration data
correction; thus, the system was designed to conduct software correction using the joint
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position of the tunnel, which is known in advance. Aperture adjustments are also required.
In the device, an illuminometer was installed on the upper part of the CCD line camera, and
a function to automatically adjust the aperture according to the value of the illuminometer
was incorporated. The left side of Figure 3 presents a continuous image of the wall surface
that was used in this study as an example. From top to bottom, the upper left, lower left,
lower right, and upper right are shown as seen from the direction of travel in the tunnel.
As indicated by the figure, the entire wall surface was photographed.

Figure 1. Nondestructive continuous digital scanning system for water canals.

Figure 2. Photography equipment used (left) and shooting conditions inside the headrace tunnel
(right).

Figure 3. Example of the images used as training and validation data (inner wall).
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4.2. Chalking-Position Detection Model
4.2.1. Object Detection Using Deep Learning

In this study, we developed a method to detect the positions marked by chalk in the
headrace tunnel using deep learning. An early example of deep-learning-based object-
detection algorithms was the region-based convolutional neural network (R-CNN) pro-
posed by Girshick et al. [25]. R-CNN uses processes such as selective search [26] to detect
regions containing object candidates (region proposal) and classifies these regions using a
CNN [27]. However, it takes a long time to classify the proposed regions one-by-one using
the CNN; thus, Fast R-CNN [28], which classifies the proposed regions using the features
obtained when analyzing the input image with the CNN, was proposed. Additionally, to
further accelerate the process, Faster R-CNN [29], which uses a region proposal network
that classifies objects in a rectangular area set in an image as objects or background, was
proposed. However, Faster R-CNN has a limited processing speed because the algorithm
is divided into the two stages: object detection and classification of detected objects. For
damage detection in a headrace tunnel, as in the present study, the number of images to be
analyzed inevitably increases because the entire tunnel is photographed comprehensively.
Therefore, in addition to a high detection accuracy, a high detection speed is desirable. You
Only Look Once (YOLO), which is an object-detection algorithm using deep learning [30],
achieves fast processing by conducting object detection and classification processing in
parallel, making it suitable for the present study. YOLO estimates the object region, divides
the input image into S× S grid cells, and classifies each grid cell. According to the detected
area and classification result of each grid cell, the classification result of the detected area
is determined. A confidence score is calculated for each detection result, and the results
whose scores exceed the threshold are output as the final results. Algorithms such as
YOLOv2 [31] and YOLOv3 [32], which are based on YOLO and have higher processing
speeds and detection accuracies, have also been proposed. YOLO evolves quickly; the
current YOLO version is v8 (https://github.com/ultralytics/ultralytics, accessed on 18
August 2023), and further accuracy improvements are expected in the future. However, the
accuracy improvement is likely only a few percentage points [33]; thus, in this paper, we
report the results of YOLOv7, which was the latest version at the time of analysis. YOLOv7
is a supervised machine-learning model. Supervised machine learning is a method where
input data that were prepared in advance and the corresponding output data are used as
training data to learn the relationship between input and output data. The training data
generated in this study for model training and the training flow are discussed below.

4.2.2. Training

As mentioned previously, in the present study, we aimed to detect the chalked areas
of damage. Figure 3 shows an example of the photograph data used for training. We
created a dataset for training and validation using a total of 3125 images of actual tunnels
captured in 2016, 2017, and 2020. As shown in Figure 4, photographs were taken of the
Fusa shield section No. 1 route (first headrace) in 2016, the underground pipe section
(second headrace) in 2017, and the Fusa shield section No. 2 route (first headrace) in
2020. Therefore, the images were captured at different locations. Additionally, as shown
in Figure 3, some images had multiple chalking positions. The total amount of data for
each type of label used as training and validation data is presented in Table 1. No previous
studies have involved the detection of chalked areas in headrace tunnels; however, in
previous studies involving the detection of cracks in concrete structures, the number of
data used for learning and validation ranged from several hundred to several tens of
thousands [11,12,14,15]. Moreover, a wide variety of detection methods were employed,
such as CNNs, encoder–decoder networks, segmentation, and object detection [7,8,11].
In this study, YOLOv7—the object-detection method described above—was employed
because the area marked with chalk was rectangular, and in contrast to cracks, the object to
be detected was not continuous.

https://github.com/ultralytics/ultralytics
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Figure 4. Outline of the plan for extending the service life of the Kita–Chiba headrace tunnel.

Table 1. Training and validation data.

Class Number of Data Example Images for ClassTraining Data Validation Data

White chalking position 2479 614
(Pitting corrosion: <3 mm) 415 images 145 images

The data generated in this manner were used to train YOLOv7. In the present study, of
the 3125 chalking positions, 2479 positions—80% of the total, excluding the test data—were
used as the training data, and the other 20%—totaling 614 positions—were used as the
validation data. The corresponding numbers of images were 415 and 145, respectively. The
image size was 2528 pixels× 2528 pixels. An Nvidia GeForce RTX 3060 graphics processing
unit was used for the training. The learning rate was set to 0.01, and stochastic gradient
descent was adopted as the optimization method. The batch size was set to 2, and the
amount of training data per epoch was set to be the same as the number of training data
prepared. A total of 1000 training epochs were conducted. Figure 5 presents the losses
of training data and validation data for each epoch. As shown, the loss decreased as the
training progressed. If the number of training data is too small or the number of epochs is
too large, overtraining may occur. When overtraining occurs, the loss of validation data
often increases. As indicated by Figure 5, the training conducted in this study did not show
signs of overtraining, and the training was conducted appropriately.
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Figure 5. Losses for the training and validation of the chalking detection model.

The accuracy of the trained model was tested using 415 images not present in the
training data. In this study, the threshold for confidence, which indicates whether the
bounding box used for detection contains an object, was set as 0.25. Mean average precision
(mAP) is commonly used as an accuracy evaluation index in object detection [30,34]. The
mAP depends on the intersection over union (IoU), which is set at the time of validation,
and the mAP value corresponding to IoU = 0.5 is often used. The mAP is the average
value obtained by calculating the average precision (AP) for each type of object, but the
only objects targeted for detection in this study were the corrosion positions; thus, the
calculated AP value was used for evaluation as-is. We obtained AP = 0.9353 when the
generally used IoU = 0.5 was set. Figure 6 shows an example of the detection results based
on the test data. Here, the blue frames indicate the annotation results, the pink frames
indicate the detection results, and the numbers shown above the pink frames indicate the
confidence scores of the detection results. As shown in Figure 6, the damage positions in
the image were detected using the trained model. However, when the bounding boxes that
indicated damage overlapped, as shown in the yellow frame in Figure 6, the confidence
score was low. Although such cases reduced the detection accuracy, the damage was
generally detected well.

4.2.3. Novelty and Effectiveness of Method

In this study, a nondestructive investigation system using a CCD line camera was
constructed, along with a model for detecting chalked areas surrounding deteriorated
areas. As mentioned previously, the survey system employs two corrections to identify
the shooting position of the camera: correction using acceleration data and soft correction
using the tunnels’ joints, which allows continuous image capture with little distortion,
camera shake, or overlap. This is a unique feature of the system. Furthermore, the model is
novel in that it not only employs a high-sensitivity CCD camera with low minimum object
illuminance, similar to previous studies [22], but also employs an illuminance meter to
automatically adjust the camera’s aperture according to the measured illuminance. The
chalked-area detection model analyzes all the captured images of the entire tunnel; thus,
the number of images and the data size are large. For this reason, YOLOv7, which has
high detection accuracy and high detection speed, is used. There are no examples of object
detection of chalked areas shown in images of tunnel walls, and the detection of chalked
areas is novel because the characteristics of the objects differ from those of cracks.
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Figure 6. Example of detection results. In the lower part of the image, the chalking positions are
separated from each other; thus, many positions were detected with high confidence. Meanwhile, in
the upper center part of the image, there is a large amount of chalking overlap, and although some of
the positions had low confidence, most of them were detected.

The use of the proposed system in headrace tunnels can reduce costs by approximately
13.74 million yen per year and reduce the amount of time spent by approximately one-
fifth compared with visual inspection and investigation. It is necessary to cut off the
water supply during the inspection and investigation of headrace tunnels. Therefore, the
introduction of the system will lead to a significant cost reduction by shortening the survey
time. As infrastructure facilities are aging, this system is effective for reducing maintenance
and management costs.
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5. Demonstration Experiment and Position Identification in Actual Headrace Tunnel
5.1. North Chiba Headrace

The target of this study was the North Chiba Headrace (Figure 4), which is being
inspected and repaired as part of a life extension plan. At this headrace, we examined
the validity and applicability of the proposed method. The North Chiba Headrace is
approximately 28.5 km long and plays a role in removing inland water during floods,
supplying city water to Tokyo and purifying nearby rivers and swamps such as the Saka
River and Tega Swamp. It has been over 20 years since the start of its operations in 2000,
and the deterioration of the water pipes has become apparent, necessitating periodic
inspection and repair. Therefore, we formulated a maintenance plan for the headrace and
started inspection and repair in each section. The first round of inspection and repair
was conducted from 2013 to 2017, and the second round of inspection started in 2018.
However, owing to the role played by headrace tunnels, a long water supply interruption
period is impossible, and this applies to the North Chiba Headrace. Therefore, when
deformities, which need to be removed, are found when removing mussels clinging to
the wall (Figure 7), they are circled with chalk. The chalk color depends on the type of
deterioration; white chalk is used in the case of corrosion, and red chalk is used in cases of
blistering (Figure 3, right).

Figure 7. Removing mussels.

5.2. Analysis Results

Figures 8–13 show the results of the trained model for detecting chalking positions. In
each figure, the blue frames indicate the annotation results, the pink frames indicate the
detection results, and the numbers shown above the pink frames indicate the confidence
scores of the detection results.
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Figure 8. Example of chalking detection results. The blue frames indicate the annotation results, the
pink frames indicate the detection results, and the pink numbers indicate the confidence scores at the
time of each detection. Almost all the chalking positions were detected with high confidence scores.

Figure 8 shows an example of detection near a ladder. Almost all the chalking positions
were detected, and the confidence score was high, with an average value of 0.845. The
detection results (pink frames) had almost the same shape as the blue frames indicating
the annotation positions, and both the rectangular areas surrounding the deterioration
positions and the characters indicating the information could be detected. In the upper part
of Figure 8, there is a ladder on the wall, and only half of the chalked area is visible in the
upper left part of this ladder. However, the confidence score is as high as 0.803, and the
IoU is as high as 0.866. The IoU, which is described in detail later in the paper, indicates
the degree of overlap of the regions and is expressed as a value between 0 and 1. A value
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closer to 1 indicates a higher accuracy. As shown in Figure 8, almost all chalked areas were
detected without significant deviations. This was confirmed by the fact that the mean IoU
(mIoU), i.e., the average value of the IoU in Figure 8, was 0.840.

Figure 9. Example of chalking detection results. The blue frames indicate the annotation results, the
pink frames indicate the detection results, and the pink numbers indicate the confidence scores at the
time of each detection. Detection was achieved for not only chalking positions with square-shaped
areas having similar aspect ratios but also shapes that did not exist in large numbers, such as vertically
or horizontally long shapes. The yellow chalked area in the upper center part was not detected, and
it can be said that the color was recognized.

Similarly, in Figure 9, most of the damage positions were detected, and the confidence
score was high, with an average value of 0.871. However, at one position near the bottom
of Figure 9, the confidence score was 0.149. Most of the chalking positions in this study had
square-like shapes with similar aspect ratios, but there were a few chalking positions with
a vertically long rectangular shape located at the center of Figure 9. This chalking point has
not only a high confidence score of 0.817 but also a high IoU of 0.826. The developed model
detected these few characteristic points with a high confidence score and IoU. Similarly, the
mIoU in Figure 9 was as high as 0.739. In Figure 9, there are two yellow chalking points
slightly above the aforementioned vertical chalking points. The accuracy was increased by
the fact that the yellow chalked areas were not detected incorrectly, because only the white
chalked area was the target in this study.
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Figure 10. Example of chalking detection results. The blue frames indicate the annotation results, the
pink frames indicate the detection results, and the pink numbers indicate the confidence scores at the
time of each detection. As in Figure 7, even vertical chalking positions were detected. However, some
of the positions where numbers and symbols were written in white chalk were incorrectly detected.

In the case of Figure 10, similar to Figures 8 and 9, the positions were detected with
high accuracy, but there were positions where only the numbers and symbols that were
chalked were detected incorrectly. These numbers and symbols were written using the
same chalk as those in the annotations, and their sizes were very similar; thus, it is possible
that such misdetection occurred. However, these detection results had very low confidence
scores, with values of 0.173 and 0.179, as shown in Figure 10. Herein, all the results are
presented, regardless of the confidence score; thus, there are false positives such as this.
We consider that setting a threshold for the confidence score will increase the accuracy.
However, even with these false detections, the mIoU was as high as 0.756, indicating that
the detection was highly accurate.

Figure 11 shows a very large amount of chalking, with many symbols and characters
around it. Although they were detected, the confidence score was low, or only positions
with characters were detected, and the detection was not very accurate. The mIoU was
0.611, for the case where the chalking was dense or there were many letters and numbers
outside the rectangular area, as shown in Figure 11. Distinguishing such characters and
symbols from annotation positions is difficult even for humans; thus, when conducting
chalking, there is probably a need to color-code corrosion positions to be detected along
with symbols and characters.
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Figure 11. Example of chalking detection results. The blue frames indicate the annotation results, the
pink frames indicate the detection results, and the pink numbers indicate the confidence scores at
the time of each detection. When there were not only many rectangular chalking positions but also
many cases with notes such as numbers or symbols, multiple detections were conducted for a single
annotation position. Most annotation areas contained both rectangles and numbers; thus, locations
with only numbers and symbols written were also detected.

Figure 12. Example of chalking detection results. The blue frames indicate the annotation results, the
pink frames indicate the detection results, and the pink numbers indicate the confidence scores at the
time of each detection. The large chalked area in the center of this figure was detected accurately as
well, although it is different from the usual chalked area. The lower left detection area in this figure
has a high IoU, although the image is distorted, resulting in a low confidence score.
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Figure 13. Example of chalking detection results. The blue frames indicate the annotation results, the
pink frames indicate the detection results, and the pink numbers indicate the confidence scores at
the time of each detection. Although only two large areas on the left and right were considered as
chalking points during annotation, two chalked areas were detected in the left area and three chalked
areas were detected in the right area. Since these large areas contain many deteriorated areas (circled
areas within a rectangular area), it is not necessarily a mistake to detect more than the annotated data.

Furthermore, there are areas that were detected accurately and areas that were not
detected accurately in the same region in Figure 12. The large chalked area in the center of
the image was detected accurately, with a confidence score of 0.739 and an IoU of 0.816. The
small chalked areas to the left and right of the chalked area were also generally detected
accurately, because the chalked rectangle area was clear. However, the disappearing chalked
area overlapping on the right side of the large chalked area in the center of the image was
detected incorrectly. Because this chalking point is where deterioration has appeared in the
past, it is necessary to consider whether such a chalked area should be detected. The chalked
area in the lower left of Figure 12 was detected accurately but with a low confidence score
(0.207). This is because the image was a planar rendering of a curved tunnel wall surface,
which caused distortions; consequently, the chalk markings were distorted. Although
there were many such distorted areas, only a few were not detected. The confidence score
of the disappearing chalked area ranged from approximately 0.132 to 0.175, whereas the
confidence score of the distorted area was 0.207. Therefore, it is better not to detect chalked
areas when the confidence score is <0.200. In the case of the densely chalked areas shown
in Figure 11, some false detections have a confidence score of 0.300–0.500; however, the
confidence score of the false-detection area in Figure 10 is 0.179. Thus, setting a threshold
value is effective for increasing the detection accuracy.

Finally, Figure 13 shows the detection results for chalking points larger than those
in Figure 12. In this case, two large chalking points were annotated as the left and right
areas, and the detection results indicated that there were two chalking points in the left area
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and three in the right area. For the two areas with confidence scores exceeding 0.800, the
rectangular area indicated by the chalk was detected, but for the other areas, only the text
was detected. Such large areas include many deteriorated areas (Figure 13, circled areas
within chalked areas), and whether the area should be divided into one or two rectangles
depends on the judgment of the individual. Therefore, the distribution of the chalked areas
should not be judged solely according to the number of chalked areas; rather, the size of the
chalked areas should be considered to obtain an accurate grasp of the deterioration status.

Furthermore, we evaluated all the detection results using the IoU, which is expressed
by Equation (1) and indicates the degree of overlapping of regions.

IoU =
TP

TP∪ FP∪ FN
(1)

Here, TP, FP, and FN are as shown in Table 2. All these values have units of pixels. This
index allows the accuracy of the detection results to be evaluated in pixel units. The IoU for
the proposed method was 0.777. Additionally, three accuracy indices—the precision, recall,
and F-score—were calculated using the following equations (Equations (2)–(4)). Their
values were 0.8066, 0.9902, and 0.8891, respectively. As shown in Figure 6, the overlapping
of bounding boxes that indicate damage reduces the value of the above indices, but it is not
considered to be a major problem for broadly determining the distribution of damage.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F-score =
TP

TP + 1
2 (FP + FN)

(4)

Table 2. Confusion matrix for classification.

True Class

Positive Negative

Predicted Class
Positive TP (True Positive) FP (False Positive)

Negative FN (False Negative) TN (True Negative)

Table 3 presents a breakdown of the detection results, and Table 4 presents each
detected and undetected case. As shown in Table 3, there were 609 positions where
chalking was detected accurately. As indicated by the first row of Table 4, there were cases
of singular and multiple corrosion positions, and these positions were detected even when
the shapes were slightly different, e.g., when the rectangular area surrounding them was
larger than usual. Only six positions were not detected, and as indicated by the second
row of Table 4, these included cases where chalking was performed at seams and dents
and where the chalk color was faded. Thus, the results indicated that the proposed model
can generally detect objects that are clearly chalked on a flat surface. The number of
incorrectly detected positions was 146 and as indicated by the third row in Table 4, there
were examples of positions that were chalked in red or yellow and where some numbers
or symbols were detected. However, approximately 86% of these were positions where
parts of chalking positions or numbers/symbols were detected; thus, it can be said that
“locations with chalking” were generally captured. The results suggested that the damage
positions were generally detected well. Excluding the false detection results, the number of
chalking positions detected was 608 out of 614, indicating that the positions were detected
with an extremely high accuracy.
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Table 3. Breakdown of the detection results.

Total number of chalking locations 614

Total number of detections 754

Correctly detected (TP) 608 (99.02% of all chalking locations)

False detections (FP) 146

A part or multiple parts of white chalk area 126 (86.30% of false detections)(e.g., number and symbols)

Background 14 (9.59% of false detections)

Other colors 6 (4.11% of false detections)(Bright yellow, white and yellow, etc.)

Repair sheet 0 (0% of false detections)

No detection (FN) 6 (0.98% of all chalking locations)

Table 4. Example detection results for each class.

Examples of Detectable/Not Detectable

True Positive (TP)

False Negative (FN)

False Positive (FP)

5.3. Plot of Chalking Positions in Headrace Tunnel

To efficiently detect deformation positions on the inner wall of the headrace tunnel,
in the proposed system, we made it possible to visualize the damage positions in the
entire tunnel, as shown in Figure 14a, according to the positional information of the
tunnel provided by the captured continuous images of the walls and the chalking-position
detection results. This is based on the fact that YOLO can derive the bounding box of
the detected damage, and here, the central point of the bounding box was used as the
representative point. As shown in Figure 14a, there were many detections near the entrance
(positions of 0–20 m in the direction of travel), but there were very few chalking positions
after approximately 40–80 m. Figure 14b,c present continuous images of the wall 5–10 m and
60–65 m from the entrance, respectively. In Figure 14b, there are many chalking positions,
whereas in Figure 14c, there are hardly any; thus, the detection result is considered to be
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valid. Additionally, for example, there was considerable damage at approximately 10 m,
but this was a joint part, and the damage is attributed to the scattering of spatter during
fabrication, which made leakage more likely, promoting corrosion. Thus, detecting the
chalking positions throughout the tunnel made it possible to determine the distribution
of damage locations and their tendencies, which will be useful for future maintenance
and management.

(a) (b) (c)
Figure 14. Plot of chalking positions in the headrace tunnel. (a) Plot of positions where chalking was
detected from the analysis results; there were many detections near the entrance (positions of 0–20 m
in direction of travel). Meanwhile, there were few detections near 40–80 m. (b) Image of the wall
5–10 m from the entrance. As indicated by the detection results in (a), there were many chalking
positions here. (c) Image of the wall 60–65 m from the entrance. As indicated by the detection results
in (a), there were relatively few chalking positions here.

6. Discussion

In this study, chalking points were detected by YOLOv7 using continuous wall images.
The analysis results indicated that when the chalking position was clear, it was detected
and classified with a high accuracy. However, it was difficult to detect chalking in the
rectangular areas targeted in this study, as well as in cases where objects such as numbers
and symbols, which were not subject to detection, were concentrated. Nonetheless, the
presence or absence of chalking was detected reliably, and we developed a model with few
detection omissions. The experimental results indicated no omissions of non-rectangular
chalk marks. However, there are cases where the chalking differs from normal chalking, e.g.,
when it is located on a step or when the chalked area is large, depending on the shooting
conditions and the chalked area, and may not be detected. Although there were only a few
such cases in this study, they are likely to be more prevalent in tunnels with many uneven
surfaces or deteriorated areas, and we believe that it is necessary to add training data to
handle such special cases that differ from normal chalking. Currently, headrace tunnels are
inspected visually by engineers, who take photographs as needed to store data on the extent
of deterioration. This not only causes individual differences in judgment of deterioration
and oversights but also makes it difficult to create a database for efficient maintenance
and management. Capturing continuous development images of interior walls, as in this
study, makes it possible to grasp the condition of wall surfaces comprehensively and to
construct a database and store the data at each inspection. Furthermore, deterioration areas
are detected by AI using the captured images, and the number and distribution of these
deteriorated areas monitored over time can be used to identify deterioration trends, leading
to more efficient maintenance and advanced asset management of headrace tunnels.
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7. Conclusions

We sought to increase the efficiency of detecting deformation positions on the inner
walls of headrace tunnels by developing a continuous nondestructive survey system for
headraces that captures wall surfaces in headrace tunnels, and we used continuous images
of the wall captured with this photography device to detect chalking positions on the inner
wall of the North Chiba Headrace using YOLOv7. Our findings are summarized below.

• The model developed in this study allowed us to determine the location of deteriora-
tion with an accuracy as high as 99.02%.

• Chalking detection from continuous wall images allows quantitative and qualitative
evaluation of the total number and distribution of deteriorated areas, facilitating the
identification of changes over time and the factors that cause deterioration phenomena.

• The cost and time associated with investigation and diagnosis are reduced by approx-
imately JPY 13.74 million/year and one-fifth, respectively, by using the developed
continuous nondestructive survey system.

• Effective maintenance and management can be achieved through the acquisition of
data that can be easily stored in a database and the development of a series of systems
to monitor the deterioration status.

• The continuous wall surface images and the chalking locations detected using the
images are recorded, plotted, and stored in a database, leading to an advanced asset-
management system for headrace tunnels.

We were able to significantly reduce the time required for inspection by using this
device to photograph the inside of the headrace tunnel, making efficient maintenance and
management possible. Additionally, we recorded and saved the state of the wall surface as
continuous images, which made it easier to identify and tabulate the deterioration positions
and to follow the changes over time. By capturing continuous images of the headrace
tunnel wall and determining the chalking positions, we significantly reduced the cost of
inspection and recording, which previously relied on visual inspection. Furthermore, it is
expected that the distribution and characteristics of the deterioration positions will clarify
the causes of deterioration and facilitate the proposal of repair plans that match these
characteristics and trends. Additionally, the creation of a database of the location, type,
and extent of the deterioration that is discovered at the time of inspection will lead to the
establishment of a deterioration prediction method that can be utilized for future inspection
and repair planning as well as a reduction in lifecycle costs.Although researchers have
conducted inspections and surveys of the inner walls of headrace tunnels using robots,
no previous studies have been carried out on the detection of chalked areas by AI using
continuous wall surface images captured via the surveys using nondestructive systems
based on CCD line cameras and quantitative and qualitative evaluation of the inspection
and survey results, making the present study unique. The proposed system allows efficient
maintenance and management of headrace tunnels.

As discussed in a previous section, the number and distribution of chalking points
(which corresponded to corrosion points in this study) in each headrace tunnel were
determined using the captured images. From the high detection accuracy and recall, we
concluded that the actual number and distribution of chalking points were similar to the
detection results, indicating that the developed system can be used to maintain and manage
headrace tunnels. The data used for training and validation in this study were obtained
from different areas of the tunnel, and the wall surfaces were in different conditions; thus,
the developed model was validated. However, we believe that it is necessary to check
whether similar detection performance can be achieved for headrace tunnels with different
characteristics. Additionally, the damage severity was not discussed in this study, and we
wish to be able to determine it from distribution trends and other factors. Another task
for future research is the development of a model that is more robust against non-target
chalking, e.g., the color of the headrace wall, numbers, and symbols. For example, many
images with only numbers and symbols can be prepared to increase the amount of training
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data. Furthermore, in the future, if we can develop a method that can detect damage
without chalk, the inspection costs will be significantly reduced; hence, this is one of our
research goals. Corrosion damage in a headrace tunnel is difficult to detect because it is
very small compared with the tunnel as a whole, but we aim to achieve this by improving
the photography methods and increasing the amount of data.
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